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ABSTRACT
While 5-axis CNC machines improve the manufacturing productivity, the tool-path programming
demands human expertise and tremendous time investment to generate collision-free optimal tool
trajectories. To address the challenge of multi-axis CNC programming, this work presents a new
discrete volumebased geometry representation that naturally enables highly parallel geometry pro-
cessing. Then it formulates anddiscusses amethodology for tool path planning algorithms designed
around the formulated geometric representation for 5-axis CNCmillingmachines and ball end tools.
This paper is the first of two papers that deals with finding the XYZ locations of ball end mill centers
that govern the tool trajectories. The experimental 5-axis machining using the resulting tool paths
demonstrates that the designed algorithms are capable of producing collision- and gouge- free tool
paths with a desired surface quality for a given target geometry by using the selected ball end tools.
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1. Introduction

Tool path planning for multi-axis milling CNCmachines
is a complicated problem that requires knowledge
of the material removal process, selecting multiple
appropriate strategies and highly accurate calculations.
CAM (computer-aided manufacturing) software lies in
between and allows interaction between human and
computer. This approach can solve almost every problem
that appears in modern manufacturing, but it requires
two important components: a trained engineer and a
significant amount of time even for simple parts. This
initial use of resources becomes smaller for high vol-
ume production however for a small number of parts
personnel and time costs become extremely critical. In
the case of low volume production, time of an engineer
may cost many times more than actual machining cost.
As a result, today the low volume market is occupied by
usually additive Rapid Prototyping technologies such as
3D printing which allow manufacturing of a part almost
without machine-human interaction. However existing
RP technologies cannot provide a set of cost, surface qual-
ity and available material properties found in traditional
subtractive CNC machining.

The key for this change is reducing the time
required for tool path planning. This time includes two
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components: the time used by a computer for calcula-
tions and the time used by an engineer for selecting the
right machining approach. Although these components
look completely independent, they are parts of the same
performance related problem. Time used by a computer
for calculation obviously depends on the performance
of the computer and on the ability of the programmer
to use the available resources efficiently, which is a chal-
lenge. The time invested in selecting the right machining
strategy is highly dependent on the experience of the
engineer in addition to any complexity of algorithmsused
to select this strategy. Therefore, in order to solve the tool
path planning problem, the computational performance
problem has to be solved along with the use of novel
automated path planning algorithms.

The computational problem can be solved by hard-
ware that has enough computational performance if the
available resources are used efficiently. At the time when
further increasing of processors clock frequency is almost
impossible, both requirements are pretty much identical
and mean support for parallel processing and ability to
use multiple cores, devices and even computers simul-
taneously. Although parallel processing itself is not a
complicated idea, the parallelization of existing geom-
etry processing algorithms and data structures is not
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a trivial process. In order to simplify this process, this
work proposes the fundamentally parallel geometry rep-
resentation. The idea behind it is to move parallelization
complexity from an algorithms design level to a data
structure design level. As a result, every algorithm that
uses the described geometry representation can be easily
parallelized.

This paper provides a methodology for designing par-
allel algorithms by reformulating path planning problems
in a way that they can be described in terms of oper-
ations supported by the developed geometry represen-
tation. As a proof of concept this paper will describe a
complete and fully automated 5-axis tool trajectory plan-
ning system capable of machining almost any possible
part geometry. This paper first describes a highly par-
allel GPGPU based volume offset calculation approach
using the underlying hardware-informed data structure.
The volume offset calculation discussion is followed by
a description of the surface filling algorithm that is used
as a foundation for two tool-center trajectory planning
algorithms. These two fully automated and robust 5-axis
tool path planning algorithms are used for path planning
of both roughing and finishing processes with ball-end
mills. All of the algorithms described here are designed
for parallel GPU hardware and can run on multi-GPU
system. This paper summarizes the results of these algo-
rithms by demonstrating their performance on real parts
machined using a 5-axis milling machine.

