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ABSTRACT
The log-aesthetic curve, which includes the logarithmic (equiangular) spiral, clothoid, and circular
involute, achieves control over the curvature distribution by defining its shape as an integral of its
curvature, and is expected to be utilized for the field of aesthetic design.

Some formulations of the log-aesthetic surface as extensions of the log-aesthetic curvehavebeen
proposed. The minimum variation surface is one of them, and has a feature that it can be used for
arbitrary four boundary curves. The minimum variation log-aesthetic surface is defined as a surface
which minimizes an objective function. However, it is not scale-invariant and parameterization-
independent.

In this study, we propose a new formulation of the minimum variation log-aesthetic surface for
scale-invariance and parameterization-independence.
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1. Introduction

Recently, aesthetic design which takes account of des-
ignability has become popular. In aesthetic design, the
creation of high quality curve and surface models is
demanded. However, on current CAD systems, the oper-
atormust move control points by trial and error to obtain
high-quality curves and surfaces. This incurs high costs
and requires a great deal of expertise. Therefore, an effi-
cientmethod to generate fair curves and surfaces is desir-
able to achieve high-quality that will satisfy customers’
aesthetic requirements.

The log-aesthetic curve was proposed as a curve
which satisfies these quality requirements. Harada et al.
[1] defined “Aesthetic curves” as curves whose loga-
rithmic distribution diagram of curvature (LDDC) can
be approximated by a straight line. In response to this
research, Miura et al. [4] derived analytical solutions of
the curves whose logarithmic curvature graph (LCG) as
an analytical version of the LDDC is strictly given by a
straight line and defined the curve as the log-aesthetic
curve. For a given curve, the arc length of the curve
and the radius of curvature are denoted by s and ρ,
respectively. The log-aesthetic curve satisfies the follow-
ing equation:

ρα = cs + d (1.1)
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Here, α, c and d are constants. In particular, α is the slope
of LCG and a parameter for controlling the impression
of the curve. Figure 1 illustrates log-aesthetic curves for
various α values. Also, one segment of the log-aesthetic
planer curve is uniquely determined by both the end-
points and tangent vectors there [3]. Hence, one can
modify the log-aesthetic curve by changing these bound-
ary conditions and α value. Since the log-aesthetic curve
is defined by use of curvature as the above equation, its
curvature distribution is smooth. In addition, it includes
logarithmic (equiangular) spiral, clothoid, and circular
involute as well as Nielsen’s spiral. For these reasons, it is
expected to be utilized in the field of aesthetic design [9].

Although the log-aesthetic curve has a number of
good properties, it is difficult to extend it to surfaces
because of the complexity of its general equation. As a
solution to this problem, the minimum variation log-
aesthetic surface [8]was proposed. This surface is defined
as a surface which minimizes an objective function and
allows the usage of arbitrary boundary curves with tan-
gent continuity. However, the value of the objective func-
tion depends on the scale of the model and its parame-
terization.

In this research, we derive a new formulation of
the minimum variation log-aesthetic surface for scale-
invariance and parameterization-independence.
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Figure 1. Log-aesthetic curves with various alpha values.

2. Related work

As mentioned in the introduction, it is very difficult to
extend the log-aesthetic curve to the surface that has sim-
ilar good properties to the log-aesthetic curve. To solve
this problem, two surface formulas besides the mini-
mum variation log-aesthetic surface have been proposed
that generate free-form surfaces by sweeping the log-
aesthetic curve [2, 7]. The log-aesthetic curved surface
[2] is defined as a sweeping surface using two profile
curves, which are composed of log-aesthetic curves, and
one guide line composed of a non-log-aesthetic curve.
The surface guarantees the isoparametric curves paral-
lel to two profile curves become the log-aesthetic curve
and the quality along the isoparametric curve is guar-
anteed. In contrast, the isoparametric curves parallel to
the guide line do not become log-aesthetic curves and
high quality in this direction cannot be guaranteed. As
a solution to this problem, Saito et al. proposed the
complete log-aesthetic surface [7]. The complete log-
aesthetic surface is defined as a pure sweeping surface
with two log-aesthetic curves. This formulation also uses
the log-aesthetic curve as the guide line and guaran-
tees that all parametric curves are log-aesthetic. How-
ever, for these two formulations, at least one bound-
ary curve cannot be specified. Consequently, the situa-
tions where these formulations can be used are severely
restricted.

