
COMPUTER-AIDED DESIGN & APPLICATIONS
2018, VOL. 15, NO. 6, 905–915
https://doi.org/10.1080/16864360.2018.1462571

Machined sharp edge restoration for triangle mesh workpiece models derived
from grid-basedmachining simulation

Ziqi Wang , Jack Szu-Shen Chen , Jimin Joy and Hsi-Yung Feng

The University of British Columbia, Canada

ABSTRACT
Grid-based machining simulation methods have become very popular due to their advantages in
computational efficiency. However, these methods are prone to generating machined workpiece
models with chamfer edges, which reduce model accuracy and visual quality. An effective method
is presented in this paper targeting the restoration ofmachined edges from these chamfer edges for
triangle mesh models derived from grid-based machining simulation. The method starts by detect-
ing the chamfer edge triangles via utilizing both edge-basedmesh segmentation and feature-based
mesh segmentation. The outcomes of the two segmentationmethods are then compared and com-
bined toachieve improveddetectionaccuracy. To restore themachinededges, thedetected chamfer
edge triangles are split by adding new points based on the neighbors of the chamfer edge trian-
gles. Triangle quality checks are imposed during the point addition process in order to ensure that
the restored edges do not negatively impact the triangle mesh quality. Once all the applicable new
points are added for all the chamfer edge triangles, the edge restoration task is complete. The pre-
sentedmethod has been implemented and executed on sample trianglemeshmodels derived from
grid-based machining simulation. Improved edge restoration compared to that of existing edge
restorationmethods has been observed. Sub-second computational performance is attained for the
majority of the test cases.

KEYWORDS
Machining simulation;
workpiece model; machined
edge restoration

1. Introduction

Chamfered edges occur for triangle mesh workpiece
models generated from discrete machining simulation
methods such as the vector grid based tri-dexel method
[23] and voxel grid based FSV-repmethod [15]. The ideal
sharp edge of intersection between two machined sur-
faces is replaced by a thin chamfer surface. In the case of
representing the machined workpiece as a triangle mesh
model, the thin chamfer surface shows as a set of con-
nected triangles that run between the triangle patches
representing the surfaces on either side of the ideal edge.
Chamfered edges happen for triangle meshes generated
from the vector or voxel based simulation because of
the grid structure of the underlying geometric modeling
methods. Presence of the chamfered edges reduces the
accuracy of the generated workpiece model and deteri-
orates its visual quality. Hence, these undesirable cham-
fered edges need to be restored to their ideal sharp form.
Machining simulation using vector or voxel basedmodel-
ing methods is quite popular due to their computational
efficiency. However, the issue of chamfered edges needs
to be resolved. This paper presents an effective machined

CONTACT Hsi-Yung Feng feng@mech.ubc.ca; Ziqi Wang qiqi007@mail.ustc.edu.cn; Jack Szu-Shen Chen jsschen38@gmail.com; Jimin Joy
jjoy@alumni.ubc.ca

edge restoration method for triangle mesh workpiece
models derived from grid-based machine simulation.

Triangle mesh is a versatile geometric representation
format for machining simulation as it provides simple
visualization and surface analysis functionalities. Geo-
metric machining simulation is an essential part of the
emerging virtual machining technology [2]. Compared
to other representation formats, triangle mesh can rep-
resent the workpiece shape at reasonable accuracy with
relatively low model size. This is achievable since tri-
angle mesh uses simple triangular elements to approxi-
mate the workpiece surface geometry and a large number
of smaller triangles can be used at areas of high cur-
vature and a lesser number of large triangles at flatter
areas. It makes triangle mesh a simple and efficient for-
mat for visualization and surface analysis in machining
simulation.

Though triangle mesh has the aforementioned bene-
fits, it is not suitable for efficient machining simulation
involving repeated update of the workpiecemodel. Other
modeling methods are, thus, often used for this pur-
pose. In fact, in the early years of machining simulation

© 2018 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2018.1462571&domain=pdf
http://orcid.org/0000-0002-3817-3922
http://orcid.org/0000-0002-1225-6340
http://orcid.org/0000-0003-4499-2366
http://orcid.org/0000-0001-6189-6910
mailto:feng@mech.ubc.ca
mailto:qiqi007@mail.ustc.edu.cn
mailto:jsschen38@gmail.com
mailto:jjoy@alumni.ubc.ca
http://www.cadanda.com

906 Z. WANG ET AL.

Figure 1. Chamfered edges: (a) Two ideal machined surfaces
with an intersecting edge and sàmpled points on each surface
obtained from thefixed spatial grid, and (b) Trianglemesh approx-
imation from the sampled points resulting in an additional cham-
fer face (pale red) in place of the original edge.

research, boundary representation (B-rep) using NURBS
[25] was used. Again, due to computational efficiency
issues, NURBS based B-rep is not the preferred method
being used for machining simulation. Triangle mesh
based machining simulation [4],[11] was attempted in
place of NURBS based B-rep but could not address the
computational efficiency issue well, either. Vector mod-
eling using Z-maps [3] and dexels [26] were the class
of methods developed to achieve the best computational
efficiency. Unfortunately, the computational efficiency
was achieved at the price of model accuracy. Tri-dexel
method [6],[19],[23] is an improved vector modeling
method that can handle general milling simulation with
good model accuracy. Space partitioning methods such
as voxels [14–17],[28] are another active class of discrete
modeling methods. To reduce the large memory demand
of an accurate model for conventional voxel modeling
methods, an improved voxel modeling method referred
to as frame-sliced voxel representation (FSV-rep) has
been developed [15]. All these discrete geometric mod-
eling methods typically need to produce a triangle mesh
based model representation to facilitate visualization
and further downstream applications. Consequently, the

quality of the generated triangle mesh from the discrete
modeling methods is of great significance.

