
COMPUTER-AIDED DESIGN & APPLICATIONS, 2018
VOL. 15, NO. 1, 90–97
https://doi.org/10.1080/16864360.2017.1353732

Point cloud slicing for 3-D printing

William Oropalloa, Les A. Piegl a, Paul Rosen a and Khairan Rajab b

aUniversity of South Florida, USA; bNajran University, Saudi Arabia

ABSTRACT
This paper revisits a more than half a century old problem: slice a free-form object into layers for
manufacturing. A point based approach is taken that would have been prohibitive even a decade
ago. Due to modern hardware, plenty of storage and a plethora of software packages, the time has
come to ditch complicated and error prone numerical code anddeploy a simple point basedmethod
to achieve robustness and accuracy that have been lacking for a very long time.

KEYWORDS
3-D printing; NURBS; point
cloud; object slicing

1. Introduction

Object slicing has been around since the advent of CAD
techniques in design and manufacturing. In the early
days complex objects, such as a ship hull or an airplane
fuselage, have been sliced into cross sections, with some
distance apart, and a skin was pulled over the sections
to complete the design. The method was termed lofting
[15] because it needed so much space that it was done in
the loft. As time went on, lofting became a powerful tool
to model incredibly complex objects; it became the scan-
line method of CAD, borrowed from the scan-coherence
principle of computer graphics. It has been rediscovered
from time to time [17] to aid in design and fabrication
of virtually any objects from household items to entire
buildings. 3D printing is, effectively, the consequence of
decades of cross-sectional practices where the slices are
stacked on top of each other instead of keeping them
apart, and eliminating the need to generate the skin.

Unless the design has been generated in layers, as in
cross sectional design using planar sections, 3D printing
needs to decompose the object into slices, which requires
sectioning with planes parallel to the device’s moving
tray. This may seem like a simple task, however, there
are still numerical as well as algorithmic challenges that
indicate that either more work or a complete paradigm
change is needed [11]. Figure 1 illustrates the point.
The left image shows the model we use in this paper,
whereas the right picture illustrates the result of slicing
the object with Slic3r after STL conversion from Rhino
3D. Apparently, something is still terribly wrong!

Due to the complexity and the instability of numeri-
cal methods, the common practice of slicing has been to

CONTACT William Oropallo woropall@mail.usf.edu; Les A. Piegl lespiegl@mail.usf.edu; Paul Rosen prosen@usf.edu; Khairan Rajab
khairanr@gmail.com

decompose the free-form object, designed with NURBS,
into simple facets (triangles) and slice the faceted (STL)
model. This seems like a doable approach, however,
decades of experience has shown that this approach,
while avoids complex mathematical issues, creates its
own numerical problems. To begin with, tessellating a
complex NURBSmodel is a difficult task and the authors
have yet to see a robust tessellator. But nevermind the tes-
sellator, the fundamental problemflies in the face of CAD
companies that work collaboratively, yet their systems
are largely incompatible. When the part travels down the
design pipeline, it is converted from one data format to
the other. By the time it reaches the printer, it suffers from
gaps, overlapping surfaces, dangling edges, just to name
a few. Put a tessellator to it and slice it, and you have a
disaster as in Figure 1.

This paper argues that it is time to clean house; it is
time to ditch everything that is complex, error prone and
inaccurate, and organize the rest into a simple system
that is easy to maintain. In this research we eliminated
the STL conversion and all error–prone numerical algo-
rithms, and converted the NURBS object to the simplest
entity: a set of points, Figure 2. The slicing is done on the
point cloud model employing practically no numerical
procedure. A few decades ago such an approach would
have been prohibitive because of the need to store and
processmillions of points, however, due to advancements
in technology, our approach is not only viable, it is now
mainstream computing.

Object slicing has a long history in the literature and
we give proper credit to the prior art. These techniques
either rely on the precise NURBS model or compute the

© 2017 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2017.1353732&domain=pdf
http://orcid.org/0000-0003-0629-8496
http://orcid.org/0000-0002-0873-9518
http://orcid.org/0000-0002-1260-5854
mailto:woropall@mail.usf.edu
mailto:lespiegl@mail.usf.edu
mailto:prosen@usf.edu
mailto:khairanr@gmail.com
http://www.cadanda.com

COMPUTER-AIDED DESIGN & APPLICATIONS 91

Figure 1. Test model (left), STL-based slices (right).