2. Related work

CNC milling has progressed in the last 40 years from
fully mechanical machine controls, punch cards and
paper tape to modern fully computerized controllers,
programmed via variants of the G-code programming
language. Programming these machines has advanced
from inefficient handwritten programs to powerful CAM
systems capable of generation complex multi-axis tra-
jectories, based on strategies selected by operator and
precise virtual milling simulation.

Significant research has been focused on key areas
such as tool path planning, tool orientation selection,
and selection of tool geometry. Many researchers have
addressed tool path planning using traditional meth-
ods such as iso-planar [2, 11, 17] or iso-parametric
approaches [18]. Results of these approaches generate
paths that achieve certain accuracies, or surface char-
acteristics, but that may not be optimal with respect to
other process parameters, such as production time. In
order to improve performance of traditional methods,
the iso-scallop approach was introduced by Suresh and
Yang [25] and Lin and Koren [22]. It produces a constant
scallop height of a machined surface. Popularization of

5-axismilling andmilling of non-parametric surfaces has
resulted in the development of new approaches resolv-
ing specific 5-axis problems and further reducing milling
time. These approaches can be classified [13] as curvature
matched milling [6, 14, 15], iso-phote based method [4,
9, 31], configuration space methods [3, 19], region based
tool path generation [9], compound surface milling [29,
30] and methods for polyhedral models and point clouds
[21, 24]. With respect to tool orientation selection, tra-
ditional methods such as fixed orientation, principal axis
methods [32] ormulti pointmilling [28] have been devel-
oped. Furthermore, in the past 10 years, more advanced
path planning methods such as the rolling ball [7, 8]
and arc intersect methods [5] as well as earlier C-space
based approaches [3, 20] were successfully deployed. Fur-
thermore, research addressing tool geometry selection [1,
12], and implementation of automatic tool selection in
commercial products does not exist or is very limited
when addressing optimized tooling parameter selections.
While significant progress has been achieved over the
last several decades, a plethora of issues to be addressed
that will reduce production time and improve / guarantee
component quality still exist.

Throughout the literature, it is clear that computation
time is a major limitation of most, if not all, of the pro-
posed algorithms. One solution for this problem is the
employment of high performance computing, in partic-
ular the GPU (Graphical Processing Unit) platform to
accelerate the processing. Development and populariza-
tion of a general purpose GPU (GPGPU) approach and
platforms like Compute Unified Architecture (CUDA)
have resulted in promising results for deploying GPGPU
functionality in a manufacturing environment. Tukora
and Szalay presented an approach for GPGPU acceler-
ated cutting force prediction [26]. Hsieh and Hsin pro-
posed a GPU accelerated particle swarm optimization
approach for 5-axis flank milling [10]. Furthermore, new
approaches for geometry representation used in CNC
area were recently proposed. Guang and Ding proposed
employing a quadtree-array for representation of a work-
piece in 3-axis milling [16]. Wang and Leung described
the use of layered depth-normal images for solid model-
ing of polyhedral objects [27].

3. Developed irregularly sampled volume
representation

Existing geometry representation approaches provide a
wide range of tradeoffs between accuracy,memory usage,
parallelizability and scalability; but do not offer a perfect
choice for GPU-computing. The main reason why exist-
ing geometry representations are not a good match for
GPGPU is because the focus is on reducing the overall
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number of operations required for geometry processing
without trying to make these operations independent
from each other. This is a perfectly valid strategy for
traditional CPUs where fewer operations almost always
means faster algorithms, but it does not work with GPUs
which are optimized for performing operations in paral-
lel. As a result, there is an opportunity to create a GPGPU
optimized geometry representation and a corresponding
data structure that can be used for the 5-axis CNCmilling
simulation and tool path planning.