The triangle mesh workpiece model generated from
the discrete grid-based machining simulation methods
such as tri-dexels and FSV-rep suffers from the cham-
fered edge issue due to the following reason: because of
the grid structural nature of tri-dexels and FSV-rep, only
sampled points at the grid crossings on the workpiece
surface are captured. This, however, does not ensure that
such sampled points are available to reconstruct the edges
of intersection betweenmachined surfaces as depicted in
Fig. 1(a). In fact, most, if not all, of the edges of intersec-
tion lack any sampled point for the reconstruction and
end up being missed. Instead, a thin chamfer face is cre-
ated between the sets of sampled points from the faces on
the sides of the edge as depicted in Fig. 1(b). Such false
chamfered edges can be classified according to the type
of surfaces that intersect to produce the edges (Fig. 2).
Three types of chamfered edges can be defined: (1) Type
1: edges between two smooth surfaces (case a in Fig. 2),
(2) Type 2: edges between a smooth surface and a surface
with machined scallops (case b in Fig. 2), and (3) Type 3:
edges between two surfaces withmachined scallops (case
c in Fig. 2). Among the three types of chamfered edges,
Type 1 is the simplest to detect and rectify whereas Types
2 and 3 are increasingly more complex. Regardless of the
complexity, these chamfered edges need to be restored in
order for the grid-based machining simulation methods
to have comparable simulation output quality as NURBS
and triangle mesh based machining simulation.

The possible approaches to avoid the false cham-
fered edges on a triangle mesh generated from a vec-
tor or space partitioning method can be conceptually
categorized as in-process and post-process approaches.
The in-process approaches are those being part of the
workpiece update process for the underlying simulation

Figure 2. A typical machining case showing the three types of chamfered edges.

COMPUTER-AIDED DESIGN & APPLICATIONS 907

model itself. This is, however, challenging to pursue as
the existing discrete methods are not structured to store
the edge data. In order to achieve an in-process edge
creation for the model, fundamental changes will be
needed for the underlying geometric modeling method.
The post-processing approaches, on the other hand, can
be applied without being part of the workpiece update
process. The essential requirement is to develop an edge
restoration method which is applicable and effective
for the associated machining simulation method. The
method developed and presented in this paper is a post-
processing method utilizing the characteristic properties
of the triangle mesh generated by grid-based machining
simulation.

To restore the machined edges of a triangle mesh
model derived from grid-based machining simulation,
a new method has been developed after considering the
existing methods as applied in similar situations. Among
the existing methods, feature conserving triangle mesh
generation for tri-dexels by Ren et al. [23] is a notable
method as it works using a space partitioning interme-
diate model called regularized tri-dexels. The method
stores the surface normal vector at each dexel end point
and updates it from the cutting tool envelope surface
when the dexel is trimmed during the simulation. The
triangle mesh generation later uses these surface normal
vectors to restore the edge features. Using the dexel end
points coincident with edges of each grid cell, the bound-
ary loop for the triangle patch(es) within the grid cell is
identified. The surface normal vector of each dexel end
point in the loop is then used to identify the appropriate
additional sampled points to be added to restore por-
tions of the edge feature within the grid cell. To adapt
thismethod for generic grid-basedmachining simulation
is not possible since internal modification of the simula-
tion method is required, in particular to store the surface
normal vector data. As for generic edge feature restora-
tion techniques, notable ones include bilateral denoising
by Fleishman et al. [8] and sharp feature recovery using
an energy optimization technique by Liu et al. [20]. These
methods, however, target noisy meshes generated from
physical part scanning. The need to deal with noise due to
scanning causes unnecessary overheadswhich push these
algorithms’ processing time above the acceptable limit
for machining simulation. Edge restoration in machin-
ing simulation is meant to restore the chamfered edges
without noticeable alteration to the overall simulation
time. Since machining simulation time is typically in the
order of seconds, edge restoration needs to be a sub-
second processing task. Therefore, a fast edge restoration
method for triangle mesh models derived from grid-
based machining simulation is needed and presented in
this paper.

2. Methodology

The initial step in edge restoration is the proper identifi-
cation of chamfered edges. Identification of these entities
not only significantly narrows the processing regions for
the subsequent edge restoration algorithm, it also seg-
ments the triangle mesh model into geometrically sim-
ilar patches. This facilitates faster and more accurate
information extraction necessary for the realization of a
computationally fast edge restoration scheme.

A parallel two-component edge extraction approach
is adopted in this work to detect chamfered edges effi-
ciently and reliably. One component is an edge-based
segmentation method and the other is a feature-based
segmentation method. This work takes advantage of
the benefits of the two dissimilar segmentation meth-
ods and attempts to mitigate their individual issues via
the strength of the other method. For the edge-based
segmentation method, the primary advantage is its sim-
plicity and computational speed. It is only necessary
to distinguish between edges and features (non-edges),
making the segmentation problem simple. The edge-base
method can, thus, quickly extract edges with satisfac-
tory precision. However, the edge-based method often
needs manual editing in order to achieve good extrac-
tion results [1].Withoutmanual post-processing, broken,
incomplete and incorrect edge segments are typically
obtained. To overcome this issue, the result from an
efficient feature-based segmentation method is utilized
to filter the edge-based segmentation results. Although
also unable to perform accurate edge extraction com-
pletely, feature-based segmentation focuses on geomet-
ric features rather than edges. It will, therefore, produce
similar but often different edge extraction results. The
difference is used to filter the edge-based segmenta-
tion results. Specifically, any broken and/or incomplete
edge segment that falls on a feature is removed with
complete edge segments kept. Furthermore, the seg-
mentation result is used to identify the corner tri-
angles which are a subset of the edge triangles. The
combination of the two edge extraction methods gives
fast computational speed and good edge extraction
results.

