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ABSTRACT
A curve is considered fair if it consists of continuous and fewmonotonic curvature segments. Polyno-
mial curves such as Bézier and B-spline curves have complex curvature function, hence the curvature
profile may oscillate easily with a little tweak of control points. Thus, bending energy and shear
deformation energy are common fairness metrics used to produce curves with monotonic curva-
ture profiles. The fairness metrics are used not just to evaluate the quality of curves, but it also aids
in reaching to the final design. In this paper, we propose two types of fairness metric functionals to
fair plane curves defined by the similarity geometry invariants, i.e. similarity curvature and its recip-
rocal to extend a variety of aesthetic fairing metrics. We illustrate numerical examples to show how
log-aesthetic curves change depending on α and G1 constraints. We extend LAC by modifying the
integrandof the functionals andobtain quasi aesthetic curves.We also proposeσ -curve to introduce
symmetry concept for the log-aesthetic curve.
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1. Introduction

A curve is considered fair if it consists of continuous
and few monotonic curvature segments [2]. Polynomial
curves such as Bézier and B-spline curves have com-
plex curvature function, hence the curvature profile may
oscillate easily with a little tweak of control points. Thus,
bending energy and shear deformation energy are com-
mon fairness metrics used to produce curves withmono-
tonic curvature profiles. The fairnessmetrics are used not
just to evaluate the quality of curves, but it also aids in
reaching to the final design.

Curve synthesis is a process of generating curves with
a well-defined Cesáro equation, which describes the cur-
vature κ of a curve as a function of its arc length s. Log-
aesthetic curves (LAC in short) [5] are generated with a
Cesáro equation derived by letting the Logarithmic cur-
vature graph (LCG) as a linear function with the gradient
asα. This curve has gained itsmomentum in design envi-
ronment and now is it used for automobile [7] and archi-
tecture [13] design. The family of LACs includes log-
arithmic (equiangular) curves (α = 1), clothoid curves
(α = −1), circle involutes (α = 2) and Nielsen’s spiral
(α = 0). It is possible to generate and deform LACs in
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real time regardless of its integral forms using their unit
tangent vectors as integrands when α �= 1, 2.

Recently, Sato and Shimizu [9] expressed LACs by
a simple equation in similarity geometry where the
direction angle θ of a given curve is invariant. For a
given curve C(θ) = (x(θ), y(θ)), the similarity curvature
S(θ) ≡ −ρθ/ρ is also invariant where ρ is radius of cur-
vature and ρθ = dρ/dθ . The slope of the LCG of a LAC
can be expressed by

α = Sθ

S2
+ 1 (1.1)

Thus the similarity curvature of LAC satisfies the follow-
ing Riccati (Bernoulli) equation:

Sθ = (α − 1)S2 (1.2)

The above equation can be solved easily to obtain the
similarity curvature of LAC as follows:

S(θ) = −1
(α − 1)θ + c

(1.3)

where c is an integral constant.
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In this paper, we propose two types of fairness metric
functionals to fair plane curves defined by the similar-
ity geometry invariants, i.e. similarity curvature and its
reciprocal to extend a variety of aesthetic fairing met-
rics. Section 4 also illustrates numerical examples to show
how LACs changes depending on α and G1 constraints.
In section 5, we introduce a modified functional and
symmetry concept for LAC.

2. Similarity geometry

We may deduce to figures similar each other when these
figures possess the same shape even if their sizes are dif-
ferent. In similarity geometry if two objects are similar,
then we deduce that both are equivalent. In Euclidean
geometry, circles with different radii are considered dif-
ferent entities, but in similarity geometry circles with
different radii are regarded as the same.

