COMPUTER-AIDED DESIGN & APPLICATIONS, 2018
VOL. 15,NO. 2, 227-237
https://doi.org/10.1080/16864360.2017.1375673

(onpiter: fidedlerjgn Taylor &Francis
p— —— Taylor & Francis Group

'.) Check for updates

Surface detection and modeling of an arbitrary point cloud from 3D sketching

Ariel Schwartz ©32, Ronit Schneor ©2, Gila Molcho

2 and Miri Weiss Cohen ®b

aTechnion-Israel Institute of Technology, Israel; PBraude College of Engineering, Israel

ABSTRACT

This work describes a method for converting unorganized point cloud data from 3D sketching into
an explicit 3D model, contributing to closing the knowledge gap in transferring 3D sketches from a

KEYWORDS
3D sketching; point cloud; 3D
surface modeling

conceptual design to the detailed design. The main challenge in the work is processing an unorga-
nized point cloud where the points fill the volume of the object and do not only lie on the surface,
as they would in most scanned data. The scope of the work is a single object, genus 0. The 3D model
is constructed by building a loft feature through curves generated by slicing the point cloud. Firstly,
the point cloud is sliced and points worked onto slicing planes; secondly, the external points that
describe the contour of each slice are isolated using alpha shapes; lastly, smooth curves are created

through the external points, and a loft is generated.

1. Introduction

This work aims to advance 3D sketching-to-production
capabilities. Multiple methodologies and tools exist to
sketch products at their conceptual phase. Amongst
them are CAD systems and various 3D virtual sketch-
ing capabilities, which have emerged in recent years
[2,15,17,25,27-30]. However, there still exists a signifi-
cant knowledge gap in transferring these initial sketches
for detailed design or realizing products based on these
abstract sketches. In this work an algorithm is presented
that contributes to closing this gap.

A designer may use 3D sketching as a tool in the early
stages of work, but the technology does not yet allow
the user to bring sketches directly into CAD models.
Whether a part is to be machined or 3D printed, it is
generally represented as a 3D model prior to manufactur-
ing. The motivation for this work is enabling the transfer
of the output from the 3D sketcher to the designer for
detailed design.

The aim of this work is to develop a solution for
converting a 3D point cloud, created by an augmented
reality 3D sketching system, into an explicit 3D model,
while incorporating as much design intent as possible.
The work presented aims to suffice CAD design features,
focusing on extrude and revolve, therefore our examples
adhere to this content.

While several algorithms exist that convert a point
cloud created by a 3D scanner to a 3D model, the

challenges of converting a 3D sketch output has yet to
be addressed. Unlike the 3D sketcher, modern 3D scan-
ners sample points from the objects boundary, largely
providing an ordered point cloud.

In the 3D sketching process, users sketch the object
in space. They do not necessarily only draw the external
surface of the desired object, rather, they might fill the
object with internal points as well (filling in the object).
However, there is no indication of whether the points lie
within the object, outside the object, or on the surface.
The main challenge of this work is, therefore, to con-
struct a 3D model from an unordered point cloud that
includes not only points from the boundary but internal
and external (noise) points as well.

3D sketching systems allow users to design bodies and
assemblies of unlimited complexity. This work focuses
on understanding and overcoming the main challenges
involved with conversion of data from the augmented
reality to a 3D model. Therefore, the scope of this work is
a single object, with genus-0 surfaces.

Much research has been done regarding mesh recon-
struction from an unorganized point cloud, where the
points are created from a scanner. Schnabel et al. [20]
developed an algorithm to detect common shapes in an
unorganized point cloud. Using the detected shapes, they
build the structure into a concise CAD model. Kyriazis
et al. [11] divide their point cloud data into thin slices,
and work the points within each slice onto a plane. Then,

CONTACT Ariel Schwartz @ arielgilliandayan@gmail.com; Ronit Schneor @ schneor@technion.ac.il; Gila Molcho @ gila@technion.ac.il;

Miri Weiss Cohen @ miri@braude.ac.il

©2017 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2017.1375673&domain=pdf
http://orcid.org/0000-0001-6313-9171
http://orcid.org/0000-0001-5486-6529
http://orcid.org/0000-0002-8878-4027
http://orcid.org/0000-0001-5250-1016
mailto:arielgilliandayan@gmail.com
mailto:schneor@technion.ac.il
mailto:gila@technion.ac.il
mailto:miri@braude.ac.il
http://www.cadanda.com

228 A.SCHWARTZ ET AL.

they find the convex hull on small regions of the worked
point cloud, and combine the results to obtain an inter-
polation of the object’s shape. Woo, Kang, Wang, and
Lee [26] propose an algorithm using the octree-based
3D grid method to handle large numbers of unordered
sets of points data. Their method enables them to extract
the edge neighborhood points, while considering the
geometric shape of the part. Tang et al. [23]and sur-
vey the state-of-the-art methods for Building informa-
tion models from laser scanned point clouds and discuss
their potential application to automated as-built BIM
creations, moreover, Bosche [2], details a method for
construction purposes.