With the edges and corners extracted, per-vertex nor-
mals are estimated via averaging the one-ring non-edge
face normals to facilitate edge and corner restoration.
Once the normal estimate is complete, the edges and cor-
ners are restored through splitting the edge and corner
triangles. New vertices representing edges and corners
are added and their locations are determined based on
the adjacent per-vertex normals. Fig. 3 outlines the pre-
sented edge restorationmethod. Further technical details
are given in the following sections.

908 Z. WANG ET AL.

Figure 3. Main steps in the presented edge restoration method.

3. Edge-based segmentation

In general, edge-based segmentation used in computer
graphics focuses on the extraction of specific edge lines
[9],[22]. Most often, edge lines are defined via the
first and second order curvature derivatives on shapes
approximated by dense triangle meshes. However, in tri-
angle mesh workpiece models produced by a grid-based
machining simulation system, finding an edge line is
not useful. In fact, no specific edge lines exist since the
edges are chamfered. Hence, the applicable approach for
such mesh models with chamfered edges is to detect
the edge regions rather than the edge lines. The edge
region detection essentially divides themesh vertices into
two groups: edge vertices and non-edge vertices. To per-
form edge region segmentation, the method developed
by Huang and Ascher [12] is used with some simplifica-
tions. Although the method indeed promotes the extrac-
tion of edge regions rather than edge lines, it is still
built around the assumption that the input models pos-
sess very sharp edges. For mesh models with chamfered
edges, this method would fail. Nevertheless, the method
can be adapted to work for mesh models with cham-
fered edges. The adapted method is simple and robust. It
uses K-means clustering to group the mesh vertices with
further processing to refine the segmentation result.

3.1. K-means clustering

The core of the edge region segmentation method of
Huang and Ascher [12] is K-means clustering. K-means
is an unsupervised clustering algorithm that allocates
every data point to one of the K clusters to minimize the
within-cluster sum of squares of a specific measure. For
this work, per-vertex curvature is used as the measure.
The per-vertex curvature is widely used in segmenta-
tion studies [1],[24], especially the per-vertex principal
curvatures which provide a suitable classification mea-
sure for edge and non-edge points. By utilizing K-means
clustering with principal curvatures as the measure, the

edge and non-edge portion of the mesh model can be
distinguished efficiently.

To setup the objective function for edge detection only
(no corner detection), suppose all the principal curva-
tures of every vertex [k1(xi), k2(xi)]have been computed
and that k1(xi) < k2(xi). The clustering objective func-
tion is then formulated as [12]:

2∑
k=1

∑
v∈Sk

||v − ck2|| (3.1)

where Sk represents the set of points which belong to
group k and ck is the center of set Sk.

To solve this optimization problem, two initial val-
ues of c01 and c02 are specified based on the principal
curvatures. The terminal condition is:

||cj1 − cj+1
1 || < εK , ||cj2 − cj+1

2 || < εK (3.2)

where εK = 10−5.K-means clustering then partitions the
vertices into the desired two sets, edge andnon-edge. Two
questions still remain. First is how to calculate the prin-
cipal curvatures [k1(xi), k2(xi)] and the second is how to
choose good initial values of c01 and c02.

3.2. Principal curvatures and initial values

Calculating principal curvatures accurately can be a com-
putationally intensive and expensive task. Algorithms
with higher precisions typically take an order of mag-
nitude longer to calculate the principal curvatures than
the high computational speed requirement of this work
[21]. As stated previously, the objective of this work is to
perform machined edge restoration for machining sim-
ulation, which has been targeted as a sub-second task.
Hence, some trade-offs need to be made between com-
putational efficiency and accuracy. To ensure efficient and
satisfactorily accurate calculation of principal curvatures,
local height intensity [12] has been employed to estimate
the principal curvatures [k1(xi), k2(xi)] as the initial val-
ues of c01 and c02. Since the local height intensity only
depends on the first order information, it possesses good
numerical robustness.

3.3. Refinement

To refine the quality of the segmentation result, some
further adjustment is required. Specifically, extra and/or
missing edge points may occur after the segmentation.
This creates isolated and/or broken edges, respectively.
To improve the edge-based segmentation result, a refine-
ment process proposed byHuang andAscher [12] is used.
Essentially, the refinement process attempts to remove

COMPUTER-AIDED DESIGN & APPLICATIONS 909

Figure 4. Edge-based segmentation result: (a) Before refine-
ment, and (b) After refinement.

isolated edges and to extend possible broken edges. An
integer P is used to control the number of vertices
the refinement process can traverse on the mesh in an
attempt to connect a possible broken edge. A value of
25 is found to work well for P. After the refinement, it
is necessary to check each edge vertex for correctness by
examining the normal variance of the edge vertex’s one-
ring neighbors. If the normal variance suggests that the
edge vertex in effect lies on a flat region, the edge vertex
is moved to the non-edge cluster. The normal variance
threshold that dictates flatness is set as 10°. Fig. 4 shows
the edge-based segmentation result on a machined cav-
ity of a frog face before and after the refinement process.
It can be seen that many of the isolated edge points have
been removed while the valid edge points are retained.