Figure 2. Head modeled by a set of NURBS surfaces (left), point cloud model (right).

slices from the STL conversion. None of them has been
relied upon in this work [1–2, 5–7, 8–10, 13–14, 16,
18–25].

The organization of the paper is as follows. First, we
introduce someNURBS notations along with a summary
of point cloud generation. Then we process points into
layers, separatemultiple contours, find boundaries, purge
some cells and fit a B-spline curve to get the final section.
At the end we offer some conclusions.

2. B-spline notation

To better comprehend the method presented herein,
some B-spline notations are in order. A B-spline sur-
face of degree p in u-direction and q in v-direction is a

tensor-product surface in the following form [15]:

S(u, v) =
n∑

i=0

m∑

j=0
Ni,p(u)Nj,q(v)Pwi,j

where Pwi,j are the weighted control points, Ni,p(u) and
Nj,q(v) are the normalized B-splines defined over the
knot vectors

U = {u0 = · · · = up︸ ︷︷ ︸
p+1

, up+1, . . . , ur, ur−p = · · · = ur︸ ︷︷ ︸
p+1

}

V = {v0 = · · · = vq︸ ︷︷ ︸
q+1

, vq+1, . . . , vs, vs−q = · · · = vs︸ ︷︷ ︸
q+1

}

92 W. OROPALLO ET AL.

We assume that the knot vectors are always clamped,
i.e. the end knots are repeated with the multiplicities
above. If the B-spline surface has no internal knots, it
degenerates to a Bezier surface, which is used for point
cloud generation in our previous paper [12].

3. Printer setup and point cloud generation

We take two parameters from the 3-D printer:

• λ - the layer thickness.We assume this to be a constant
throughout the printing process.

• ε - accuracy, i.e. the addressability of the printer, the
printer head can move from position to position with
at least that much distance.

No other assumptions are made and no special char-
acteristic of the printer is needed.

Given a collection of B-spline surfaces Si(u, v), i =
0, . . . ,N, covering the complex part (see Figure 2), we
want to turn this set of surfaces into a point cloudQj, j =
0, . . . ,M, so that for each query point Qk there is a one-
ring neighborhood in which there is at least one point
Ql so that |Qk − Ql| < δ δ < ε. In other words, we are
processing the NURBSmodel into a quasi-uniform point
set so that any circle with a ε radius contains at least one
point. This may seem like a simple task, however, to do
it economically without oversampling and to do it effi-
ciently, it requires a sophisticated algorithmwhose details
are given in [12]. For reasons of space saving we refer the
reader to this paper for further details.

4. Point processing into layers

Given the point cloud, we are ready to intersect it with a
slicing plane. First, we lay a grid of size ε on that plane.
The vertices of the grid are the addressable locations of
the printer head. Second, we add voxels of ε size on each
grid cell above and below the plane. Each cell is then
marked as WHITE and the slicing plane is considered
preprocessed for intersection.

The next step is to find all sub-surfaces that intersect
the slicing plane. Two examples are shown in Figure 3,
one for layer No. 3 (top) and one for layer No. 260 (bot-
tom). It is quite evident that the angles of intersection
make a big difference; on the top the surfaces are nearly
parallel to the plane, whereas on the bottom they are
almost perpendicular. More details on how to process the
sub-surfaces can be found in [12].

For all points on the sub-surfaces we do the following:

• If the point is more than ε distance away from the
plane, it is discarded.

Figure 3. Sub-patches intersecting the slicing plane.

• If the point is within ε distance, we find the voxel
the point is in and mark the corresponding cell
as GRAY.

• For all GRAY cells do:
◦ If there are points in the voxels above and below,

we mark the cell BLACK.
◦ If there are points in the voxel above, wemark the

cell RED.
◦ If there are points in the voxel below, wemark the

cell BLUE.

Figure 4 shows the RED and BLUE cells for layers
3 and 260. Note how well the intersection is delineated
on the border between the sea of RED and BLUE cells.
Figure 5 shows BLACK cells for layer 3, embedded into
the RED and BLUE cells.