One of the existing methods to extract the surface
points in a 3D point cloud where the points do not nec-
essarily lie on the surface is the alpha-shape algorithm.
Edelsbrunner and Mucke [5] derived the use of alpha
shapes to isolate the boundary points in a point cloud and
reconstruct the shape of the object. Xu and Harada [27]
and Guo et al [6] use alpha shape for surface reconstruc-
tion. Another option for construction of the CAD model
is the use of mesh triangulation. Lin, Tai, and Wang [12]
present an algorithm for constructing a triangle mesh
using the sampling uniformity degree at each sampling
point as an intrinsic property of the point cloud. This way,
they avoid the use of a user-specified parameter to control
the mesh, minimizing the error in reconstruction.

Different approaches can be found in Sam et al. [19],
which propose a method for representing a curve skele-
ton from point cloud by estimating centers of antipodes
inside the shape, then filtered and then a one- dimen-
sional Moving Least Squares (MLS) is implemented to
build a thin point cloud and then a smooth curve skele-
ton. Zhao et al [29], use machine learning classifiers with
three different shape descriptors, Light-Field Descriptors,
Angular Radial Transform (ART), and Zernike Descrip-
tors (ZD). They evaluated the classification performance
of different classifiers and combined them with the differ-
ent shape descriptors on point cloud examples. Masuda et
al [15,16], claim that Standard Deviation of residuals in
surface fitting has various errors according to the sizes,
distances, and materials of the scanned objects. Their
work investigates these distributions, resulting a predic-
tion functions, which are used for surface extraction. A
moving parabolic approximation (MPA) to reconstruct
a triangular mesh was done by [28], and an automatic
method for outlier detection based on the principle of
majority voting is found in [24].

Among many slicing methods found in literature,
Zhong et al. [30], propose a series of algorithms including
Inverse Distance Square method (IDS) for slicing, extrap-
olation method for vertical slicing. The use of NURBS
as contour curve was used for reconstruction of profile

data points. Liu[13], presents an algorithm which group
all points belonging to the same functional surface, more-
over, a B-spline surface is fitted to these points so as to
generate an editable NURBS surface. Oropalloa, Piegl,
Rosen and Rajab [17], use a different approach by using
the original NURBS model and converting it into a point
cloud, based on layer thickness and accuracy require-
ments, for direct slicing. Their work proves efficiency
in computational requirement, which is done error free.
Preprocessing of slicing surface generation with focusing
on reliable normal estimation is done by Huang et al. [7],
their method uses a local optimal projection operator to
improve local PCA, furthermore, an iterative normal esti-
mation and a priority-driven normal propagation scheme
is used. Robust segmentation for multiple manifolds is
presented in [10].

2, System overview

To establish the overview, a basic understanding of the
3D sketching system and its output is required. As a ref-
erence for this work, the 3D sketching system used, is the
Immersive Freehand 3D Sketching on Air in Full Object
Scale [20].

The system uses a number of Vicon cameras, set up
around the room, which can capture the motion of reflec-
tive markers on the head and hand of the user (Fig. 1).
The output from the system is a point cloud in Cartesian
coordinates. For the purpose of this work, only sample
point clouds were taken that fit within the scope: a single
object, genus-0.

3. Related work
3.1. K-means clustering

One commonly used clustering algorithm is K-means
clustering. K-means is a method to partition a set of

VR Glasses with Markers

——

(d)

Figure 1. 3D sketching system, from Shain, [21]. (a) The room,
(b) Vicon camera, (c) VR glasses with reflective markers, (d) Hand
glove with reflective markers.

points into k number of clusters. The K-means algorithm
consists of two separate phases: in the first phase it calcu-
lates the k centroids and in the second phase, measures
the distance from each point to the cluster that has the
nearest centroid from the respective data point.

There are different methods for defining the distance
to the nearest centroid, one of which is Euclidean dis-
tance (see the detailed review in [3]). Once the grouping
is found, the algorithm recalculates the new centroid of
each cluster. Based on that centroid, a new Euclidean dis-
tance is calculated between each center, and each data
point. The points in the cluster with minimum Euclidean
distance are assigned [3,18]. Each cluster in the partition
is defined by its member objects and by its centroid.

The centroid for each cluster is the point to which the
sum of distances from all the objects in that cluster is
minimized.

The algorithm for k-means clustering follows:

1. Initialize number of cluster k and center.

2. For each point, calculate the Euclidean distance d
between the center and each point, using
equation 1:

d = [lpCx, y) — Cxll (1)

3. Assign all the points to the nearest center, based on
distance d.

4. After all points have been assigned, recalculate the
new position of the center using equation 2:

=1 3 Y by ®)

yeCy xeCy

5. Repeat the process until it satisfies a defined error
value.
6. Reshape the cluster points.

This algorithm can also work for a large number of
variables, but produces a different cluster result for differ-
ent numbers of clusters. So it is necessary to initialize the
proper number of clusters, k. Different values of initial k
and centroids would result different clusters.