Existing geometry representations are not well suited
to parallel computation compared to volumetric
approaches which can be discretized into volume ele-
ments that can be processed independently in parallel.
A fundamental limitation is that a naïve, regularly sam-
pled volumetric approach (such as voxels represented in a
3D array) requires gigantic storage. To realize this storage
bottleneck, consider the representation of a 500mm cube
with 2micron elements (as an example of a work area and
accuracy found in modern 5-axis machines) and 1 byte
per element, a simple part occupying this volume would
require ∼350TB (6 sides * (500mm/side / 0.002mm)ˆ2)
of data just for the surface representation of the part.
Current generation of GPUs provide a maximum mem-
ory up to 24 GB (about 15,000X smaller than required).
Although current memory limits cannot be overcome
there is still a practical application for the many cases
where extremely high accuracy is completely unneces-
sary, for instance, a volumetric approach that could pro-
duce parts with the same accuracy of commodity 3D
printers.

After accepting the fact of reduced accuracy for vol-
umetric data representations, the next step is to make
a decision about the tradeoff between memory usage,
accuracy and parallelizability. It is worthwhile to men-
tion a few relationships between these parameters. Gen-
erally, more complicated data structures provide higher
accuracy for a given amount of memory. For example,
deeper trees provide more efficient memory usage for
a given accuracy. Relatively complicated data structures
with non-predictable density such as k-d trees are less
suitable for this research due to GPGPU specific load bal-
ancing (the problem similar to the BREP) and editing
problems. Although generally they provide higher effi-
ciency, their processing algorithms aremore complicated,
often have non-linear memory access patterns and have a
higher branch divergence. These properties result in sig-
nificant performance penalties on modern GPUs. One of
the simplest possible tree-based volumetric representa-
tions is a tree with nodes where each node represents a
regularly sampled volume and a list of references to its
children. The octree is a classic example of this type of
geometry representations with 8 children per node.

One of the most important steps is the selection of
a number of children and amount of geometrical data
stored in each tree node.While the storage scales with the
the number of children, abundant parallelism is exposed
by efficiently processing each child of a node concur-
rently. If this is done by a warp (term used by NVidia for
representing a group of GPU processing threads (usually
32) that perform the same command on different data), it
makesmemory accessmore efficient by storing child data
in a continuous memory block which can be read lin-
early in one memory access operation. Considering the
amount of geometrical data stored in a node it is possi-
ble to say that more data approximates geometry better
but uses more memory. On one side of this tradeoff, each
node contains a complete mathematical description of all
geometry elements. And on the other side, it is possible
to use only one bit to store information about presence of
material in a node’s volume (or store a byte that describes
a distance to a surface or material density as it is done in
the traditional voxel model).

All these tradeoffs were considered resulting in a vol-
umetric data structure designed for GPGPU accelerated
multi-axis CNC tool path planning (Fig. 1). This geom-
etry representation is a 2-level hybrid of the tree and the
dense block of voxels. It uses a 3D array of cells that repre-
sents a regularly sampled volume. Each cell stores 2 bits of
geometrical data and a pointer to an array of 4096 chil-
dren (similar to a tree). Cells children (called “subcell”)
represent a regularly sampled (16×16×16) volume and
store 2 bits of geometrical data but donot store pointers to
their children. 2 bits geometrical data is used for 3-color
scheme for geometry representation. They represent 3
possible states of a cell or subcell:

• Cell is completely filled by material
• Cell is completely empty
• Cell state is unknown and it probably contains a

boundary

Figure 1. Developed geometry representation model.
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In contrast to traditional cubical voxels, cells or sub-
cells represent spheres circumscribed around traditional
cubes calculated by volume subdivision (Fig. 1). Figure 2
demonstrates a surface representation example with the
2D version of the described geometry representation and
square cells.

Figure 2. 2D example of the developed model surface represen-
tation.

From a hierarchy point of view, it can be viewed as
a two level tree as shown in Fig. 3. It is important that
the low level nodes that represent subcells are stored as a
dense block of voxels. But, information about high level
nodes is stored in a list. As a result, links between nodes
are not really stored anywhere as done in traditional trees
but the model still has a tree like hierarchy. First level
links are represented by indexes in a cells list and second
level links are represented by indexes in voxel models.
This approach allows saving significant amounts ofmem-
ory relative to a traditional linked tree based approach.
From a memory point of view, the model looks like the
diagram shown in Fig. 4.