Please note that at this stage only a partial intersection
is found in terms of BLACK cells where the surfaces cross
the plane. Other intersections occur from one cell to the
next, not within the same cell. In order to find these, we
need to look for transitions from RED to BLUE or BLUE
to RED. That is:

• For all RED cells find transitions from RED to BLUE,
i.e. if (x,y) is RED and (x+ 1,y) is BLUE, mark both
cells as BLACK.

• For all BLUE cells look for transitions and mark the
BLUE and the RED in the transition as BLACK.

• Mark all BLACK cells as NONVISITED andNOCEN-
TER for later purposes.

COMPUTER-AIDED DESIGN & APPLICATIONS 93

Figure 4. RED and BLUE points for layers 3 (top) and 260 (bot-
tom).

Figure 5. RED, BLUE and BLACK cells for layer 3.

After this step we have a gap free, maximum two pixels
thick set of BLACK cells, Figure 6.

5. Separating the intersection curves

After all BLACK cells have been processed, it is time to
see how many intersection curves there are and separate
them. Because the sea of BLACK cells delineate a dis-
crete curve that is at most two pixels thick (for each cell
the minimum number of neighboring cells in x- and y-
directions is at most two), we employ a 3× 3 mask that
is moved along the digital curves to collect all BLACK
cells that belong to one closed intersection curve. The
algorithm is as follows:

Figure 6. A superset of BLACK cells covering the intersection of
layer 3.

• All BLACK cells have been marked as NONVISITED
and NOCENTER in the previous step.

• Pick any BLACK cell, center the mask at this cell and
mark it as CENTER.

• Mark all BLACK cells inside themask asVISITED and
place them to the output stream.

• Move the center to any one of the VISITED BLACK
cells that is not marked as CENTER and collect all
NONVISITED BLACK cells.

• Repeat the process for all BLACK cells that aremarked
as NOCENTER and collect all BLACK cells that are
NONVISITED, and place them to the output.

• One curve segment is found when there are no
NOCENTER and NONVISITED BLACK cells left.

One can visualize the process by imagining a rect-
angular vacuum head of 9 holes (3× 3) used to collect
small balls placed along a closed curve. Before the head
can move forward, all balls need to be sucked up, i.e.
all cells that are in the mask must be marked VISITED.
The vacuuming stops when no balls are left (all BLACK
cells are marked VISITED and CENTER) Figure 7 shows
the results of intersection curve segment separation for
layer 3.

Please note that this algorithm assumes that the inter-
section curves are at least one cell (ε) apart, i.e. as the

Figure 7. Two intersection curves are marked with orange and
blue for layer 3.

94 W. OROPALLO ET AL.

3× 3 mask, centered on one BLACK cell, moves along
the curve, it does not hit another segment. If it does, the
curves are touching or form a loop and the algorithm
considers them as one curve.

6. Finding boundary cells

As Figure 6 shows, there aremore BLACKcells represent-
ing the intersection curve than we need, so we are going
to discard someof them to create a one cell thick point set.
Since the curve is used in printing, the outer-most cells
are retained whereas the inner ones will be eliminated.
A simple way to do that is to use a seed fill algorithm to
fill the area outside the closed curve [4]. To prepare, first
compute the bounding box of all BLACK cells and offset
the box by one cell in each direction. Mark all cells in the
box WHITE.

The algorithm starts with the lower left cell (the artifi-
cially created one that is known to be empty) and uses a
4-connected pattern to flood the area outside the closed
curve. The 4-connected pattern has four cells for each
cell, up and down and left and right of the cell. The
best way to describe the algorithm is by using recursion.
Calling the function FILL4, the algorithm is as follow:

• Get the current cell (x,y)
• If not a BOUNDARY or GRAY or a BLACK cell

◦ Mark it GRAY (the fill color)
◦ FILL4(x+ 1,y)
◦ FILL4(x− 1,y)
◦ FILL4(x,y+ 1)
◦ FILL4(x,y− 1)

• Else if it is a BLACK cell, set it to be BOUNDARY cell

Once the recursion stops, all boundary cells are col-
lected and the rest are eliminated. Figure 8 shows the
result of the flood fill algorithm: the red cells are elimi-
nated whereas the black ones are kept. The result is a one
cell thin discrete set of curves that will now be turned into
a smooth B-spline curve. To do that, the points need to be

Figure 8. Finding boundary cells for layer 3.

ordered and to make that easier, one final beautification
needs to be done: the removal of corner configurations.
A corner configuration is three neighboring cells form-
ing a right angle, e.g. the current cell has a right and a top
neighbor, a right and a bottom neighbor, a left and a bot-
tom neighbor, and a left and a top neighbor. The cell that
is at the corner is eliminated.