3.2. Alpha shapes

The concept of alpha shapes developed by Edelsbrunner
and Mucke [5] formalizes the intuitive notion of “shape”
for spatial point sets. The alpha shape is a mathematically
well-defined generalization of the convex hull and is a
subgraph of the Delaunay triangulation [4,9]. It is defined
intuitively as: «z-shapes are a generalization of the convex
hull of a point set. Let S be a finite set in R® and « a real

COMPUTER-AIDED DESIGN & APPLICATIONS 229

number with 0 < & < x. For o = x, the «-shape is iden-
tical to the convex hull of S. However, as « decreases, the
a-shape shrinks to cavities.

The formal detailed definition for alpha shapes is
found in [1,6], summarized as follows:

For 0 < o < x, let an «-ball be an open ball with a
radius o. An a-ball b is empty if b NS = 0.

Any subset T C Sofsize |T| = k+ 1,with0 < k < 3,
defines a k-simplex o_T, which is the convex hull of T.

The alpha shapes bring spheres of a defined probe
radius as close to the point cloud as possible without
allowing any of the points to enter a sphere. All the points
that come in contact with a sphere are defined as the
external points in the point cloud.

3.3. Octree

An octree [8] is a tree data structure used to partition
a three-dimensional space by recursively subdividing it
into eight octants [8] unit is labeled as full, void, or mixed,
based on the information in its space. Any unit with a
mixed value is again subdivided into eight. This process
continues until all unit cubes within an octant have the
same labels associated with it: either full or void.

3.4. Loftsurfaces

A loft surface is a special case of homotopy, a straight-
line homotopy. Shinagawa et al. [22] define a loft as the
surface patch between adjacent contours that is generated
by connecting corresponding points on each contour by
homotopy. The homotopic model of a loft surface is the
generalization of the following:

F(x,t) = (1 = t)f (x) + tg(x) (3)

Let the lower and upper B-Spline curve be expressed by
the maps f,g : X — R"3, where X = [x¢,x;] C R. For
simplicity, let the lower contour line be on the plane z
= 0 and the upper one on z = 1, and X = I. Thus,
the two points P(px,p,) and Q(gyx,q,) are connected
by homotopy E meaning that there exists x € I such
that F(x,0) = f(x) = (px, py» 0) and F(x, 1) = g(x) =
(gx> gy» 1). are defined. Loft surfaces are commonly used
in CAD software.

4. Proposed approach

There are various approaches to processing point cloud
data. It was established that in the processing stage, the
surface points would need to be isolated from the point
cloud. Two approaches were investigated to achieve this
goal: octree representation and alpha shapes.

230 A.SCHWARTZ ET AL.

Input: Point Separate Choase slicing Locate slice
Cloud objects direction planes
1
.
Project points Eutlaclt edge Create curves Build a loft
onto planes points for each slice
]|
¥,
Recognize Output: 3D
shapes Surface Model

Figure 2. A scheme of the proposed approach.

By using an octree to organize the point cloud, the
boundaries of the cloud could be found. The point cloud
would be broken down into bins using an octree, such
that if a bin contains points, it is defined as “full”, and if
it is empty, it is defined as “void”. The boundaries of the
cloud are then defined as full bins that have at least one
void neighbor. One problem that arose with this approach
was the varying density of the point cloud, as a result of
the 3D sketching. Using this method, a void unit could
be detected in a low-density area in the center of the
point cloud. Therefore, “boundaries” of the point cloud
would be detected in the center of the volume, resulting
in incorrect processing of the data.

Using the alpha-shape algorithm, the point cloud is
enveloped from the outside, which—in the case of a
genus-0 object—is desired. We chose to use this method-
ology as the basis, and work towards improving the
results. One of the major disadvantages observed in the
alpha-shape method was that to obtain an accurate depic-
tion of the point cloud, a small probe radius was required,
resulting in a very uneven surface. We determined that
one way to improve the results is to break the problem
down into a multi-stage solution incorporation of both
2D and 3D analysis. The selected approach to improve
precision was to slice the point cloud and analyze each
slice (2D), and then to reconstruct the 3D model from
the analyzed slices. This approach allowed for improved
preservation of the overall shape of the object when
extracting the boundary information.

Fig. 2 is a block diagram depicting the basic idea of our
approach, in stages, with the relevant methodology used
for performing the task defined in each stage.

4.1. Input

The input is a set of non-ordered points in space. The
points can sit anywhere within the object, or on the
surface. There is no predetermined surface defining the
shape of the object. For the purpose of testing, a sample
point cloud was produced by generating random points
within three overlapping spheres of varying radii (Fig. 3).

Figure 3. Sample point cloud.

This point cloud represents an object within the scope of
the work (single object, genus-0 surface) as an example of
what may be generated by a user of the augmented reality.

