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ABSTRACT
Interpolating non-iso-parametric B-spline curves by B-spline surfaces remains a challenging prob-
lem in Computer-Aided Geometric Design. The solution typically involves composition and product
of B-spline bases, leading to a system of linear equations. In this paper, we discuss the interpolation
of such curves using the representation of B-splines in polar form, or Blossom, as proposed inmatch-
ing trimmed surfaces. Although the discussion is limited to curves which are linearly mapped in the
corresponding parameter domain, the interpolation of other types of curves could be inspired.
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1. Introduction

Curve interpolation is a problem that has frequently been
visited by many authors [2, 12, 13]. The efficacy of the
adopted solutions nearly removed the halo of difficulty
the problem used to be assuming. However, those solu-
tions rely in a fundamental way on the assumption that
the interpolated curve is iso-parametric along one or
the other of the parameters controlling the interpolating
surface. In fact, as soon as this assumption is removed,
the level of difficulty of the interpolation problem rises
enormously.

Ferguson and Grandine [4] are perhaps the first to
aim for the construction of B-spline surfaces interpolat-
ing non-iso-parametric curves. However, to our knowl-
edge, there was never a follow up to that paper. Most of
related researchmay rather be found in the area of curves
on surfaces [16], using blossoming techniques [15], and
also in the area of interpolation of arbitrary networks of
curves [9].

However, the work of Hu&Sun [6] is the most
directly relevant to the research reported in this paper.
Especially so, since the technique proposed here for
the solution of the interpolation of non-iso-parametric
curves is a slight adaptation of the one reported
in that paper and used there for trimmed surface
matching.

In the design of curves on surfaces, the interest is
focused on a curve lying on the surface. This may be
obtained by mapping a curve lying in the parameter
domain onto the 3D surface.
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Drawing a curve on the surface is rather simple, as it
can be mapped point by point following the parameter
line in the parameter domain onto the 3D surface. How-
ever, plenty of research has been conducted on the spec-
ification of such curves in control point representation
[16], which is not straightforward.

Our interest in curves on surfaces here is just to pro-
vide a point of focus as towhich parts of the surfacewould
need to be modified in order to establish interpolation.

This paper reports work that is still in progress. It is
structured as follows: Section 2 provides preliminary def-
initions of B-spline curves and surfaces. This shows the
simplicity of obtaining interpolation of points by B-spline
curves on the sole basis of those definitions.

Section 3 shows how simple and direct it is to obtain
the interpolation of B-spline iso-parametric curves by
B-spline surfaces using the notion of B-spline polygonal
complexes [1, 11]. By comparison, Section 4 resorts to
the use of polar form or blossom in order to interpolate
B-spline non-iso-parametric curves. The final section of
the paper concludes with a conclusion and some sugges-
tions for further work.

2. Preliminaries

This section shows how the basic information onB-spline
curves and surfaces can naturally lead to the notion of B-
spline polygonal complexes [1, 11] and therefore to curve
interpolation. Furthermore, it also shed light on how easy
it is to interpolate iso-parametric curves.
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2.1. B-spline curves

Given a sequence of control points [p0, p1, . . . , pm], a
non-decreasing sequence of knots [t0, t1, . . . , tn], and a
parameter t ∈ [tp..tm+1], a B-spline curve of degree d
(such thatm = n − d − 1) is defined as follows:

C(t) ≡
m∑
i=0

Nd
i (t)pi (1)

where Nd
i is the ith B-spline basis function of degree d.

2.2. Point interpolation

Local effects are among the properties of the B-spline
basis function Nd

i . In fact, at most d + 1 control points
affect the curve C(t) at any selected parameter t. These
have the consecutive indices ranging from i − d to i,
where ti ≤ t < ti+1.

2.2.1. Interpolating a point corresponding to an
arbitrarily selected parameter
In general, for any arbitrarily selected parameter t, the
summation of C(t) in Eqn. (1) will have d + 1 non-zero
terms, which evaluates to a point (here tk ≤ t < tk+1).
Thus, for example, in the cubic case (i.e., when d = 3),
this point would be:

p′
k−2 = pk−3N3

k−3(t) + pk−2N3
k−2(t) + pk−1N3

k−1(t)

+ pkN3
k (t) (2)

which is obviously interpolated by the curve C(t). Con-
versely, if the point pk−2 is replaced by the point:

1
N3
k−2(t)

(−pk−3N3
k−3(t) + pk−2

− pk−1N3
k−1(t) − pkN3

k (t)) (3)

in the control point sequence [p0, p1, . . . , pm], the result-
ing curve would interpolate pk−2 itself.