3. Minimum variation log-aesthetic surface

The surface formulations using sweep have a problem
that some boundary curve cannot be specified. In con-
trast, by using variational principle for the surface formu-
lation, the minimum variation log-aesthetic surface can
be used for arbitrary four boundary curves with tangent
constraints. The minimum variation log-aesthetic sur-
face is defined by reformulating the log-aesthetic curve
with the variational principle and extending it to sur-
faces. In this section, we reformulate log-aesthetic curve
with variational principle and introduce the minimum
log-aesthetic surface.

3.1. Variational formulation of the log-aesthetic
curve

From Eqn. (1.1), when we assume σ = ρα the log-
aesthetic curve is given by a straight line connecting two
given points (s1, σ 1) and (s2, σ 2) in the s-σ plane (aes-
thetic space) as shown in Fig. 2, where the horizontal and
vertical axes are arc length s and σ , respectively. There-
fore, from variational principle, the log-aesthetic curve
is reformulated as a curve that minimizes the following
energy JLAC.

JLAC =
∫ s2

s1
(1 + σ 2

s )ds (3.1)

The Euler equation of Eqn. (3.1) is as follows.

σss = 0 (3.2)

Obviously, Eqn. (3.2) is equivalent to the second deriva-
tive of Eqn. (1.1). Furthermore, the Euler equation of
Eqn. (3.1) is equivalent to that of the following equation
KLAC.

KLAC =
∫ s2

s1
σ 2
s ds =

∫ s2

s1
α2ρ2α−2ρ2

s ds (3.3)

Finally, Eqn. (3.3) is represented by arc length parameter
s, and we rewrite Eqn. (3.3) using a general parameter t

Figure 2. A straight line connecting two given points (s1,σ 1) and
(s2, σ 2) in the s-σ plane (aesthetic space).
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and obtain the following expression:

KLAC =
∫ t2

t1

1∥∥∥dC
dt

∥∥∥α2ρ2α−2ρ2
t dt (3.4)

where, ||dC/dt|| represents the norm of the first deriva-
tive of curve C with respect to a general parameter t.
We use Eqn. (3.4) as the objective function of the log-
aesthetic curve. By minimizing the functional value of
curves, one can generate the nearest curve having the
property (such that Eqn. (1.1)) of the log-aesthetic curve
out of the shapes expressible under the given conditions.

3.2. Variational formulation of the log-aesthetic
surface

The objective function of the log-aesthetic surface is
derived by extending the objective function of the log-
aesthetic curve KLAC to surfaces. The objective func-
tion is defined so that minimizing the objective func-
tion transforms isoparametric curves into log-aesthetic
curves. We obtain the following objective function JLAS
by applying Eqn. (3.4) to both of the directions of the
surface and define the minimum variation surface as
minimizing this function:

JLAS =
∫ u2

u1

∫ v2

v1

{
1√
E

α2(ρu)2α−2
(ρu

u)
2

+ 1√
G

β2(ρv)
2β−2

(ρv
v )

2
}
dvdu (3.5)

Here, E and G are elements of the first fundamental form
and are given by E= ∂S/∂u·∂S/∂u and G= ∂S/∂v·∂S/∂v,
respectively. ρu and ρv are the radii of curvature of
isoparametric curves in the u and v directions, respec-
tively. In the integral of Eqn. (3.5), the first term is the
optimization term of the isoparametric curve in the u
direction and the second term is the optimization term
of the isoparametric curve in the v direction.

As isoparametric curves become log-aesthetic curves,
this minimum variation surface is equivalent to the com-
plete log-aesthetic surface. However, as this formulation
defines the surface by minimizing the objective function,
the minimum variation surface is remarkably different
from the complete log-aesthetic surface. That is, themin-
imum variation surface can specify an arbitrary bound-
ary curve, and hence the objective function can be used
for generating the surface. In many boundary cases, sur-
faces in which all of the isoparametric curves become
log-aesthetic curves cannot be generated.