4.2. Separate bodies

As mentioned above, the scope of this work is single
object, genus-0. Therefore, the preliminary stage of sep-
arating distinct bodies is a prerequisite for using the slice
and loft algorithm. This stage was completed using k-
means clustering, this function detects the clusters in
a point cloud, given the number of clusters as input.
Assuming the number of objects in the point cloud is ten
or less, the k-means function runs iteratively, up to ten
times, increasing the assumed number of clusters by one
at each iteration. The solution with minimum error can
determine how many bodies are in the point cloud, and
then the clusters can be separated.

4.3. Find the slicing direction

The direction in which the object is sliced can greatly
affect the resulting model. Fig. 4 demonstrates this by slic-
ing an L-shaped point cloud in three different directions
and applying the loft algorithm.

Several options exist for finding the optimal slicing
direction. The first option is that the user manually
chooses the direction by interactively aligning an axis by
which they would like the object to be sliced. The second
option is to automatically seek a transformation of the
object that minimizes a target function. Another option is
to choose from the x, y, and z directions. Since the point

Figure 4. L-shape sliced in three directions.

cloud at hand comes from a 3D sketch, the user gener-
ally draws the object in the Cartesian coordinate system.
Thus, one of the three directions is likely the optimal slic-
ing direction. The system would then evaluate which of
the three directions gives the best depiction of the object.
This process proves to be a challenging one, seeing as
there is no given information about the object.

For this work, the slicing direction was manually cho-
sen as x, ¥ or z based on an interactive decision of the
designer for each sample. In the example depicted in
Fig. 4, the z direction was chosen, such that all the slices’
contours would be circular in shape and concentric to one
another.

4.4. Locate slice planes

The locations of the slice planes has a large effect on the
final result, as missing changes in object curvature or
extreme/key points can easily occur, significantly alter-
ing the results. Thus, it is crucial that the slices are taken
at strategic points. Many modern 3D interest point detec-
tion algorithms define functions based on local extrema
points [4]. In this work we take a similar approach.

Step 1: The cloud of points is transformed such that the
slicing direction coincides with the z-axis. This makes the
set of points easier to work with in the subsequent stages.

Step 2: A 3D alpha-shape algorithm (with a small
probe radius) is applied to the object to get a general
understanding of the object’s surface shape. Fig. 5 shows
the original set of data points (red), and the surface
points, which were extracted using alpha shapes (blue).
From this point on, for the purpose of finding the slice
planes, only the surface points (blue) are used.

Step 3: A central axis in the z direction (or slicing
direction) is found, such that the object surrounds the
axis (Fig. 5(a)). This can be accomplished using a least
squares method [14], or by simply taking an average of
the x and y points. We selected to implement the average
x and y methodology.

Step 4: The absolute value of the distance from each
point to the central axis is calculated. At this stage,
the data can be represented by a graph of the absolute
distance to the central axis, versus the z location of each
point (Fig. 5(b)).

COMPUTER-AIDED DESIGN & APPLICATIONS 231

(a) b) (c)

Figure 5. (a) Surface points (blue) extracted using alpha shapes,
(b) Surface points and central axis, (c) Absolute distance of the
surface points to the central axis.

Step 5: The local maxima and minima are found to
ensure that the object is sliced at all the key/extreme loca-
tions. A number of methodologies can be used to find
these points, such as curve approximation. Since the data
cannot always be approximated to a curve, the following
iterative method for slicing the object was derived and
depicted in Fig. 6.

When performing the iterative process, the approxi-
mate size of the slices must be determined. This is done
according to the number of points per slice using k-
means. In this example, slice size was chosen based on
an average of 500 points per slice.

This process guarantees that all local maxima and
minima are located, and the spaces between them are
divided into slices. In the event of an object whose cross-
section does not change much along the central axis (such

Find global extremities

A

Store extremities z value as slice locations

v

v

Set points whose z values lie within
a slice size as handled

slice _size slice _size

o e e i, e F o = BRI i

T 2 =

slice _size slice _size
—_—— <z <=z~ T“

A

Are there more unhandled points?

[e

All the slice locations have been found

man

]

Yes

Figure 6. Iterative process for finding the slice locations.

232 A.SCHWARTZ ET AL.

|
rl

(@ (b)

Figure 7. (a) Location of slice planes, (b) Side view of the worked
point cloud onto slice planes.

as an extruded object), this algorithm results in uniform
slicing. Fig. 7(a) shows the resulting slice locations after
executing the iterative slicing process on the example
object.

4.5. Work points onto planes

After the locations of the slices are determined, the points
are allocated to their slices. At this stage, the points used
are not those extracted from the 3D alpha shapes, but the
original (red) input points. The points allocated to a slice
are those surrounding it on both sides, halfway to the
next slice plane. Parallel working in the slicing direction
is used to work the points onto their respective planes
(Fig. 7(b)).