As shown in [2], there are infinitely many ways of
obtaining such interpolating effects. But, the ease with
which these effects are obtained is mainly due to having,
as the subject of primary focus, a single parameter within
the range of the initial knot sequence.

2.2.2. When the selected parameter is one of the
curve knots
However, when t is selected as one of the knots
[t0, t1, . . . , tn], the number of control points affecting the
curve C(t) at parameter t reduces to d (by dismissing
point pi). Thus, for example, in the cubic case (i.e., when

Figure 1. Interpolating a point corresponding to parameter tk by
a curve.

Figure 2. Curve altered to interpolate the control point pk−2.

d = 3), for any one tk of those knots, the summation of
C(tk) in Eqn. (1) reduces to a point:

p′
k−2 = pk−3N3

k−3(tk) + pk−2N3
k−2(tk) + pk−1N3

k−1(tk)
(4)

which is obviously interpolated by the curve C(t) (see
Fig. 1).

Conversely, if point pk−2 is replaced by the point:

1
N3
k−2(tk)

(−pk−3N3
k−3(tk) + pk−2 − pk−1N3

k−1(tk))

(5)
in the control point sequence [p0, p1, . . . , pm], the result-
ing curve would interpolate pk−2 itself (see Fig. 2). The
act of replacing one control point by another to make
interpolating this point possible is referred to as control
point repositioning [1].

2.3. B-spline surfaces

Given the following list of items:

• a grid of control points pij, where 0 ≤ i ≤ m1 and 0
≤ j ≤ m2;

• a knot vector in the u direction:[u0, u1, . . . , un1 ];
• a knot vector in the v direction:[v0, v1, . . . , vn2 ];
• a degree d1 in the u direction (m1 = n1 − d1 − 1); and
• a degree d2 in the v direction (m2 = n2 − d2 − 1);
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Figure 3. Control points grid of a B-spline surface.

A B-spline surface (see Fig. 3) is defined by the following
fundamental expression:

S(u, v) ≡
m1∑
i=0

m2∑
j=0

Nd1
i (u)Nd2

j (v)pij (6)

where u ∈ [ud1 ..um1+1] and v ∈ [vd2 ..vm2+1].

3. The curve interpolation problem

Mathematically, the curve interpolation problem may be
formulated as follows: our target B-spline curve C(t), of
control points (pi)i as defined in Eqn. (1), with a pre-
image curve �(t) = <u(t), v(t)> in the uv parameter
domain.

Accordingly, the curve on surface S(u(t), v(t)) would
be equal to the following expression:

∑
i=0

∑
j=0

Ni(u(t))Nj(v(t))pij (7)

The goal is to modify the surface S(u, v) locally, so as to
establish the following identity:

S(u(t), v(t)) = C(t) (8)

Our interest in curves on surfaces here is just to pro-
vide a point of focus as towhich parts of the surfacewould
need to be modified in order to establish the identity
describe by Eqn. (8).

We will assume here, without loss of generality, that
the curve C(t) is a cubic B-spline curve defined over a
knot vector T. Furthermore, we will also assume that the
surface S(u, v) is a bi-cubic B-spline surface defined over
the knot vectorsU×V. Furthermore, as an alternative, the
knot vectors could also involve an affine map.

4. The iso-parametric case

In order to motivate our discussion, we will first address
the case of iso-parametric curves interpolation. In this
case, interpolation is straightforward. For example, when

the uv curve �(t) is a constant v-curve, i.e. u(t) = t and
v(t) = c, the surface curve S(u(t), v(t)) has the same u-
basis as that of the surface S(u, v); i.e.U = T, or an affine
map of it.

4.1. Factorization

For any given particular parameter u, Nd1
i (u) may be

factored out of the inner summation of Eqn. (6), since
it is constant along the v direction. Thus, the global
expression of Eqn. (6) may be rewritten as:

m1∑
i=0

Nd1
i (u)

m2∑
j=0

Nd2
j (v)pij (9)

By comparison with Eqn. (6), Eqn. (9) also represents a
curve:

C′(u) ≡
m1∑
i=0

Nd1
i (u)p′

i (10)

where

p′
i ≡

m2∑
j=0

Nd2
j (v)pij (11)

Moreover, the curve C′(u) obtained as such is obvi-
ously interpolated by the surface S(u, v), something that
is, again, made possible by the fact that the curve C′(u) is
iso-parametric with respect to parameter u of the surface.