Figure 3. HDT hierarchy.

The rationale behind the selected design is an attempt
to combine parallelizability and scalability of the voxel
model and memory efficiency of tree based geometry
representations. The 2-level design provides much better
memory efficiency than the dense voxel representation.
The reason for the selection of the 2 bits geometry rep-
resentation and spherical cells is an attempt to use as
simple as possible geometry processing algorithms with

the lowest number of branches. The design also pro-
vides scalability. Since all cells are independent, they can
be stored on multiple GPUs (and possibly on multiple
computers) and can be processed independently with the
near-linear performance improvement.

Figure 4. Geometry model from a memory point of view.

4. Low-level parallel Geometry processing
algorithms

Before discussing the specific application of path plan-
ning, it is important to understand some basic operations
provided by this underlying data structure. A flexible and
powerful basic operation is the “containment” test that
can be performed for each cell. The containment test
uses two user provided expressions that determine if a
sphere defined by a center position and radius is 1) com-
pletely inside or 2) completely outside of a target shape.
These expressions are calculated independently for each
cell and their results are used to update the cell state based
on predefined rules as shown in Algorithm 1. If a cell
fails both tests it is assumed that a cell potentially has a
boundary.

The flexibility of the containment test allows it to
be used as a main component for designing many use-
ful algorithms such as machining simulation, volume
offset calculation or contour offset path planning. But
what is more important is that any derived algorithm
is always highly parallel. For example, one of the most
important operations in this work is the volume surface
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Algorithm 1 Containment test
1: For each cell in parallel:
2: Calculate containment expressions
3: Generate a finishing tool path by combining

all generated curves
4: End For

intersection calculation. It takes two independent vol-
umes and outputs a set of points that contain volume
boundaries in both volumes. Then it uses a post process-
ing algorithm to convert the point cloud into a list of
continuous curves. The idea behind the post-processing
algorithm is to start with a random boundary point and
to use a wave approach to iteratively connect neighbor
points. By calculating a center of each wave for all itera-
tions it is possible to get a continuous curve that describes
the actual volume intersection curve. The described
operations are shown in Algorithm 2. It is important
to notice that only step 1 of the Algorithm 2 can be
easily parallelized while the other steps are iterative
and cannot readily be performed in parallel. However,
this should not be a problem since they always pro-
cess a reasonably small subset of all cells that represents
a curve.

Algorithm 2 Volume surface intersection
1: Find all cells that have boundary states in both

volumes
2: While there are non-processed cells:
3: Select a random cell from 1
4: Initialize new intersection curve with center of cell

from 3
5: While there are non-processed neighbors around

selected cell:
6: Mark all neighbors as current wave cells
7: Calculate center of the current wave
8: Append a wave center to a current intersection

curve
9: EndWhile
10: EndWhile

The basic operations described above form a basis
for finding the contact point locations of a path plan-
ning algorithm. Additional algorithms for selecting the
tool orientation and performing machining simulation
are required to implement a full tool path planning
system. These orientation and simulation algorithms
require use of the same data structure and low level algo-
rithms presented here but are out of the scope of this
paper.

5. Volume based parallel algorithms design
methodology and limitations

The containment test and volume intersection operation
are themain tools for finding a sequence of contact points
for path planning. However, solutions for tool path plan-
ning problems should accommodate themethods used in
practice. For example, a simple iso-planar [1–3] approach
that uses the intersection between a sequence of parallel
planes and the part surface as a path of contact points can
be easily implemented in a parallel fashion in two ways.
First, the intersections between the part surface and the
sequence of planes can be represented as the intersection
between part volume and a sequence of parallelepipeds.
Second, the containment test can be applied where a tar-
get shape is actually a sequence of planes. Although both
approaches do the same task, they are quite different
and use different tools. But they both have two impor-
tant benefits. First, there is no need to care about special
cases, singular points, discontinuities, etc. Second, both
approaches can be implemented in a highly parallel way
and run on highly parallel hardware.