4.6. Extract the edge points

On each slice, the 2D alpha-shape algorithm is applied to
extract the edge points from the resulting worked points.
At this stage, a probe radius must be chosen for the alpha-
shape algorithm. This probe radius greatly affects the
resulting contour. For this work the radius was chosen
manually. For more complex bodies, such as those with
planar, concave, and convex sections, it may be preferable
to use a different probe radius on each slice depending on
its shape. Fig. 8(a) shows a side view of the worked points
(red) and the edge points that were extracted (blue).
Fig. 8(b) shows only the final extracted edge points (blue)
on their slice planes.

4.7. Constructthe 3D Model

The input for this stage is the edge points of each slice.
In the world of CAD, there are several standard mod-
eling techniques to build the features of an object. They

- 4
- sssssmm '.n.'l}
s me f‘?“.
P ? &
ma . az ma _mza " ..?l" .‘
e —— L ") ‘a
B S - ‘..‘ P ’
o e ">
» > a ¥ . ."‘.'
A L
‘a' .. - -}.a,
-—w Twm ow wm ws wwoww &..‘:-. L.'l. ‘,U”‘
- seE— - B - ”':..¢~‘.
. 4 Yo 2
- o= s s “; ..:O‘?‘:..
—— e s ‘h - .I
g LA
. 280N

Figure 8. (a) Side view of surface points extracted using 2D alpha
shapes, (b) Final set of points representing the surface.

include revolved, extruded, swept, and lofted features. A
loft was chosen as the method for the construction of the
CAD model. This method was selected because it is a nat-
ural transition from slicing the object to building a CAD
model. It also allowed for the most flexible reconstruc-
tion of the object, so that the algorithm could be used on
many different point clouds.

In the CAD system, each set of edge points is approx-
imated to a closed spline curve representing the pro-
file of the object on each given plane (Fig. 9(a)). By
transitioning between profiles to create a non-analytic
surface, the lofted object is created (Fig. 9(b)).

The model obtained using the slicing method gives
an excellent depiction of the overall shape of the object,

—
Sy
e

Iy

Figure 9. (a) Curves through edge points, (b) Final lofted CAD
model shape recognition.

but has an uneven surface. This might be improved
by using shape recognition techniques on the 2D slice
planes.

In 2D, curve recognition techniques are applied to the
edge points that were extracted on the slice planes. This
is achieved by least square fitting of known curves such as
circle, oval, or rectangle to the edge points. This reduces
much of the roughness in the resulting 3D model. In the
example point cloud built from three spheres, the desired
shapes on the 2D planes are known to be circles. After
the edge points were isolated, a circle was fitted to each of
the slices. The loft was then built from the circular sec-
tions. Comparing this model to the model created from
the same point cloud without fitting the circles, it can be
seen that this greatly improves the surface quality of the
3D model (Fig. 10).

(@) (b)

Figure 10. 3D model. (a) Without curve recognition, (b) With 2D
curve recognition.

a1

41

(al

Figure 11. (a) Error color map, (b) Error histogram.

COMPUTER-AIDED DESIGN & APPLICATIONS 233

5. Results

The results of the methodology were tested in a number
of ways.

5.1. Results quantification

A method was developed to quantify the results. For the
point clouds that were generated, the initial desired object
was used as the goal surface. The error was measured
as the normal distance, d, between the resulting surface
and the goal surface. Positive and negative errors repre-
sent points lying outside and inside the desired surface,
respectively.

Fig. 11 shows a color map and a histogram of the error,
from the sample point cloud made from three spheres
of radius 2, 3, and 4 (Fig. 11(b)). It can be seen that
the maximum errors were obtained at the intersecting
planes between the spheres. This result is due to the con-
cave shape of the object in those areas. These intersection
points are detected as key features when the slice loca-
tions are chosen. Then, the points from above and below
the slice plane are worked onto the surface. Since the
radius increases as we move away from these points,
the resulting worked point cloud has a larger radius than
the intersection plane. Thus, the resulting spline curves
created on those planes are larger than the desired sur-
face, contributing to the large error.

The histogram shows that the majority of the points
are a relatively small distance from the goal surface,
which is desired.

5.2. Check for distortion

The algorithm was tested on a set of data that lies on the
surface of a known shape, similar to scanned objects. A

histogram of the emor

number of points
FEREEEREEEEN

2 a1 [] al 02 [+ o4 {1} .1
datands from detired turisce

234 A.SCHWARTZ ET AL.

point cloud was generated where all the points lie on the
surface of a basic shape, and the slice and loft algorithm
was applied. In this manner, it is possible to quantify the
distortion caused by the slice and loft algorithm.

First, a point cloud lying on the surface of a
sphere of radius 3 was generated. The resulting shape,
along with the error quantification data, can be seen
in Fig. 12.

The largest error occurred at the top and bottom
portions of the sphere. Additionally, a ripple effect is

ermor colomap

Figure 12. Lofted sphere from the scanned point cloud.