4. Scale-invariance

Moreton and Sequin [6] introduced the minimum vari-
ation surface (MVS) functional that measures curvature
variation by integrating the principle curvature’s squares
of derivatives in its principle directions. They derived its
scale invariance [5]. Multiplication of the area term is
used for scale invariance and scale invariance of theMVS
functional is given by the following expression:

EMVS =
∫

{(κmax
max )

2 + (κmin
min )

2}dA
∫

dA (4.1)

where κmax
max and κmin

min are derivatives of principle curva-
tures in its principle directions.

In this section, we will perform a similar modifica-
tion for KLAC expressed in Eqn. (3.3) to make it scale-
invariant and extend it to surfaces. First, we consider a
curve whose arc length is equal to 1. If the curve is log-
aesthetic, i.e. σ = ρα is a linear function of arc length s,
there is a constant c such that

c = σs = σend − σstr (4.2)

Here, σ end and σ str are the values of σ at both end points.
Then, Eqn. (3.3) becomes

KLAC =
∫ s2

s1
c2ds = c2 = (σend − σstr)

2 (4.3)

On the other hand, if we consider to introduce scale fac-
tor r and a curve which is scaled by that scale factor r.
Then, the arc length of the curve is equal to r and σ = ρα

becomes σ ’ = (rρ)α = rαρα .
There is a constant c’ similarly to Eqn. (4.2) such that

c′ = σ ′
s = rα(σend−σstr)

r = rα−1(σend − σstr) (4.4)

Then the value of the objective function in Eqn. (3.3)
becomes

K′
LAC =

∫ s2

s1
c′2ds = c′2r = r2α−1(σend − σstr)

2 (4.5)

Therefore, by replacing scale factor r with the arc length
of curve h, the scale-invariant objective function of Eqn.
(3.3) is given by

KLAC−SI = KLAC

h2α−1 (4.6)

Based on the curve case, we define the scale-invariance
objective function of the surface. First, as in the curve
case, we consider a surface whose area is equal to 1. we
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separate the two terms in Eqn. (3.5) into two integrations
in the u and v directions as follows:

JLAS =
∫

KLAC_udv +
∫

KLAC_vdu (4.7)

where

KLAC_u =
∫ u2

u1

1√
E

α2(ρu)2α−2
(ρu

u)
2du (4.8)

KLAC_v =
∫ v2

v1

1√
G

β2(ρv)
2β−2

(ρv
v )

2dv (4.9)

Note thatKLAC_u andKLAC_v indicate the objective func-
tion of the log-aesthetic curve in Eqn. (3.4) with respect
to iso-parametric curves in the u and v directions, respec-
tively.

Next, we consider the case that the surface is scaled by
scale factor r (such that the area of the surface become r2).
Then, from the discussion of the curve case, KLAC_u and
KLAC_v are scaled to r2α−1 and r2β−1times, respectively.
Therefore, we obtain the following equation:

JLAS′ = r2α−1
∫

KLAC_udv + r2β−1
∫

KLAC_vdu

(4.10)
Finally, we obtain the scale-invariant objective function
of Eqn. (3.5) by comparing Eqn. (4.7) with Eqn. (4.10) as
follows

JLAS−SI =
∫
KLAC_udv
Aα−1/2 +

∫
KLAC_vdu
Aβ−1/2 (4.11)

where, A = r2 are the area of the surface.

5. Parameterization independence

The objective function of minimum variation log-
aesthetic surface in Eqn. (3.5) is defined so that the
isoparametric curves of the minimized surface become
log-aesthetic curves. However, this formulation includes
surface parameter u, v and depend on its parameteriza-
tion. Thus, we achive parameterization-independence by
using principle radius of curvature ρmax and ρmin. We
define the scale invariant objective function of the min-
imum variation log-aesthetic surface by extending Eqn.
(3.3) with principle curvatures as follows

JLAS−PI =
∫ {

α2(ρmax)2α−2
(ρmax

max)
2

+β2(ρmin)
2β−2

(ρmin
min)

2
}
dA (5.1)

Note that we use area microelements dA instead of
dudv, furthermore, ρmax

max = ∂ρmax/∂emax and ρmin
min =

∂ρmin/∂emin where emax and emin are unit vectors.Hence,

the coefficient such as ||dC/dt|| in Eqn. (3.4) dose not
appeared in Eqn. (5.1).