7. Fitting B-spline curves

The one cell thin discrete curve is approximated by a B-
spline curve to within a given tolerance that is at most
ε. The algorithm was designed for medical data that is
very similar to our cell-based data, however, it tends to
bemuchmore complicated thanCADdata. The accuracy
of the fitting is so good that it never misses a cell (MRI
pixel) while conveying the shape of the data. Herewe only
outline the method, the details of which are found in [3].

Let us represent the cells by their centers. This gives
us a set of ordered points Qi, j = 0, . . . ,M, that must be
approximated by a B-spline curve of degree p [15]:

C(u) =
n∑

i=0
Ni,p(u)Pi

After the approximation the curve should not deviate
from the point set more than the tolerance. That is, the
following must hold:

max
i

|Qi − C(ui)| < ε Qi is assumed at ui

The outline of the algorithm is as follows:

• De-noise the point set if necessary. In most cases this
is not necessary for 3D printing.

• Decompose the point set into regions of similar com-
plexity.

• The number of decomposed segments are used to
determine the number of control points needed to
achieve the required accuracy.

• Use the decomposition points to compute a knot vec-
tor for approximation with or without end derivatives.
Note that the choice of the knot vector is critical both
for efficiency and for numerical stability.

• Fit a B-spline curve with the computed degrees of
freedom and the knot vector and check the error.

• If the error satisfies the required tolerance, we are
done. Otherwise, a better decomposition is computed
and the fitting is repeated.

Figure 9 shows the final result for layer No. 3.

COMPUTER-AIDED DESIGN & APPLICATIONS 95

Figure 9. B-spline curve fitted to the points in layer 3.

8. Examples and tests

Figure 10 walks the reader through the process of inter-
section using slice No. 452. Due to the small number
of cells involved, the inner workings of the algorithm
are better visualized. The top left image shows the RED
and BLUE cells, the top right adds BLACK cells to the
RED and the BLUE. After the transition has been com-
puted between all RED and BLUE cells, new BLACK cells
are added as shown in the middle left. Three curve seg-
ments are identified in the image in the middle right.

Figure 10. Steps of the slicing algorithm for layer 452.

96 W. OROPALLO ET AL.

Figure 11. Layers 3, 260 and 452 (left) and every ten slices from top to bottom (right).

The boundary BLACK cells are computed on the bottom
left, followed by curve fitting on the right.

The three slices, belonging to layers 3, 260 and 452,
discussed above, positioned on the head model, along
with every ten slices from top to bottom, are illustrated
in Figure 11.

An important question to be answered is: how good is
the slicer in terms of accuracy? To answer this question,
we sliced the head 0.1 millimeter apart, generated the
intersection curves and computed their distances from
the original model using discrete sampling and point
projection. The results are as follows:

• Total number of sampling points: 855,670
• Average sampling points per slice: 1,812
• Average minimum error: 0.0005± 0.000007
• Average maximum error: 0.050689± 0.001435
• Average overall error: 0.024674± 0.000027

That is, the method is very accurate, even the average
maximumerror is about one-half of the allowed tolerance
with 2.8% standard deviation.

9. Conclusions

A slicing algorithm is presented that is based on discrete
sampling of the original model. We believe that the time
has come for point-basedmethods to become viable tech-
nologies for geometry processing of free-form objects.
The algorithm presented herein is robust, very accurate
and requires acceptable amount of storage. It is not real-
time yet, however, very close with only a few seconds

needed to process each slice on a simple laptop with no
hardware accelerator. Since the 3D printer is orders of
magnitude slower, allowing a second or two for the slicer
will not slow down the printing process.