4. Feature-based segmentation

With the edge-based segmentation method outlined
above, chamfered edges on a triangle mesh model can
be detected. However, the result still needs improvement
prior to edge restoration. As shown in Fig. 4 (b), a good
number of incorrect edge vertices still exist. This result
would lead to incorrect edge restoration if used directly.
Therefore, a feature-based segmentation method is used
to improve the edge-based segmentation result prior to
edge restoration.

Since feature segmentation has been an active area of
research, many methods are available. Good surveys on
existing mesh segmentation methods are available in the
literature [1],[23]. For the purpose of this work, the basic
region growing method will suffice. The method is sim-
ple and effective. In fact, due to the special geometric
properties of the machined workpiece model mesh, the
basic region growing method performs very well. Specif-
ically, the workpiece model meshes are derived from a
spatial grid, which minimizes the vertex normal differ-
encewithin the specific grid. This enables the basic region
growing method, utilizing the vertex normal difference

as the segmentation measure, to appropriately divide the
workpiecemodelmesh into individual features. The basic
region growing method adopted in this work is outlined
as follows:

1. Choose a seed triangle from the mesh which has not
been visited, assign a new feature-group index to it,
and then add it to the queue Q.

2. Take a triangle u from the queue Q and check the
distance between u and one of its neighbor triangles
v. If the difference d(u, v) between the normals of the
triangles u and v is less than εθ (set as 8°) and v has
not been assigned to a feature group, v is then set to
be in the same feature group as u and placed into the
queue Q.

3. Continue Step 2 until Q is empty (all vertices satis-
fying d(u, v) < εθhave been visited) and go back to
Step 1.

4. For each vertex, choose to become a member of the
feature groupwhich has themost triangles in its one-
ring neighborhood.

With the above region growing segmentationmethod,
the geometry is broken up into feature patches. The
interfaces of these feature patches are the second set of
edge result. Combining the edge-based segmentation and
feature-based segmentation results, the edge triangles are
those triangles that connect with chamfered edges that
form non-broken edges or are broken but situated on
the interfaces of the segmented features. Feature-based
segmentation, thus, helps reducing the number of incor-
rectly identified edge vertices fromedge-based segmenta-
tion. Furthermore, the feature-based segmentation result
aids in distinguishing edge triangles from corner trian-
gles. The edge-based segmentation divides the mesh into
only two regions, edge and non-edge. Corners are not
extracted directly: the corner triangles are embedded in
the edge triangles but not extracted. Feature-based seg-
mentation can reliably distinguish these corner triangles
from the plain edge triangles.With the feature-based seg-
mentation result, corner triangles can be extracted from
the edge regions through simply examining the adjacent
triangles of an edge triangle. If the triangle lies between
two features, it is a plain edge triangle. If the triangle lies
among three features, it is a corner triangle.

It should be noted that region growing segmentation
is not 100% accurate, either. The region growing segmen-
tation method can falsely create small feature areas. To
address this issue, any segmented feature patches com-
posed of less than a specified small number of triangles
are labeled “tiny”. The specific number of triangles in a
tiny feature patch is evidently variable but it has been
found that the number 25 works well for many meshes.

910 Z. WANG ET AL.

Figure 5. Merging of over-segmented feature patches: (a) Before merging, and (b) After merging.

Once a feature patch has been classified as tiny, its feature-
group index is deleted and the feature patch ismoved into
its adjacent non-edge group. Furthermore, the poten-
tial over-segmentation issue is a bit more complex. A
greedy algorithm [10] has been used to merge the over-
segmented areas. It can be seen in Fig. 5a that the rela-
tively flat bottom machined surface of the Cavity model
(to be shown in Fig. 8) has been over-segmented into
many false small feature patches (shown in individual
colors). The employed merging process is able to signif-
icantly reduce the large number of small feature patches
to only a handful of larger patches as shown in Fig. 5b.

5. Edge restoration

With the chamfered edge and corner triangle extrac-
tion completed, the edges and corners can be recovered.
Recovering of such sharp features is often done based
on some mesh de-noising methods [8],[27],[29]. How-
ever, most of the de-noising filters assume that the input
data contains some noise, which obviously is not the
case for machining simulation since every mesh vertex
in the workpiece model is an exact tool and workpiece
intersection point. An efficient numerical optimization
method by Attene et al. [5] is employed in this work to
split the chamfered edge and corner triangles to sharpen
the edges/corners using the normals of the involved ver-
tices. It is, thus, necessary to compute a reliable normal
estimate at each involved vertex. The correct vertex nor-
mal is the normal that represents the surface normal of
the adjacent non-edge feature and estimated from the
corresponding adjacent triangles of the vertex.