Planar object:

seen, which is due to fitted circles not being perfectly
concentric.

5.3. Comparison to 3D alpha-shape method

Two point clouds were generated to compare the results
to those obtained using alpha shapes. The first is
a planar object in the form of a three-dimensional
L shape (Fig. 13). The second is a curved object,
made of three overlapping spheres of different sizes

2 #iror histogram
3000
20
2
&m0
3
‘E 1500
2
0

o5 0 1] (1}
datance from desired surtace

915 a1 01

it

Probe 3D Alpha Shapes Slice and Loft
Radius

I[nfinity I

] L
0.5 I

Figure 13. Planar object in the form of a three-dimensional L sh

ape comparison.

(Fig. 14). The slice and loft algorithm and the alpha-
shape algorithm were applied to each point cloud three
times, each with a different probe radius. The 2D shape
recognition was not performed here, to better under-
stand the effect of the probe radius on the resulting
object.

It can be seen immediately that both of the bod-
ies’ overall shapes are much better preserved using the
slice and loft algorithm, especially when comparing the
methods with a larger probe radius.

In the case of a smaller probe radius, the 3D alpha-
shape algorithm may include some points from within
the object as surface points, resulting in an uneven sur-
face. The surface roughness is improved slightly using the
derived model, because running the curve through xyz
points and loft features results a smooth continuous solu-
tion. Additionally, when the points from within a slice are
worked onto the plane, the points are more concentrated,
which can improve the validity of the shape extracted
using the alpha-shape algorithm.

Another point that should be noted is the effect of
the probe radius on the shape. In every object, an opti-
mal probe radius can be found to get results that are

Curved object:

COMPUTER-AIDED DESIGN & APPLICATIONS 235

similar to the desired object yet not too uneven. In cir-
cular objects, a larger probe radius is generally desired.
In planar objects, a smaller radius is desired, but not too
small. In the L-shape, depicted in Figure 13, the best rep-
resentation of the object is given with a probe radius of
1. A larger probe radius does not capture the corners of
the rectangular sections well, and a smaller probe radius
gives a more uneven result. In the curved object, an infi-
nite probe radius gives the best representation, and with
a radius of 0.5 the model is very uneven and poorly
represents the object.

5.4. Example of methodology results

As an example, a point cloud was generated in the
shape of a lamp. The base of the lamp is cylindrical,
the stand rectangular, and the lampshade is cone-shaped
(Fig. 15).

The slice and loft algorithm successfully constructed a
3D model from the point cloud. The loft effectively tran-
sitioned between the circular and rectangular slices. 2D
shape recognition techniques were then manually applied
to the slice curves, and the loft was re-created.

Probe
Radius

3D Alpha Shapes

Slice and Loft

Infinity

0.5

Figure 14. Three overlapping spheres comparison.

236 A.SCHWARTZ ET AL.

A Original COP 8: Curves on Siice Planes

Figure 15. Lamp example.

6. Conclusions

In this work, the slice and loft algorithm was developed,
which successfully converts a 3D point cloud into an
explicit 3D model. The method begins by slicing the point
cloud and working the points within a slice onto a plane.
Then, it uses the 2D alpha-shape algorithm to extract the
edge points. From there, a smooth spline curve through
the edge points is created on each slice plane. Finally, a
loft is produced from the resulting curves.

In some cases where surface quality of the result-
ing model was insufficient, we improved it by adjusting
the probe radius in the alpha-shape stage, depending on
the shape of the contour. Additionally, shape recognition
could be implemented in the 2D or 3D stages to convert
the object into a collection of known predefined shapes.

This algorithm may have great implications in the field
of virtual reality and 3D printing. In the future, a user of
3D sketching may be able to quickly and easily print their
designs with the click of a button.

ORCID

Ariel Schwartz @ http://orcid.org/0000-0001-6313-9171
Ronit Schneor (© http://orcid.org/0000-0001-5486-6529
Gila Molcho ‘© http://orcid.org/0000-0002-8878-4027

Miri Weiss Cohen ‘& http://orcid.org/0000-0001-5250-1016

References

[1] Bernardini, F; Bajaj, C.: Sampling and Reconstructing
Manifolds using Alpha-Shapes, Computer Science Techni-
cal Reports, 1997.

[2] Bosché, E: Automated recognition of 3D CAD model
objects in laser scans and calculation of as-built dimen-
sions for dimensional compliance control in construction,
Advanced Engineering Informatics, 24(1), 2010, 107-118.
https://doi.org/10.1016/j.aei.2009.08.006

[3] CharuC.; Aggarwal, C.; Reddy, K.: Data Clustering: Algo-
rithms and Applications, Chapman & Hall/CRC Data
Mining and Knowledge Discovery Series, 2016.