In this section, we derive similarity Frenet frame to
introduce the definition of similarity curvature and show
its role in similarity geometry [3]. Since we know that the
arc length s may vary, thus the representation of plane
curves is parameterized by direction angle θ which is
invariant by scaling. First, let a plane curve be given as
a function of its arc length by

C(s) = (x(s), y(s)) (2.1)

and its Frenet frame F(s) = (T(s),N(s)). We assume the
curve is not a straight line and the direction angle θ is
defined by

θ =
∫ s

0
κ(s)ds (2.2)

where κ is curvature. Next, let tangent vector TSim(θ) as
follows to define the Frenet frame in similarity geometry,

TSim(θ) ≡ dC
dθ

(θ) (2.3)

Thus, we may simplify as

TSim(θ) = dC
ds

ds
dθ

= 1
κ(s)

T(s) (2.4)

where T(s) is the first derivative of C(s) with respect to s
and it is a unit tangent vector of the curve. LetNSim(θ) be

NSim(θ) = 1
κ(s)

N(s) (2.5)

Since det(TSim,NSim) = 1/κ2, hence FSim(θ) =
(TSim(θ),NSim(θ)) has a value in

CO+(2) = {X ∈ CO(2)| detX > 0} (2.6)

where CO+(2) is a set of 2 × 2 real matrix A such that
AAT = cE for an arbitrary constant c. Here ATdenotes

a transpose of matrix A and E does a unit matrix. The
derivatives of TSim(θ) and NSim(θ) are given by

d
dθ

TSim(θ) = − κs(s)
κ(s)2

TSim(θ) + NSim(θ) (2.7)

d
dθ

NSim(θ) = − κs(s)
κ(s)2

NSim(θ) − TSim(θ) (2.8)

From equations (2.7) and (2.8), we define

S(θ) = κs(s)
κ(s)2

(2.9)

Equation (2.9) is an invariant in similarity geometry and
it is denoted as similarity curvature. Therefore, FSim(θ)

satisfies the following differential equation:

d
dθ

FSim(θ) = FSim(θ)

(−S(θ) −1
1 −S(θ)

)
(2.10)

The above equation is called the formula of Frenet frame
in similarity geometry.

3. Similarity geometry invariants

As stated in the previous section, by regarding direc-
tion angle θ as a function of arc length s, the similarity
curvature S(θ(s)) is defined by

S(θ(s)) = 1
κ(s)2

dκ
ds

= −dρ
ds

(3.1)

Similarity radius of curvature V(θ(s)) is defined as a
reciprocal of similarity curvature S(θ(s)) and it is derived
as follows

V(θ(s)) = 1
S(θ(s))

= κ(s)2
dκ
ds

= − 1
dρ
ds

(3.2)

In this paper, two types of functionals are proposed to
fair a plane curve C(t) whose domain is [a, b]. The first
type is given by

Fsc(C(t)) =
∫ b

a
S(θ(t))2

dθ
dt

dt (3.3)

and the second type is

Fsroc(C(t)) =
∫ b

a
V(θ(t))2

dθ
dt

dt (3.4)

Eqns. (3.3) and (3.4) are now rewritten as follows:

Fsc(C(t)) =
∫ l

0

1
κ(s)4

(
dκ
ds

)2
κ(s)ds =

∫ l

0

1
κ(s)3

(
dκ
ds

)2
ds

=
∫ l

0

1
ρ(s)

(
dρ
ds

)2
ds (3.5)
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where l is a total length of curve C(t). Similarly, the
second type is rewritten as follows:

Fsroc(C(t)) =
∫ l

0

κ(s)5(
dκ
ds

)2 ds =
∫ l

0

1

ρ(s)
(
dρ
ds

)2 ds (3.6)

Consider two traditional functionals commonly used
for fairing plane curves:

∫ l

0
κ2(s)ds (3.7)

called bending energy and

∫ l

0

(
dκ
ds

)2
ds (3.8)

called shear deformation energy. These functionals are
clearly different from Fsc or Fsroc.