5.1. Normal estimation

Normal estimation around sharp edges is generally a very
challenging task due to the presence of noise in the data

Figure 6. Estimated normal calculation.

points [7],[13]. In machining simulation, normal esti-
mation is not as challenging and can be done efficiently
since all vertices are computed without noise. To deter-
mine correct normals at vertices in a chamfered region,
the detected edge and corner result is to be used first. For
each chamfered edge or corner vertex, only the adjacent
non-edge feature patch is used for normal estimation.
The non-edge patches represent features in themachined
workpiece model. Their intersections are to form the
sharp edges and corners. Therefore, their normals are
required to restore the correct edges and corners. To esti-
mate the normal at O1 in Fig. 6, the following expression
is used:

NO1 =
∑

A1,A2,A3,A4

θiNi/
∑

θi (5.1)

where θi is the angle of the corner in triangle Ai that is
incident to O1 and N i is the face normal of the triangle
Ai. The triangles A1,A2,A3,A4 are used to estimate the
normal at vertex O1 and the triangles A5,A6,A7,A8 are
used to estimate the normal at O2.

COMPUTER-AIDED DESIGN & APPLICATIONS 911

Figure 7. Triangle split for edge restoration: (a) Edge triangles,
and (b) Corner triangle.

5.2. Restoration

After the chamfered edge and corner triangle detection,
the next step for machined edge restoration is to apply a
splitting operation based on the method of Attene et al.
[5] to restore the edges and corners, as shown in Fig. 7.
Let M represent the newly inserted point which will lie
on the ideal edge or corner of the mesh. Since only an
approximation to the ideal location of M is attainable in
this work, the newly inserted point M is designated as M’
instead in the figure. With the approximated normal at
each vertex (nA and nB), the new point M’ is determined
for the edge triangles, as illustrated in Fig. 7(a), by:

⎧⎪⎨
⎪⎩

(M′ − A) · nA = 0
(M′ − B) · nB = 0
(M′ − (A + B)/2) · (nA × nB) = 0

(5.2)

For the corner triangle, as illustrated in Fig. 7(b), the
new point M’ is determined by:

⎧⎪⎨
⎪⎩

(M′ − A) · nA = 0
(M′ − B) · nB = 0
(M′ − C) · nC = 0

(5.3)

With the new points inserted as above, machined
edges and corners can be restored. It should be noted
here that the method presented in this paper has used
both curvature and normal estimates at each mesh ver-
tex to reliably restore the machined edges and corners.
This is conceptually different than many existing meth-
ods based on evaluating only the variation of normals at
mesh vertices such as the method of Kobbelt et al. [18].
Not only superior restored edge quality is expected due
to the consideration of both curvature and normal varia-
tions but the restoration can be achieved as a sub-second
computational task using the method in this work.

5.3. Remove flipped and spike triangles

The quality of the resulting triangles from the above point
insertion process is not always good. The most critical
problem is the occurrence of flipped triangles for edge tri-
angles and spike triangles for corner triangles. A flipped

triangle can occur when the projection of the new edge
vertex M’ onto the triangle plane it is derived from lies
outside of the triangle’s boundary. This does not happen
for edges that interface feature faces with very differ-
ent normals. For edges with adjacent feature faces that
have very similar normals, flipped triangles can become a
problem due to the normals being approximated. A slight
variance in the approximated normal from the ideal nor-
mal can cause M’ to be displaced very far from M (the
ideal edge point location). Furthermore, since a trian-
gle mesh is only a piecewise approximation of the actual
machined surface geometry, mesh resolution can also
cause flipped triangles. Due to the lack of resolution,
small features can be lost within a triangle. This implies
that the normals of the features adjacent to an edge trian-
gle can disagree. It can than lead to a false M’ location. If
higher resolution is used, better approximation of M’ can
be found. However, if the resolution used is insufficient,
M’ can be displaced far from the ideal location M.

In order to avoid these flipped edge triangles, the fol-
lowing constraint has to be satisfied when adding M’ for
an edge triangle:

[(N20 × D) · N2][(N21 × D) · N2] < 0 (5.4)

where N2 ,N20 , N21 , D are:

N2 = na × nb
D = B − A + [(B − A) · N2]N2

N20 = N2 × na
N21 = N2 × nb

(5.5)

It has been decided that given the cause of the flipped
edge triangles, it is best to avoid adding any new M’
for the triangles that do not satisfy the constraint above.
These flipped triangles are the result of an invalid tri-
angle mesh approximation. It is not meaningful to find
a solution when the approximation accuracy or resolu-
tion is inadequate to gauge where M should be located.
Therefore, if the above constraint is not satisfied, the edge
triangle is not split and M’ is not added.

When the same issue discussed above occurs for cor-
ners, spike triangles are typically generated. The mech-
anism that causes spike triangles is the same as that for
flipped triangles, except that it occurs for a corner tri-
angle. For instance, if the low mesh resolution leads to
three normals in a corner triangle to be nearly paral-
lel, the resulting M’ can be far displaced from its ideal
location M. There is no telling if M is actually at the
tip of the spike or anywhere else because there is inad-
equate information regarding the “should-be” shape of
this particular corner. Hence, if adding M’ will result
in a spike triangle, M’ is not added. To identify a spike

912 Z. WANG ET AL.

triangle, the differences between the normals of the tri-
angles that surround a corner triangle are compared. If
an angle difference of these normals is above 150°, M’
is not added. With this added constraint and the one to
avoid flipped triangles, the edge restoration method pre-
sented in this paper produces quality and well-structured
meshes.

6. Implementation results

Fig. 8 shows three typical results of the presented
edge restoration method for machining simulation. The
“before” workpiece mesh models was produced by FSV-
rep [16]. Three-axis and five-axis milling tool paths
were used to shape the workpiece geometry, resulting in
machined triangle mesh models with chamfered edges.
The FSV-rep resolution of all these test cases was set as
0.5 mm. All simulation was performed on a Windows-
based PC with 3.3 GHz processor and 12GB of memory.