ORCID

Les A. Piegl http://orcid.org/0000-0003-0629-8496
Paul Rosen http://orcid.org/0000-0002-0873-9518
Khairan Rajab http://orcid.org/0000-0002-1260-5854

References

[1] Debapriya, C.: Asimava, R. C.: A semi-analytic approach
for direct slicing of free form surfaces for layered manufac-
turing, Rapid Prototyping Journal, 13(4), 2007, 256–264.
https://doi.org/10.1108/13552540710776205

[2] Dolenc, A.; Makela, I.: Slicing procedure for layered man-
ufacturing techniques, Computer-Aided Design, 26(2),
1994, 119–126. https://doi.org/10.1016/0010-4485(94)
90032-9

[3] Grove, O.; Rajab, K.; Piegl, L. A.; Lai-Yuen, S.: FromCT to
NURBS: bio-modeling with B-spline curves, Computer-
Aided Design &Applications, 8(1), 2011, 3–21. https://doi.
org/10.3722/cadaps.2011.3-21

[4] Heckbert, P. S.:A seed fill algorithm, in Glassner, A. S. (ed.)
Graphics Gems, Academic Press, New York, 1990.

[5] Jastin, T.; Jan Helge, B.: Local adaptive slicing, Rapid Pro-
totyping Journal, 4(3), 1998, 118–127. https://doi.org/10.
1108/13552549810222993

[6] Jamieson, R.;Hacker,H.:Direct slicing ofCADmodels for
rapid prototyping, Rapid Prototyping Journal, 1(2), 1995,
4–12. https://doi.org/10.1108/13552549510086826

[7] Jin, G. Q.; Li, W. D.; Gao, L.: An adaptive process plan-
ning approach of rapid prototyping and manufactur-
ing, Robotics and Computer-IntegratedManufacturing, 29,
2013, 23–38. https://doi.org/10.1016/j.rcim.2012.07.001

http://orcid.org/0000-0003-0629-8496
http://orcid.org/0000-0002-0873-9518
http://orcid.org/0000-0002-1260-5854
https://doi.org/10.1108/13552540710776205
https://doi.org/10.1016/0010-4485(94)90032-9
https://doi.org/10.1016/0010-4485(94)90032-9
https://doi.org/10.3722/cadaps.2011.3-21
https://doi.org/10.3722/cadaps.2011.3-21
https://doi.org/10.1108/13552549810222993
https://doi.org/10.1108/13552549810222993
https://doi.org/10.1108/13552549510086826
https://doi.org/10.1016/j.rcim.2012.07.001

COMPUTER-AIDED DESIGN & APPLICATIONS 97

[8] Kulkarni, P.; Dutta, D.: An accurate slicing procedure for
layered manufacturing, Computer-Aided Design, 28(9),
1996, 683–697. https://doi.org/10.1016/0010-4485(95)
00083-6

[9] Ma, W.; But, W.-C.; He, P.: NURBS-based adaptive slicing
for efficient rapid prototyping, Computer-Aided Design,
36, 2004, 1309–1325. https://doi.org/10.1016/j.cad.2004.
02.001

[10] Mani, K.; Kulkarni, P.; Dutta, D.: Region-based adaptive
slicing, Computer-Aided Design, 31(5), 1999, 317–333.
https://doi.org/10.1016/S0010-4485(99)00033-0

[11] Oropallo, W.; Piegl, L. A.: Ten challenges in 3D print-
ing, Engineering with Computers, 32(1), 2016, 135–148.
https://doi.org/10.1007/s00366-015-0407-0

[12] Oropallo, W.; Piegl, L. A.; Rosen, P.; Rajab, K.: Generating
point clouds for slicing free-form objects for 3-D print-
ing, Computer Aided Design & Applications, 14(2), 2017,
242–249. https://doi.org/10.1080/16864360.2016.1223443

[13] Pandey, P. M.; Reddy, V.; Dhande, S. G.: Slicing proce-
dures in layered manufacturing: a review, Rapid Prototyp-
ing Journal, 9(5), 2003, 274–288. https://doi.org/10.1108/
13552540310502185

[14] Pandey, P.; Reddy, N. V.; Dhande, S. G.: Real time adaptive
slicing for fused deposition modeling, International Jour-
nal ofMachine Tools andManufacture, 43(1), 2003, 61–71.
https://doi.org/10.1016/S0890-6955(02)00164-5

[15] Piegl, L.; Tiller, W.: The NURBS Book, Springer-Verlag,
New York, NY, 1997. https://doi.org/10.1007/978-3-642-
59223-2