Especially, when α and β = -1, from ρ =1/κ and
ρt =d/dt(1/κ)= -κ t/κ2, (5.1) becomes:

JLAS−PI|α=β=−1 =
∫ {

(κmax
max )

2 + (κmin
min )

2
}
dA (5.2)

Eqn. (5.2) is equivalent to the objective function of the
minimum variation surface [6].

Additionally, we consider scale invariance of Eqn.
(5.1) with paying attention the fact that scaling surface
by scale factor r, the direction orthogonal to the princi-
ple direction evaluated by each term in Eqn. (5.1) also
scale to r in area microelements. By the same discussion
in the previous chapter with the above fact, we obtain the
following scale-invariant objective function:

JLAS−PI−SI = A−α

∫
α2(ρmax)2α−2

(ρmax
max)

2dA

+ A−β

∫
β2(ρmin)

2β−2
(ρmin

min)
2dA (5.3)

Especially, when α and β = -1, we obtain the following:

JLAS−PI−SI|α=β=−1 = A
∫ {

(κmax
max )

2 + (κmin
min )

2
}
dA

(5.4)
Eqn. (5.4) is equivalent to the scale-invariant objective
function of the minimum variation surface in Eqn. (4.1).

6. Results

In this section, we adopt the objective function given in
Eqn. (5.3) for B-spline surfaces and optimize the posi-
tion of the control points of the surface byminimizing the
objective function.At that time,we impose constraints on
coordinates of and tangent vectors across the boundary
curves as boundary conditions. Hence, we fix two con-
trol points from the boundary to keep the shape of the
boundary curves and tangent vectors across them and
input these control points. We used the downhill simplex
method for optimization.

We applied our method to complete log-aesthetic sur-
faces [7] to which noise had been added. One of the
formulations of a complete log-aesthetic surface is given
by the following equation.

⎛
⎝ x(θ ,φ)

y(θ ,φ)

z(θ ,φ)

⎞
⎠ = Rz(φ)Sc(ebgφ)

⎛
⎝ tr + ebpθ cos θ

0
tz + ebpθ sin θ

⎞
⎠
(6.1)

where θ and φ are surface parameters, bp, and bg are
shape parameters, tr tz are offset parameters, Rz(φ) is
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Figure 3. Generated surfaces. Left: before optimization. Middle: surface with added noise. Right: after optimization.

Figure 4. Mean curvature distribution. Left: before optimization. Middle: surface with added noise. Right: after optimization.

Figure 5. Zebra map. Left: before optimization. Middle: surface with added noise. Right: after optimization.

a rotation function around the z axis, and Sc(ebgφ) is
the scaling function. First, we generate a complete log-
aesthetic surfacewith bp =0.2, bg =0.2, tr =5, and tz =3.
Next, we cut a part of the surface and approximate this
surface with bicubic B-spline, which has 10×10 control
points. Finally, noise is added to the surface and our
objective function is applied (i.e., we optimize the inner
6×6 control points). We used a PC with a Core i7-7700
3.60GHz CPU.

Figure 3 shows generated surfaces. In the figure, the
original surface is shown on the left, the surface with
noise is shown in the middle, and the surface optimized
by ourmethod is shown on the right. The processing time
for optimizing surfaces is about 140 [s]. Figure 4 and 5
show the mean curvature distribution and zebra map of
these surfaces. These results showed that the surface with
added noise is remarkably deteriorated. In contrast, after
optimization, the surface is smooth and has almost the
same quality as the original surface.

7. Conclusions

In this research, we have derived a new formulation of
the minimum variation log-aesthetic surface for scale-
invariance and parameterization-independence. Fur-
thermore, we have generated surfaces by minimizing our
newly defined objective function. The results indicate
that we can obtain free-form surfaces of high quality.
However, the processing times for relatively large surfaces
are expected to be very long. Therefore, in future work,
wewill use GPUprocessors to reduce the processing time
and hope to achieve a real time.
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