As can be seen in the figure above (especially in the
zoom in views), the edges and corners for the three cases
shown are restored correctly. For the first case (the Mech
model), as this was a model machined by 2½-D flat-end
milling with no machined scallops, the edge restora-
tion was achieved with a 100% rate. This means that all
edge and corner triangles were identified correctly and
all new edge and corner points were inserted at the cor-
rect locations. For the second case (the FrogFace model),
as this was a model machined by 3D ball-end milling,

machined scallops were present on free-form surface
patches that were adjacent to the flat top surface, the
presented edge restoration method restored about 96%
of the edge and corner points. 4% of the edge and cor-
ner triangles were either not detected correctly or were
not moved to the correct locations. For the third case
(the Cavity model), as all the machined surfaces had
machined scallops, the edge and corner restoration rate
was at 79%. The lower restoration rate was expected since
intersections of machined surfaces all characterized with
scallops would produce a very complex region of inter-
secting edges (many scallop edges intersecting with the
model edges), which made it very difficult to correctly
restore the model edges. Even so, the developed method
was found to be able to restore edges and corners in a
visually satisfactory manner.

The method presented in this paper is seen to be
able to restore edges and corners better than the lead-
ing grid-based machining simulation software, Module-
Works. Fig. 9 shows a comparison among the machined
geometry of a partial impeller produced by Siemens NX
(served as the reference and run atmaximum resolution),
the presented method, and ModuleWorks. The work-
piece model resolution for both the presented method
andModuleWorkswas set as 0.5 mm. It can be seen in the
figure that ModuleWorks has produced some question-
able edge restoration results (seen in the call-out enlarged
views). For the presented method, the questionable areas
were much better processed.

Figure 8. Edge restoration cases for triangle mesh models from grid-based machining simulation.

COMPUTER-AIDED DESIGN & APPLICATIONS 913

Figure 9. Comparison of edge restoration results.

Table 1. Total processing time and its breakdown of the pre-
sented edge restoration method.

Mech FrogFace Cavity Impeller
Number of Triangles 277,524 255,792 272,152 382,254

Edge-Based Segmentation (sec.) 0.037 0.047 0.053 0.069
Feature-Based Segmentation (sec.) 0.116 0.100 0.147 0.168
Edge and Corner Restoration (sec.) 0.084 0.069 0.084 0.116
Total (sec.) 0.237 0.216 0.284 0.353

The presented method is also seen to be able to com-
plete the edge restoration task efficiently. Tab. 1 lists the
total processing time for the four cases shown in Figs. 8
and 9 along with the breakdown for the three main pro-
cessing steps. The presented method can complete the
edge restoration task in all these cases under 0.5 sec-
onds with each processing step taking a small amount of
time. As the number of faces in the model increases, the
processing time increases as expected.

7. Conclusions

This paper presented a method to restore machined
edges for triangle mesh workpiece models derived from
grid-based machining simulation. The method is com-
putationally fast with high restoration rate. By combin-
ing existing simple but efficient edge-based and feature-
based segmentation and edge restoration algorithms, an
effective edge restorationmethod is developed. Edges and
corners of complex machined geometry can be restored
with sub-second computational time.With the presented
method, the chamfer edges inherit in grid-basedmachin-
ing simulation can be addressed satisfactorily. Compara-
ble simulation output quality to that ofmuch less efficient

NURBS and triangle mesh approaches is achieved. Still,
the presented method cannot guarantee 100% edge and
corner restoration for all the machined geometry due to
challenges in correctly identifying all the chamfer edge
and corner triangles. Feature detection and segmentation
of triangle meshes is a challenging and active research
subject. Many factors, such as triangle size, aspect ratio
and distribution, affect the detection and segmentation
results. The need for edge restoration to be a sub-second
computing task and the vast variety of machined geom-
etry further adds to the difficulty. Continuing work is
evidently required in feature detection and segmenta-
tion in order to improve the restoration rate of machined
edges for grid-based machining simulation.

Acknowledgements

The machining simulation research work being conducted in
our group has been supported by the Natural Sciences and
EngineeringResearchCouncil of Canada (NSERC). TheMitacs
Globalink Research Internship awarded to the first author of
this paper is also gratefully acknowledged. The FrogFacemodel
was created by the paper’s third author along with his team-
mates Ted Angus, Alicia Figueira and Josh Harrington as part
of a graduate course project at UBC Mechanical Engineering.
The Cavity model and the Impeller model were retrieved from
the Siemens NX CAST Library of part models.

ORCID

Ziqi Wang http://orcid.org/0000-0002-3817-3922
Jack Szu-Shen Chen http://orcid.org/0000-0002-1225-6340
Jimin Joy http://orcid.org/0000-0003-4499-2366
Hsi-Yung Feng http://orcid.org/0000-0001-6189-6910

http://orcid.org/0000-0002-3817-3922
http://orcid.org/0000-0002-1225-6340
http://orcid.org/0000-0003-4499-2366
http://orcid.org/0000-0001-6189-6910

914 Z. WANG ET AL.

References

[1] Agathos, A.; Pratikakis, I.; Perantonis, S.; Sapidis, N.;
Azariadis, P.: 3D mesh segmentation methodologies for
CAD applications, Computer-Aided Design and Appli-
cations, 4(6), 2007, 827-841. https://doi.org/10.1080/
16864360.2007.10738515