[10]

[12]

[14]

(15]

C: Lot D: Lof after Shape Recognition

Dutagaci, H.; Cheung, C. P; Godil, A.: Evaluation
of 3D interest point detection techniques via human-
generated ground truth, The Visual Computer, 28(9),
2012, 901-917.d0i:10.1007/s00371-012-0746-4
Edelsbrunner, H.; Miicke, E. P: Three-dimensional alpha
shapes, ACM Trans. Graph, 13(1), 1994, 43-72. https://
doi.org/10.1145/174462.156635

Guo, B.; Menon, J.; Willette, B.: Surface reconstruction
using alpha shapes, Computer Graphics Forum, 16(4),
1997, 177-190. https://doi.org/10.1111/1467-8659.00178
Huang, H; Li, D.; Zhang, H.; Ascher, U.; Cohen-Or. D.:
Consolidation of unorganized point clouds for surface
reconstruction. ACM Trans. Graph. 28, 5, Article 176
(December 2009), DOI: https://doi.org/10.1145/1618452.
1618522

Jackins, C. L.; Tanimoto, S. L.:. Oct-trees and their
use in representing three-dimensional objects, Computer
Graphics and Image Processing, 14(3), 1980, 249-270.
https://doi.org/10.1016/0146-664X(80)90055-6

Kuo, C; Yau, H.: A Delaunay-based region-growing
approach to surface reconstruction from unorganized
points, Computer Aided Design 37(8), 2005, 825-835.
http://doi.org/10.1016/j.cad.2004.09.011

Kustra, J.; Jalba, A.; Telea, A.: Robust segmentation of
multiple intersecting manifolds from unoriented noisy
point clouds, Computer Graphics Forum, 33,2014, 73-87.
https://doi.org/10.1111/cgf.12255

Kyriazis, I; Fudos, L; Palios, L.: Detecting Features from
Sliced Point Clouds, Proceedings of the Second Inter-
national Conference on Computer Graphics Theory and
Applications, GRAPP, 2007.

Lin, H; Tai, C; Wang, G.: A mesh reconstruction
algorithm driven by an intrinsic property of a point cloud,
Computer-Aided Design, 36(1), 2004, 1-9. https://doi.org/
10.1016/S0010-4485(03)00064-2

Liu, X.: Functional surface reconstruction from unor-
ganized noisy point clouds, Computer-Aided Design
and Applications, 12(3), 2015, 366-372. DOI:10.1080/
16864360.2014.981467 https://doi.org/10.1080/1686
4360.2014.981467

Lloyd, S. P.: Least squares quantization in PCM, IEEE
Transactions on Information Theory, 28, 1982, 129-137.
https://doi.org/10.1109/T1T.1982.1056489

Masuda, H.; Niwa, T.; Tanaka, I.; Matsuoka, R.: Recon-
struction of polygonal faces from large-scale point-clouds
of engineering plants, Computer-Aided Design and Appli-
cations, 12(5), 2015, 555-563. DOI:10.1080/16864360.

http://orcid.org/0000-0001-6313-9171
http://orcid.org/0000-0001-5486-6529
http://orcid.org/0000-0002-8878-4027
http://orcid.org/0000-0001-5250-1016
https://doi.org/10.1016/j.aei.2009.08.006
https://doi.org/10.1007/s00371-012-0746-4
https://doi.org/10.1145/174462.156635
https://doi.org/10.1145/174462.156635
https://doi.org/10.1111/1467-8659.00178
https://doi.org/10.1145/1618452.1618522
https://doi.org/10.1145/1618452.1618522
https://doi.org/10.1016/0146-664X(80)90055-6
http://doi.org/10.1016/j.cad.2004.09.011
https://doi.org/10.1111/cgf.12255
https://doi.org/10.1016/S0010-4485(03)00064-2
https://doi.org/10.1016/S0010-4485(03)00064-2
https://doi.org/10.1080/16864360.2014.981467
https://doi.org/10.1080/16864360.2014.981467
https://doi.org/10.1109/TIT.1982.1056489

(16]

(17]

(18]

[20]

(23]

2015.1014733
1014733
Masuda, H.; Tanaka, I,; Enomoto, M.: Reliable surface
extraction from point-clouds using scanner-dependent
parameters, Computer-Aided Design and Applications,
10(2), 2013, 265-277. https://doi.org/10.3722/cadaps.
2013.265-277

Oropallo, W,; Piegl, L. A; Rosen, P; Rajab, K.: Gener-
ating point clouds for slicing free-form objects for 3-D
printing, Computer-Aided Design and Applications, 14(2),
2017, 242-249 https://doi.org/10.1080/16864360.2016.
1223443

Redmond, S. J.; Heneghan, C.: A method for initialising
the K-means clustering algorithm using kd-trees, Pattern
Recognition Letters, 28(8), 2007, 965-973. https://doi.org/
10.1016/j.patrec.2007.01.001

Sam, K.; Kawata, H.; Kanai, T.: A robust and centered
curve skeleton extraction from 3D point cloud, Computer-
Aided Design and Applications, 9(6), 2012, 869-879.
https://doi.org/10.3722/cadaps.2012.869-879

Schnabel, R; Wahl, R; Klein, R.: Efficient RANSAC
for point-cloud shape detection, Computer Graphics
Forum, 26(2), 2007, 214-226. https://doi.org/10.1111/j.
1467-8659.2007.01016.x

Shain, O.: Immersive Freehand 3D Sketching on Air in
Full Object Scale: System Development and User Studies,
2014.