[16] Sabourin, E.; Houser, S. A.; Bohn, J. H.: Adaptive slic-
ing using stepwise uniform refinement, Rapid Prototyp-
ing Journal, 2(4), 1996, 20–26. https://doi.org/10.1108/
13552549610153370

[17] Sass, L.; Chen, L.; Sung, W. K.: Embodied prototyping:
exploration of a design-fabrication framework for large-
scale model manufacturing, Computer-Aided Design &

Applications, 13(1), 2016, 124–137. https://doi.org/10.
1080/16864360.2015.1059202

[18] Sikder, S.; Barari, A.; Kishawy, H.: Effect of adaptive slic-
ing on surface integrity in additive manufacturing, Proc.
ASME International Design Engineering Technical Con-
ference,DETC2014-35559, 2014. https://doi.org/10.1115/
detc2014-35559

[19] Starly, B.; Lau, A.; Sun, W.; Lau, W.; Bradbury, T.: Direct
slicing of STEP based NURBS models for layered man-
ufacturing, Computer-Aided Design, 37, 2005, 387–397.
https://doi.org/10.1016/j.cad.2004.06.014

[20] Sun, S.; Chiang, H.; Lee, M.: Adaptive direct slicing
of a commercial CAD model for use in rapid proto-
typing, International Journal of Advanced Manufacturing
Technology, 34, 2007, 689–701. https://doi.org/10.1007/
s00170-006-0651-y

[21] Topcu, O.; Tascioglu, Y.; Unver, H.: A method for slic-
ing CAD models in binary STL format, Sixth Inter-
national Advanced Technologies Symposium, Elazig,
Turkey, 141–145, 2011.

[22] Wong, K.; Hernandez, A.: A review of additive manufac-
turing, International Scholarly Research Network, ISRN
Mechanical Engineering, 2012, ID 208760.

[23] Yau, H.-T.; Kuo, C.-C.; Yeh, C.-H.: Extension of the sur-
face reconstruction algorithm to the global stitching and
repairing of STL models, Computer-Aided Design, 35,
2003, 477–486. https://doi.org/10.1016/S0010-4485(02)
00078-7

[24] Zhang, L.-C.; Han, M.; Huang, S.-H.: An effective error-
tolerance slicing algorithm for STL files, International
Journal of Advanced Manufacturing Technology, 20, 2002,
363–367. https://doi.org/10.1007/s001700200164

[25] Zhao, Z.; Laperriere, L.; Adaptive direct slicing of the solid
model for rapid prototyping, International Journal of Pro-
duction Research, 38(1), 2000, 69–83. https://doi.org/10.
1080/002075400189581

https://doi.org/10.1016/0010-4485(95)00083-6
https://doi.org/10.1016/0010-4485(95)00083-6
https://doi.org/10.1016/j.cad.2004.02.001
https://doi.org/10.1016/j.cad.2004.02.001
https://doi.org/10.1016/S0010-4485(99)00033-0
https://doi.org/10.1007/s00366-015-0407-0
https://doi.org/10.1080/16864360.2016.1223443
https://doi.org/10.1108/13552540310502185
https://doi.org/10.1108/13552540310502185
https://doi.org/10.1016/S0890-6955(02)00164-5
https://doi.org/10.1007/978-3-642-59223-2
https://doi.org/10.1007/978-3-642-59223-2
https://doi.org/10.1108/13552549610153370
https://doi.org/10.1108/13552549610153370
https://doi.org/10.1080/16864360.2015.1059202
https://doi.org/10.1080/16864360.2015.1059202
https://doi.org/10.1115/detc2014-35559
https://doi.org/10.1115/detc2014-35559
https://doi.org/10.1016/j.cad.2004.06.014
https://doi.org/10.1007/s00170-006-0651-y
https://doi.org/10.1007/s00170-006-0651-y
https://doi.org/10.1016/S0010-4485(02)00078-7
https://doi.org/10.1016/S0010-4485(02)00078-7
https://doi.org/10.1007/s001700200164
https://doi.org/10.1080/002075400189581
https://doi.org/10.1080/002075400189581

	1. Introduction
	2. B-spline notation
	3. Printer setup and point cloud generation
	4. Point processing into layers
	5. Separating the intersection curves
	6. Finding boundary cells
	7. Fitting B-spline curves
	8. Examples and tests
	9. Conclusions
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