[2] Altintas, Y.; Kersting, P.; Biermann, D.; Budak, E.;
Denkena, B.; Lazoglu, I.: Virtual process systems for
part machining operations, CIRP Annals - Manufactur-
ing Technology, 63(2), 2014, 585-605. https://doi.org/10.
1016/j.cirp.2014.05.007

[3] Aras, E.; Feng, H. Y.: Vector model-based workpiece
update in multi-axis milling by moving surface of revo-
lution, International Journal of Advanced Manufacturing
Technology, 52(9-12), 2011, 913-927. https://doi.org/10.
1007/s00170-010-2799-8

[4] Aras, E.; Yip-Hoi, D.: Geometric modeling of cut-
ter/workpiece engagements in three-axis milling using
polyhedral representations, ASME Journal of Comput-
ing and Information Science in Engineering, 8(3), 2008,
031007. https://doi.org/10.1115/1.2960490

[5] Attene, M.; Falcidieno, B.; Rossignac, J.; Spagnuolo, M.:
Edge-Sharpener: Recovering sharp features in triangula-
tions of non-adaptively re-meshed surfaces, Proceedings
of the 2003 Eurographics/ACM SIGGRAPH Symposium
on Geometry Processing, 2003, 62-69.

[6] Benouamer, M. O.; Michelucci, D.: Bridging the gap
between CSG and Brep via a triple ray representation,
Proceedings of the Fourth ACM Symposium on Solid
Modeling and Applications, 1997, 68-79. https://doi.org/
10.1145/267734.267755

[7] Fleishman, S.; Cohen-Or, D.; Silva, C. T.: Robust moving
least-squares fitting with sharp features, ACM Transac-
tions on Graphics, 24(3), 2005, 544-552. https://doi.org/
10.1145/1073204.1073227

[8] Fleishman, S.; Drori, I.; Cohen-Or, D.: Bilateral mesh
denoising, ACM Transactions on Graphics, 22(3), 2003,
950-953. https://doi.org/10.1145/882262.882368

[9] Gal, R.; Sorkine, O.; Mitra, N. J.; Cohen-Or, D.: iWIRES:
An analyze-and-edit approach to shape manipulation,
ACM Transactions on Graphics, 28(3), 2009, Article No.
33. https://doi.org/10.1145/1531326.1531339

[10] Garland, M.; Heckbert, P. S.: Surface simplification using
quadric error metrics, Proceedings of SIGGRAPH ‘97,
1997, 209-216. https://doi.org/10.1145/258734.258849

[11] Gong, X.; Feng, H. Y.: Cutter-workpiece engagement
determination for general milling using triangle mesh
modeling, Journal of Computational Design and Engi-
neering, 3(2), 2016, 151-160. https://doi.org/10.1016/j.
jcde.2015.12.001

[12] Huang, H.; Ascher, U.: Surface mesh smoothing, regular-
ization, and feature detection, SIAM Journal on Scientific
Computing, 31(1), 2008, 74-93. https://doi.org/10.1137/
060676684

[13] Huang, H.; Wu, S.; Gong, M.; Cohen-Or, D.; Ascher, U.;
Zhang, H.: Edge-aware point set resampling, ACMTrans-
actions on Graphics, 32(1), 2013, Article No. 9. https://
doi.org/10.1145/2421636.2421645

[14] Jang, D.; Kim, K.; Jung, J.: Voxel-based virtual multi-axis
machining, International Journal of Advanced

ManufacturingTechnology, 16(10), 2000, 709-713. https://
doi.org/10.1007/s001700070022

[15] Joy, J.; Feng H. Y.: Frame-sliced voxel representation:
An accurate and memory-efficient modeling method for
workpiece geometry inmachining simulation, Computer-
Aided Design, 88, 2017, 1-13. https://doi.org/10.1016/j.
cad.2017.03.006

[16] Joy, J.; Feng H. Y.: Efficient milling part geometry com-
putation via three-step update of frame-sliced voxel rep-
resentation workpiece model, International Journal of
Advanced Manufacturing Technology, 2017, in press.
https://doi.org/10.1007/s00170-017-0168-6

[17] Karunakaran, K. P.; Shringi, R.; Ramamurthi, D.; Hari-
haran, C.: Octree-based NC simulation system for opti-
mization of feed rate in milling using instantaneous force
model, International Journal of Advanced Manufactur-
ing Technology, 46(5-8), 2010, 465-490. https://doi.org/
10.1007/s00170-009-2107-7

[18] Kobbelt, L. P.; Botsch, M.; Schwanecke, U.; Seidel, H.-
P.: Feature sensitive surface extraction from volume data,
Proceedings of SIGGRAPH ‘01, 2001, 57–66. https://doi.
org/10.1145/383259.383265

[19] Lee, S. W.; Nestler, A.: Virtual workpiece: Workpiece rep-
resentation for material removal process, International
Journal of Advanced Manufacturing Technology, 58(5-
8), 2012, 443-463. https://doi.org/10.1007/s00170-011-
3431-2

[20] Liu, Z.; Pan, M.; Yang, Z.; Deng, J.: Recovery of sharp
features in mesh models, Communications in Mathemat-
ics and Statistics, 3(2), 2015, 263-283. https://doi.org/10.
1007/s40304-015-0059-9

[21] Magid, E.; Soldea, O.; Rivlin, E.: A comparison of Gaus-
sian and mean curvature estimation methods on trian-
gular meshes of range image data, Computer Vision and
Image Understanding, 107(3), 2007, 139-159. https://doi.
org/10.1016/j.cviu.2006.09.007