4.2. Interpolating an iso-parametric curve

In general, when parameter v is arbitrarily selected, the
summation of Eqn. (11)will then dependond2 + 1 terms
(here, vk ≤ v < vk+1);

p′
i =

k∑
j=k−d2

Nd2
j (v)pij (12)

In the cubic case (i.e., when d2 = 3) for example, the rea-
soning of section 2.2 may be applied here to deduce that
the summation of Eqn. (11) depends on 4 rows of the B-
spline control point grid (see Fig. 4). The marked rows of
the grid form what is called a B-spline polygonal complex
[1, 11]. This may also be expressed by a 4×m1 matrixM
of points.

Accordingly, the control polygon (P) represented by
the following matrix multiplication:

[
N3
k (v) N3

k−1(v) N3
k−2(v) N3

k−3(v)
] × M (13)

corresponds to a B-spline curve, interpolated by the sur-
face S(u, v). Conversely, if row number k-2 of M is
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Figure 4. Polygonal Complex (in bold) corresponding to an iso-
parametric curve.

replaced by the following polygon:

1
N3
k−2(v)

[
−N3

k (v) −N3
k−1(v) 1 −N3

k−3(v)
]

× M

(14)
then the resulting surface will interpolate the curve cor-
responding to this row.

4.3. Interpolating a curve corresponding to v knot
line

However, as noted in [1], in the case of a v knot line (i.e.,
v = vk), the summation of Eqn. (11) will then depend on
only d2 terms;

p′
i =

k−1∑
j=k−d2

Nd2
j (vk)pij (15)

In the cubic case (i.e., when d2 = 3) for example, the rea-
soning of section 2.2 may be applied to deduce that the
summation of Eqn. (15) depends on only 3 rows of the
B-spline control point grid (see Fig. 5).

The marked rows form what is called a B-spline polyg-
onal complex [1, 11], which may also be expressed by
a 3×m1 matrix M of points. Accordingly, the control
polygon (P) represented by the following matrix multi-
plication:

[
N3
k−1(vk) N3

k−2(vk) N3
k−3(vk)

] × M (16)

Figure 5. Polygonal Complex (in bold) corresponding to a knot
line curve.

Figure 6. Curve interpolated by the surface corresponding to
knot line vk .

Figure 7. Surface altered to interpolate the curve of that row of
the control mesh.

corresponds to a B-spline curve interpolated by the sur-
face S(u, v) (see Fig. 6).

Conversely, if the row of the grid corresponding to that
row ofM is replaced by the following polygon:

1
N3
k−2(vk)

[−N3
k−1(vk) 1 −N3

k−3(vk)
] × M (17)

then the resulting surface will interpolate the curve cor-
responding to that row (see Fig. 7).

5. The non-iso-parametric case

In the non-iso-parametric case, the uv curve is constant
neither along the u direction nor along the v direction.
In other words, the knot vector T of the curve is neither
equal to the knot vector U nor the knot vector V of the
surface. This can come under a variety of forms, also pos-
sibly involving affine maps; a simple one is depicted in
Fig. 8(a).

Here, the pre-image �(t) in the uv parameter domain
of the curve C(t) would be non-iso-parametric with
respect to the given tensor-product B-spline surface
S(u, v) (see Fig. 8(a)).
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Figure 8. Surface and curve: (a) The pre-image of a non-iso-parametric curve in the uv domain, (b) Control point support of the surface
for the curve.

The goal now is to modify the surface S(u, v), so as to
establish the identity of Eqn. (8). As wementioned above,
the modification of the surface will be local. This is due
to the locality of the B-spline basis functions.

In fact, we only need to modify those control points
for which the support of their corresponding B-spline
basis intersects with the uv curve�(t). For example, if the
surface is bi-cubic and all interior knots are simple (mul-
tiplicity equal to one), then all interior basesN3

i (u)N
3
j (v)

have the support of a 4×4 rectangle of control points
(see Fig. 8(b)) for this base. We shall mark the lower-
left corner as corresponding to control point pij for this
base.

For the givenuv curve�(t), Fig. 8(b) shows the control
points which are involved in the construction of the curve
on surface S(u(t), v(t)). On this basis, it would seem rea-
sonable to assume that these are the only control points
of the surface that need to be repositioned in order to
achieve interpolation.

It is worth noting here that the area of the surface
specified by these control points may be considered as
a generalization of the B-spline polygonal complex as
depicted in Fig. 4, for example. However, the absence of
a constant parameter here means that factorization is not
possible here. Thus, in order to achieve interpolation, we
need to seek an alternative approach.