4. Euler-Lagrange equation [1]

4.1. Similarity curvature

From Eqn. (3.5):

Fsc(C(t)) =
∫ l

0
fsc(s)ds =

∫ l

0

1
κ(s)3

(
dκ
ds

)2
ds (4.1)

Under suitable boundary conditions its Euler-
Lagrange equation in terms of κ is

∂fsc
∂κ

− d
ds

∂fsc
∂κ̇

= −3
κ̇2

κ4 − 2
d
ds

κ̇

κ3 = 3
κ4

(
κ̇2 − 2

3
κκ̈

)
= 0

(4.2)
where ġ = dg/ds and g̈ = d2g/ds2 for function g of s. It
is known that LACs satisfy the following equation [5]:

κ−α = cs + d (4.3)

where c and d are constants. We obtain Eqn. (4.4) after
differentiating both sides of the above equations twice:

− α(−α − 1)κ−α−2κ̇2 − ακ−α−1κ̈ = 0 (4.4)

If α �= 0 and −α − 1 �= 0 (α �= −1), then

κ̇2 − 1
α + 1

κκ̈ = 0 (4.5)

By comparing Eqns. (4.2) and (4.5), the curve which
minimizes Eqn. (4.1) is a log-aesthetic curve whose α

is equal to 1/2. This fact demonstrates that LAC can be
expressed by a simple similarity curvature, which has a
natural property and plays an important role in similarity
geometry.

On the other hand, from

Fsc(C(t)) =
∫ l

0

1
ρ(s)

(
dρ
ds

)2
ds (4.6)

its Euler-Lagrange equation in terms of ρ is

∂fsc
∂ρ

− d
ds

∂fsc
∂ρ̇

= − ρ̇2

ρ2 − 2
d
ds

ρ̇

ρ
= 1

ρ2 (ρ̇2 − 2ρρ̈) = 0

(4.7)
Similarly, Eqns. (4.3) and (4.4) are rewritten with ρ

ρα = cs + d (4.8)

and

α(α − 1)ρα−2ρ̇2 + αρα−1ρ̈ = 0 (4.9)

are satisfied by LACs. If α �= 0 and α − 1 �= 0 (α �= 1),
then

ρ̇2 + 1
α − 1

ρρ̈ = 0 (4.10)

By comparing Eqns. (4.7) and (4.10), the curve which
minimizes Eqn. (4.6) is a log-aesthetic curve whose α

is equal to 1/2. This result is consistent to that of the
curvature formulation shown above.

4.2. Similarity radius of curvature

From Eqn. (3.5)

Fsroc(C(t)) =
∫ l

0
fsroc(s)ds =

∫ l

0

κ(s)5(
dκ
ds

)2 ds (4.11)

its Euler-Lagrange equation in terms of κ is

∂fsroc
∂κ

− d
ds

∂fsroc
∂κ̇

= κ4

κ̇2 + 2
d
ds

κ5

κ̇3

= 15
κ4

κ̇4

(
κ̇2 − 2

5
κκ̈

)
= 0 (4.12)

By comparing Eqns. (4.5) and (4.12), the curve which
minimizes Eqn. (4.11) is LACs whose α is equal to 3/2.
From

Fsroc(C(t)) =
∫ l

0
fsroc(s)ds =

∫ l

0

1

ρ(s)
(
dρ
ds

)2 ds (4.13)

its Euler-Lagrange equation in terms of κ is

∂fsroc
∂ρ

− d
ds

∂fsroc
∂ρ̇κ

= − 3
ρ2ρ̇4 (ρ̇2 + 2ρρ̈) = 0 (4.14)

By comparing Eqns. (4.10) and (4.14), the curve which
minimizes Eqn. (4.13) is LACs whose α is equal to 3/2.
Again, this result is consistent to that of the curvature
formulation shown above.
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4.3. General n

So far, we have shown that to minimize functionals
defined by similarity invariants, we obtain log-aesthetic
curves with specific α values. This fact strongly suggests
us that wemight obtain LACswith otherα values bymin-
imizing variant functionals using similarity invariants. In
this section, we define a functional using a general real
number n(n �= 0) as follows:

Fgen(C(t)) =
∫ l

0
fgen(s)ds =

∫ l

0
S(θ(s))nκ(s)ds

=
∫ l

0

(
1

κ(s)2
dκ
ds

)n
κ(s)ds =

∫ l

0

1
κ(s)2n−1

(
dκ
ds

)n
ds

(4.15)

Its Euler-Lagrange equation in terms of κ is

∂fgen
∂κ

− d
ds

∂fgen
∂κ̇

= (2n − 1)(n − 1)
κn−2

κ̇2n

×
(

κ̇2 − n
2n − 1

κκ̈

)
= 0 (4.16)

By comparing Eqns. (4.5) and (4.16), the curve which
minimizes Eqn. (4.15) is

1
α + 1

= n
2n − 1

(4.17)

The above equation yields

α = 1 − 1
n

(4.18)

Note that the above equation tells us that when n = 2
(corresponding similarity curvature), α = 1/2 and when
n = −2 (corresponding similarity radius of curvature),
α = 3/2, that are consistent to the discussion in the
previous sections.

If α < 0, the LAC can have an inflection point. The
condition for α < 0 is as follows:

1 − 1
n

< 0 (4.19)

If n > 0, then n < 1. Hence we have a solution if 0 < n <

1. If n < 0, then n > 1. In this case, there is no solution.
To summarize, if 0 < n < 1, α is negative.

Suzuki et al. [11] proposed a functional called KLAC
based on the shortest path in the aesthetic space [6]which
is minimized by a LAC as follows:

KLAC =
∫ l

0
(σs)

2ds (4.20)

where σ = ρα and σs = dσ/ds = αρα−1ρs. The above
functional can be rewritten as follows:

KLAC = α2
∫ l

0
(ρα−1ρs)

2ds =
(
1 − 1

n

)2 ∫ l

0

(
1
ρ

ρn
s

) 2
n
ds

(4.21)
The integrand without power 2/n of the rightest expres-
sion in the above equation is equal to that of the func-
tional given by Eqn. (4.15) even though it is given by ρ

and its derivative ρs. Note that although KLAC is scale-
variant, that means if we deform a curve by minimizing
it, we obtain different curves depending on their sizes,
the functional in Eqn. (4.15) is scale-invariant in nature
and we obtain the same shaped curves independent from
their sizes. Because of constraints, the curve generated by
minimizing this functional might not converge to a LAC
segment, butwe guarantee the scale invariance of the gen-
erated curve by use of this functional. On scale invariance
of LACs please refer to Suzuki et al [12].

4.4. Numerical examples

Figure 1 shows the comparisons of LAC shapes whose
α = 1/2 and 3/2. It consists of three pairs of LACs and the
curves in each pair are generated with the same G1 con-
straints. When the G1 constraints vary drastically from

Figure 1. Comparisons of LACs whose α = 1/2 and 3/2.
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those for a circular arc, then the LAC shapes become dis-
tinctly different. Although the differences of their shapes
are somehow restricted, switching α from 1/2 to 3/2 and
vice versa provides a subtle deformation of the curve.

5. Extensions of the Log-aesthetic curve

So far we have shown that similarity geometry and σ =
ρα have main roles to define the log-aesthetic curve. In
this section, we extend LAC in two ways: The 1st is to
modify the integrand of the functional and the 2nd is to
define curve in the aesthetic space.