[22] Quan, W.; Meng, W.; Zhang, X.: The extraction of feature
lines on 3D models: A survey, Proceedings of the 2014
International Conference on Virtual Reality and Visu-
alization, 2014, 220–225. https://doi.org/10.1109/ICVRV.
2014.11

[23] Ren, Y.; Zhu, W.; Lee, Y. S.: Feature conservation and
conversion of tri-dexel volumetric models to polyhedral
surfacemodels for product prototyping, Computer-Aided
Design and Applications, 5(6), 2008, 932-941. https://doi.
org/10.3722/cadaps.2008.932-941

[24] Shamir, A.: A survey on mesh segmentation techniques,
Computer Graphics Forum, 27(6), 2008, 1539-1556.
https://doi.org/10.1111/j.1467-8659.2007.01103.x

[25] Spence, A. D.; Abrari, F.; Elbestawi, M. A.: Integrated
solid modeller based solutions for machining, Computer-
Aided Design, 32(8-9), 2000, 553-568. https://doi.org/10.
1016/S0010-4485(00)00042-7

[26] Stifter, S.: Simulation of NC machining based on the
dexel model: A critical analysis, International Journal of
Advanced Manufacturing Technology, 10(3), 1995, 149-
157. https://doi.org/10.1007/BF01179343

[27] Sun, X.; Rosin, P.; Martin, R.; Langbein, F.: Fast and
effective feature-preserving mesh denoising, IEEE Trans-
actions on Visualization and Computer Graphics, 13(5),
2007, 925-938. https://doi.org/10.1109/TVCG.2007.1065

https://doi.org/10.1080/16864360.2007.10738515
https://doi.org/10.1080/16864360.2007.10738515
https://doi.org/10.1016/j.cirp.2014.05.007
https://doi.org/10.1016/j.cirp.2014.05.007
https://doi.org/10.1007/s00170-010-2799-8
https://doi.org/10.1007/s00170-010-2799-8
https://doi.org/10.1115/1.2960490
https://doi.org/10.1145/267734.267755
https://doi.org/10.1145/267734.267755
https://doi.org/10.1145/1073204.1073227
https://doi.org/10.1145/1073204.1073227
https://doi.org/10.1145/882262.882368
https://doi.org/10.1145/1531326.1531339
https://doi.org/10.1145/258734.258849
https://doi.org/10.1016/j.jcde.2015.12.001
https://doi.org/10.1016/j.jcde.2015.12.001
https://doi.org/10.1137/060676684
https://doi.org/10.1137/060676684
https://doi.org/10.1145/2421636.2421645
https://doi.org/10.1145/2421636.2421645
https://doi.org/10.1007/s001700070022
https://doi.org/10.1007/s001700070022
https://doi.org/10.1016/j.cad.2017.03.006
https://doi.org/10.1016/j.cad.2017.03.006
https://doi.org/10.1007/s00170-017-0168-6
https://doi.org/10.1007/s00170-009-2107-7
https://doi.org/10.1007/s00170-009-2107-7
https://doi.org/10.1145/383259.383265
https://doi.org/10.1145/383259.383265
https://doi.org/10.1007/s00170-011-3431-2
https://doi.org/10.1007/s00170-011-3431-2
https://doi.org/10.1007/s40304-015-0059-9
https://doi.org/10.1007/s40304-015-0059-9
https://doi.org/10.1016/j.cviu.2006.09.007
https://doi.org/10.1016/j.cviu.2006.09.007
https://doi.org/10.1109/ICVRV.2014.11
https://doi.org/10.1109/ICVRV.2014.11
https://doi.org/10.3722/cadaps.2008.932-941
https://doi.org/10.3722/cadaps.2008.932-941
https://doi.org/10.1111/j.1467-8659.2007.01103.x
https://doi.org/10.1016/S0010-4485(00)00042-7
https://doi.org/10.1016/S0010-4485(00)00042-7
https://doi.org/10.1007/BF01179343
https://doi.org/10.1109/TVCG.2007.1065

COMPUTER-AIDED DESIGN & APPLICATIONS 915

[28] Wou, S. J.; Shin, Y. C.; El-Mounayri, H.: Ball end milling
mechanisticmodel based on a voxel-based geometric rep-
resentation and a ray casting technique, Journal of Manu-
facturing Processes, 15, 2013, 338-347. https://doi.org/10.
1016/j.jmapro.2012.12.003

[29] Zheng, Y.; Fu, H.; Au, O. K. C.; Tai, C. L.: Bilateral
normal filtering for mesh denoising, IEEE Transac-
tions on Visualization and Computer Graphics, 17(10),
2011, 1521-1530. https://doi.org/10.1109/TVCG.2010.
264

https://doi.org/10.1016/j.jmapro.2012.12.003
https://doi.org/10.1016/j.jmapro.2012.12.003
https://doi.org/10.1109/TVCG.2010.264
https://doi.org/10.1109/TVCG.2010.264

	1. Introduction
	2. Methodology
	3. Edge-based segmentation
	3.1. K-means clustering
	3.2. Principal curvatures and initial values
	3.3. Refinement

	4. Feature-based segmentation
	5. Edge restoration
	5.1. Normal estimation
	5.2. Restoration
	5.3. Remove flipped and spike triangles

	6. Implementation results
	7. Conclusions
	Acknowledgements
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