In fact, the obvious option here is to think of these
control points as variables then use them is a system of
linear equations, whose solution would satisfy Eqn. (8).
This would alter the surface to a situation that would
interpolate the given non-iso-parametric curve.

5.1. B-splinemultiplication and composition

The goal is to alter the surface so as to establish the iden-
tity expressed by Eqn. (8). Thus, the first step would be to
make sure that the two curves C(t) and S(u(t), v(t)) have
the same degree. In fact, if the initial curve C(t) is cubic
and the initial surface S(u, v) is bi-cubic, and if the curves
u(t) and v(t) are both linear, then the curve-on-surface
S(u(t), v(t)) will be of degree 6. As a result, the degree of

the curve C(t) should be elevated from 3 to 6 (see [14]),
which will give us the curve C’(t) of degree 6 with knot
vector T’ and control point sequence (p′

k)k.
Next, with reference to Eqn. (7), and for each pair of

indices < i, j> , there will be a sequence of coefficients
(δijk)k along the knot vector T’ such that:

Ni(u((t))Nj(v(t)) =
∑
k

δijkNk(t) (18)

This is a classical problem of B-spline multiplication and
composition. More details about the solution followed
here may be found in Hu&Sun [6]. The full analysis is in
E. T. Y. Lee [7] who gives a simple and quick blossoming-
based algorithm to compute the B-spline coefficients
from the power polynomial form of a B-spline. More lit-
erature on the subject may also be sought in Lyche and
Morken [8], Morken [10] and Ramshaw [15].

5.2. The system of linear equations

Now, we can rewrite the curve-on-surface expressions in
Eqn. (7) and Eqn. (8) as:

S(u(t), v(t)) ≡
∑
i

∑
j
Ni(u(t))Nj(v(t))pij (19)

which is again: S(u(t), v(t)) ≡ ∑
i

∑
j

∑
k

δijkNk(t)pij and

again:

S(u(t), v(t)) ≡
∑
k

∑
i

∑
j

δijkNk(t)pij

Now, if we match that against the degree-elevated
B-spline curve C’(t), we obtain:

∑
i

∑
j

δijkpij = pk′ (20)

for all control points of the curve C’(t).
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5.3. The solution

By solving this linear system, we can obtain the new posi-
tions of the surface control points (pij) in the support of
the curve depicted in Fig. 8(b). This will guarantee that
the curve will be interpolated by the modified version of
the surface.

However, we should perhaps note that the system of
equations in Eqn. (20) might not be always solvable.
In fact, the general condition for the solvability of Eqn.
(20) is very complicated. For example, we cannot move
a lower degree surface to a higher degree target curve
in general or, in other words, we cannot move a surface
with lower complexity to a target curve with higher com-
plexity. For that, we may need to use Degree Elevation
and Knots Insertion to increase the complexity of the
surface.

For this reason, we seek here the use of algorithms
such as the SVD (Singular Value Decomposition, cf.
Numerical Recipes in C) to solve Eqn. (20), see [3] and
[5]. This algorithm can find the exact solution if there is
one and the least square approximation if there is no exact
one.Moreover, if there happens to bemore than one solu-
tion, this algorithm can find one with minimum change
from original control points.

6. Conclusions and further work

This paper shows that the interpolation of iso-parametric
curves could be reached rather directly, where it is suf-
ficient to manipulate B-spline basis functions at surface
level only. However, this research direction proves diffi-
cult to maintain when interpolating non-iso-parametric
curves.

For this reason, the approach proposed in this paper
is based on the representation of B-splines in polar form,
or Blossom, as proposed in matching trimmed surfaces.
This approach is useful in breaking down composition
and product of B-spline basis functions, occurring in the
expression of a curve on surface.

Furthermore, due to the fact that the resulting system
of linear equations might not always be solvable, the sug-
gestion of the use of the SVD algorithm is necessary to
obtain an approximate solution when an exact solution is
not possible to reach.

Finally, although the discussion is limited to curves
which are linearly mapped in the corresponding param-
eter domain, the interpolation of other types of curves
could be inspired. The solution proposed here is of a
general nature, where the interpolation of iso-parametric
curves becomes a simple particular case. The interpo-
lation of curves with non-linear u(t) and v(t) could be
inspired as future work.

Further work could also investigate the supply of
numerical values to show how the suggested approach
would work in practice and also, maybe, to get enough
insights to propose conditions for the solvability of the
problem in general.
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