5.1. Modification of the integrand

Wemodify the integrand of the functional in Eqn. (4.15)
as follows:

Fλ,a(C(θ)) =
∫ θ1

θ0

1
2

(
a2S(θ)2 + γ

q2a

)
dθ (5.1)

where a and γ are constants and q2 = TSim(θ) · TSim(θ).
Its Euler-Lagrange equation under suitable boundary
conditions is given by

dS
dθ

= aS2 + c (5.2)

where c is a constant. When a = −1/2 and λ = 4c, the
above equation becomes the following Riccati equation

dS
dθ

= −1
2
S2 + λ

4
(5.3)

and Shimizu and Sato gave the solutions for it as follows
[10]:

S(θ) = −
√

−λ

2
tan

(√
−λ

2
θ

2
− θ0

)
if λ < 0 (5.4)

S(θ) =
√

λ

2
tanh

(√
λ

2
θ

2
+ θ0

)
or (5.5)

S(θ) =
√

λ

2
coth

(√
λ

2
θ

2
+ θ0

)
if λ > 0 (5.6)

They called these curves the quasi aesthetic curves
[9]. In Eqn. (5.3) if λ = −8, then from Eqn. (5.4) the
similarity curvature of the curve becomes

S(θ) = −2tan(θ − θ0) (5.7)

Assuming θ0 = 0, the above formula corresponds to the
similarity curvature of the catenary curve expressed by

y = a
2

(
exp

(x
a

)
+ exp

(
−x
a

))
(5.8)

where a is a positive constant. Its radius of curvature ρ

satisfies the following equation:

ρ− 1
2 = 1√

a
cos(θ) (5.9)

for −π/2 < θ < π/2. If we measure arc length s from
(x, y) = (0, a) to the positive x direction, s is given by

s =
∫ x

0

√
1 + (y′)2dx = a

2

(
exp

(x
a

)
− exp

(
−x
a

))
= a tan(θ) (5.10)

From Eqns. (5.9) and (5.10),

ρ = 1
a
s2 + a (5.11)

Therefore, the radius of curvatureρ of catenary curve can
be described as a quadratic function of its arc length s in
the α = 1-aesthetic space, which we explain in the next
section, andwe can say that it is one ofσ -curves proposed
in the next section. Figure 2 depicts a catenary curve with
a = 1 and the same curve in the α = 1-aesthetic space.
Note that the catenary curve is symmetric along the y
axis and we also introduce symmetry concept in the next
section.

5.2. σ -Curves

In this section, we extend LAC in the aesthetic space
where the horizontal axis is given by arc length s and the
vertical axis is by σ to improve its expressive power. A
LAC segment is expressed by a straight-line segment in
the aesthetic space as shown in Fig. 3.We call a new curve
σ -curve because it is defined using σ values. The main
purpose to propose a new curve is to introduce symmetry
for curve generation. Symmetry is one of themost impor-
tant concepts for aesthetic design (for example, refer to
Maor and Jost [4]).

Curves are a very basic element for aesthetic design
and the monotonicity of curvature of the curve is
regarded as a desirable characteristic for its fairness and
beauty [8]. However, if we guarantee its curvature mono-
tonicity, we cannot generate a symmetrical curve and we
cannot achieve a design with symmetry. Although we
can generate two segments which are symmetrical each
other and connect them, we lose smoothness between
them, i.e. we generally lose G3 and higher continuity.
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Figure 2. A catenary curve (a = 1) in x-y plane and in the aesthetic space with α = 1.

Figure 3. The aesthetic space (left and right graphs correspond
to a LAC and a σ -curve, respectively).

Hence to generate a symmetrical curve in a more nat-
ural way, we propose σ -curve defined in the aesthetic
space. The curve is regarded as a LAC version of the ALP
(Arc-Length Parametrization) curve recently proposed
by Yoshida and Saito [14]. Note that σ is not a similarity
geometry invariant.

5.2.1. Definition of σ -curves
We define σ curve by its Cesàro equation as follows:

σ = ρα = ansn + an−1sn−1 + · · · + a1s + a0 (5.12)

In the above equation, σ = ρα is given by a polynomial
function of arc length s.