A key concept is to reformulate operations with sur-
faces as operations with volumes that can be repre-
sented by independent operations with the volume’s
cells. Although reformulation of algorithms in volumet-
ric fashion is usually not too complicated, this approach
requires caution due to some limitations of the under-
lying discrete geometry representation. The first and
probably the most significant limitation is related to the
volume boundary position. It is important to recognize
that an actual surface position is only known to within a
tolerance. Each cell stores only 2 bits of information that
represent 3 states and only 2 of 3 states fully define the
cell. If a cell has a completely empty state, all positions
inside the bounds of the cell are known to be empty and
vice versa for a completely full cell. However, if a cell does
not hold either of these states, portions of the cell may
be empty and other portions full. The boundary surface
of the volume may or may not pass through the cell. In
most cases and for most applications, it is safe to assume
that such cells actually contains a surface. However, even
if cell does contain the volume’s boundary surface, where
the surface geometry passes through the cell is unknown.
One must select cell sizes at or below manufacturing tol-
erances in order to have adequate resolution in applying
this data structure and algorithm to path planning.

The second limitation is the use of finite difference
derivative approximations. Since the underlying geome-
try representation is of a discrete nature, the calculation
and use of finite difference derivatives is readily avail-
able. The finite differences can supply information as
surface gradients and surface normals. The value of these
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finite difference derivatives are subject to the cell resolu-
tion. For example, surface normals used in the rendering
process for lighting calculations are estimated from a
finite differences in runtime and provide adequate nor-
mals for effectively rendering a 3D visualization of the
data structure. However, the surface normal produced
by this method is not sufficiently accurate for critical
calculations in the path planning process.

6. Offset volume calculation

Despite the described limitations, many complex geo-
metrical problems can readily be solved by using the
geometry representation describe in this paper. One of
these problems is the offset surface generation problem.
The offset surface is defined as a surface at equal dis-
tance from an original surface (Fig. 5). It is often used
in tool path planning processes as a surface where the
center of a ball-end mill cutting tool may move freely
without producing overcuts and yet remaining in con-
tact with the part surface at the outer radius of the ball.
By replacing tool contact point trajectory planning with
tool center trajectory planning it is possible to eliminate
a complicated gouge prevention process and make tool
path planning algorithms simpler.

Figure 5. Offset surface.

Although the offset surface makes path planning algo-
rithms simpler, finding an offset surface is not a trivial
problem for most geometry representations. Problems in
special cases such as holes and self-intersections [23] as
shown Fig. 6 are characteristic. The offset surface find-
ing approach in this work eliminates the self-intersection
problem completely and allows the use of models with
holes that are smaller than the offset distance. It is impor-
tant to notice that this approach uses triangularmeshes as
an input geometry representation but similar algorithms
can be implemented for other data structures.

The main idea behind the surface offset algorithm is
to work with volumes and not strictly with surfaces, so
it is more accurate to describe it as an “offset volume”
algorithm. Here the offset volume represents a volume

Figure 6. Offset surface self-intersections [23].

Figure 7. 2D offset surface decomposition.

that contains all points that are closer than an offset
distance to initial surface. In 2D case an offset curve
calculation can be replaced by offset area calculation as
shown in Fig. 7. In order to construct an offset volume
efficiently, it can be represented as a composition of topo-
logical elements associated with the original surface. For
the 2D case (Fig. 7) every point is associated with a cir-
cle and every line is associated with a rectangle. For a 3D
model and triangle mesh geometry representation there
is a similar association list:

• Vertex – Sphere centered on vertex with radius equal
to offset amount.

• Edge – Cylinder with axis along edge, radius equal to
offset amount, and bounding by start and end points
of edge.

• Face – Prism generated by extruding the triangle face
in both directions by offset amount.

As a result, a triangularmeshmay be converted to a list of
volumetric primitives that can be composed together and
represent an offset volume. Then every cell of geometry
model can be tested against this list of volumetric primi-
tives and marked as a part of an offset volume if it passes
the containment testwith one of these primitives. The off-
set volume calculation algorithm that combines all these
steps is shown in Algorithm 3.