Shinagawa, Y.; Kunii, T.L.: The homotopy model: A gen-
eralized model for smooth surface generation from cross
sectional data, The Visual Computer, 7, 1991, 72-86.
https://doi.org/10.1007/BF01901178

Tang, P; Huber, D,; Akinci, B.; Lipman, R.; Lytle, R.:
Automatic reconstruction of as-built building infor-
mation models from laser-scanned point clouds: A

https://doi.org/10.1080/16864360.2015.

[24]

(25]

(26]

(27]

(28]

(29]

(30]

COMPUTER-AIDED DESIGN & APPLICATIONS 237

review of related techniques, Automation in Construction,
19, 2010, 829-843. https://doi.org/10.1016/j.autcon.2010.
06.007

Wang, Y.; Feng, H.-Y.: Outlier detection for scanned
point clouds using majority voting, CAD Computer Aided
Design, 62, 2015, 31-43. https://doi.org/10.1016/j.cad.
2014.11.004

Wang, Y; Li, H; Ning, X.; Shi, Z.: A new interpolation
method in mesh reconstruction from 3D point cloud. In
Proceedings of the 10th International Conference on Vir-
tual Reality Continuum and Its Applications in Industry,
VRCAI ’11, ACM, New York, NY, USA, 2011, 235-242.
https://doi.org/10.1145/2087756.2087790

Woo, H.; Kang, E.; Wang, S.; Lee, K. H.: A new segmen-
tation method for point cloud data, International Journal
of Machine Tools and Manufacture, 42(2), 2002, 167-178.
https://doi.org/10.1016/S0890-6955(01)00120-1

Xu, X.; Harada, K.: Automatic surface reconstruction
with alpha-shape method, Vis. Comput., 19(7-8), 2003,
431-443. https://doi.org/10.1007/s00371-003-0207- 1
Yang, Z.; Seo, Y.-H.; Kim, T.-W.: Adaptive triangular-
mesh reconstruction by mean-curvature-based refine-
ment from point clouds using a moving parabolic approx-
imation. Computer-Aided Des., 42(1), 2010, 2-17. https://
doi.org/10.1016/j.cad.2009.04.014

Zhao, X.; Ilies, H. T.: Learned 3D shape descriptors
for classifying 3D point cloud models, Computer-Aided
Design and Applications, 2016. https://doi.org/10.1080/
16864360.2016.1257192

Zhong, S.; Yang, Y.; Huang, Y.: Data slicing process-
ing method for RE/RP system based on spatial point
cloud data, Computer-Aided Design and Applications,
11(1), 2014, 20-31. https://doi.org/10.1080/16864360.
2013.834133

https://doi.org/10.1080/16864360.2015.1014733
https://doi.org/10.1080/16864360.2015.1014733
https://doi.org/10.3722/cadaps.2013.265-277
https://doi.org/10.3722/cadaps.2013.265-277
https://doi.org/10.1080/16864360.2016.1223443
https://doi.org/10.1080/16864360.2016.1223443
https://doi.org/10.1016/j.patrec.2007.01.001
https://doi.org/10.1016/j.patrec.2007.01.001
https://doi.org/10.3722/cadaps.2012.869-879
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1007/BF01901178
https://doi.org/10.1016/j.autcon.2010.06.007
https://doi.org/10.1016/j.autcon.2010.06.007
https://doi.org/10.1016/j.cad.2014.11.004
https://doi.org/10.1016/j.cad.2014.11.004
https://doi.org/10.1145/2087756.2087790
https://doi.org/10.1016/S0890-6955(01)00120-1
https://doi.org/10.1007/s00371-003-0207-1
https://doi.org/10.1016/j.cad.2009.04.014
https://doi.org/10.1016/j.cad.2009.04.014
https://doi.org/10.1080/16864360.2016.1257192
https://doi.org/10.1080/16864360.2016.1257192
https://doi.org/10.1080/16864360.2013.834133
https://doi.org/10.1080/16864360.2013.834133

	1. Introduction
	2. System overview
	3. Related work
	3.1. K-means clustering
	3.2. Alpha shapes
	3.3. Octree
	3.4. Loft surfaces

	4. Proposed approach
	4.1. Input
	4.2. Separate bodies
	4.3. Find the slicing direction
	4.4. Locate slice planes
	4.5. Work points onto planes
	4.6. Extract the edge points
	4.7. Construct the 3D Model

	5. Results
	5.1. Results quantification
	5.2. Check for distortion
	5.3. Comparison to 3D alpha-shape method
	5.4. Example of methodology results

	6. Conclusions
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