5.2.2. Bézier, B-spline and NURBS types
If the total length L of a curve is given, Bézier, B-spline
and NURBS types of the σ -curve can be defined in a
straightforward manner. Bézier type is defined by

ρ(s)α =
n∑

i=0
Bni
( s
L

)
σi (5.13)

where Bni (t) is a Bernstein basis function of degree n and
σi = ρα

i . The right graph in Fig. 3 shows σ values of a

Bézier σ -curve. B-spline type is

ρ(s)α =
n∑
i=0

Nn
i

( s
L

)
σi (5.14)

where Nn
i (t) is a B-spline basis function of degree n.

NURBS-spline type is

ρ(s)α =
∑n

i=0 N
n
i
( s
L
)
wiσi∑n

i=0 N
n
i
( s
L
)
wi

(5.15)

5.2.3. Generalized σ -curves
We can perform an extension of σ -curve in a similar
way from the log-aesthetic curve to the generalized log-
aesthetic curve (GLAC). There are two types of the LAC:
1st type is given by ρα = c1s + c0 and 2nd type ρ =
exp(c1S + c0) = C0exp(c1S) [5]. Note that the 2nd type
of the LAC also satisfies Eqn. (1.2) in case of α = 0. For
the 1st type we can have two types of generalized σ -curve,
i.e. ρ-shift and κ-sift:

(ρ − e)α = ansn + an−1sn−1 · · · + a1s + a0 (5.16)

(κ − f )−α = bnsn + bn−1sn−1 · · · + b1s + b0 (5.17)

where e, f and ai, bi(i = 0, · · · n) are constants. We call n
degree of the σ -curve. For the 2nd type we can have

ρ − e = exp(ansn + an−1sn−1 · · · + a1s + a0)

= A0exp(ansn + an−1sn−1 · · · + a1s) (5.18)

κ − f = exp{−(bnsn + bn−1sn−1 · · · + b1s + b0)}
= D0 exp(dnsn + dn−1sn−1 · · · + d1s) (5.19)

where D0 = exp(−b0) and di = −bi(i = 0, · · · n) are
constant.
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Figure 4. σ -curves with various α values.

5.2.4. Symmetrical curve examples
We will show an example of a symmetrical Bézier σ -
curve in this section. To make a Bézier σ -curve of degree
n symmetric, the following condition is necessary and
sufficient:

σi = σn−i for 0 ≤ i ≤ n (5.20)

We define a quadratic curve and let σ0 = σ2. We define a
Bézier-σ curve as

ρ(t)α = (1 − t)2σ0 + 2(1 − t)tσ1 + t2σ2 (5.21)

where t = s/L. ρα is given by a symmetrical quadratic
graph of parameter t and the curve itself is symmetric
with G∞. Note that because of symmetry we inevitably
lose curvature monotonicity.

Figure 4 shows several Bézier σ -curve with various
α values. The start point of each curve is located at the
origin and the direction angle there is in the horizontal
direction. The curves are defined by L = 1, σ0 = σ2 = 4
and σ1 = 1. α values are changed from 2 to −1. The
curves can be changed drastically due to the change of α.

6. Conclusions

In this research, we have proposed two types of fair-
ness metric functionals for fairing a plane curve defined
by similarity curvature and similarity radius of curva-
ture, which are invariant in similarity geometry. We have
shown that by minimizing the integral of square of sim-
ilarity curvature, we obtain LACs whose α equals to 1/2.
Similarily for similarity radius of curvature, we obtain
LACs for α equals to 3/2. Thus, a clear interpretation of
the effect of the slope of the logarithmic curvature graph,
especially when α is equal to 1/2 and 3/2 are derived.

We have extended our functionals to handle general
LACs by introducing a power function of similarity cur-
vature. The new functionals defined by similarity geom-
etry invariants in Eqn. (4.15) is remarkably better than
those previously proposed in [5, 10] because of its scale

invariance. Furthermore, we have extended LACbymod-
ifying the integrand of the functional and obtained quasi
aesthetic curves and proposed σ curve to introduce sym-
metry concept for LAC. For future work, we would like
to clarify the relationship between the quasi aesthetic and
σ -curves and to extend our fairing metrics for free-form
surfaces.
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