Loops 1, 4 and 7 in Algorithm 3 are completely inde-
pendent and can be easily parallelized. Loop 10 is actually
a part of the belonging test described before and can be
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Algorithm 3 Volume offset calculation
1: For all vertexes in triangle mesh in parallel:
2: Add sphere to primitives list
3: End For
4: For all edges in triangle mesh in parallel:
5: Add cylinder to primitives list
6: End For
7: For all faces in triangle mesh in parallel:
8: Add prism to primitives list
9: End For
10: For all cells in geometry model in parallel:
11: For all primitives in list:
12: If cell belongs to primitive:
13: Mark cell as an offset volume cell
14: End If
15: End For
16: End For

easily parallelized as well since all cells are always com-
pletely independent in the developed geometry model.
Figure 8 demonstrates offset volumes of the impeller
mesh produced by the described algorithm. The top left
picture demonstrated the original model while other pic-
tures are computed with various offset distances.

7. Surface filling algorithm based on 3D
contour offset approach

The example of the offset volume calculation algorithm
has shown that it is possible to use methodology and
geometry representation described here to solve chal-
lenging computational geometry problems. This section
will discuss how these algorithms can be used to for auto-
matic tool path planning. First of all, it is important to
note that modern CAM systems support a large vari-
ety of tool path planning strategies (such as iso-parallel,
spiral, contour offset, etc.) that produce efficient tool
paths for a variety of different situations. Although there
are many possible options for tool path planning, these
solutions are usually quite specialized and do not work
well as a true general purpose solution for all possible
situations. This limitation requires the labor costs of a

skilled engineer working “surface by surface” and select-
ing a sequence of appropriate strategies with appropriate
parameters. The goal in this work is to create a founda-
tional and robust strategy for a fully automated tool path
planning system.

The idea behind the developed robust path planning
strategy is generalizing the 2D contour offset strategy
often used in modern CAM software to three dimen-
sions. Although 2D and 3D versions are conceptually
similar (in fact a 2D version is a special case of a 3D
algorithm), there are some important differences related
to where and how they generate a tool path. The tradi-
tional contour offset approach calculates a tool path on
a plane which is orthogonal to a tool direction. It iter-
atively offsets a contour and uses offset curves as tool
path components. Usually a sequence of parallel planes
is used for removing most of volume during a roughing
process. The 3D version does perform very similar steps
but does not require using a planar surface (although it
can use a plane and in this case it becomes a 2D con-
tour offset approach). It uses any possible user selected
surface called “Target surface”. The problem here is an
additional dimension. As a result, offsetting a contour
creates a tube like shape that cannot be used for path
planning (Fig. 9: b). As a solution for this problem, an
additional step is required – calculation of the intersec-
tion between a tube and a target surface (Fig. 9: c). By
calculating the intersection, it generates a curve that lies
on a constant distance from an original contour and
can be used for further path planning. The important
property of the contour offset approach is preserved – the
distance between path components is constant in most
cases and always bounded. This property allows control-
ling a scallop height of the machined surface by control-
ling distance between path components.

Iteratively performing the contour offset algorithm
until an entire surface (or a surface part) is covered
(Fig. 10). generates a sequence of curves that completely
fill a target surface in a way that a distance between
them is no shorter than offset distance and no longer
than two offset distances. The developed implementation
determines that an entire surface is processed if the next
intersection between a curve offset volume and a target

Figure 8. Offset volumes of an impeller.



COMPUTER-AIDED DESIGN & APPLICATIONS 83

Figure 9. Curve offsetting.

Figure 10. Iterative surface area filling.

volume is an empty volume. It is also important to notice
that the curve offset volume combines all offset volumes
calculated during previous iteration, so if a part of a tar-
get surface is already processed it will not be processed
again.

Before describing the complete surface filling
algorithm, it is important to discuss the third compo-
nent used in this process, a “restriction volume”. Bound-
ary conditions, and also any required restrictions, are
represented as a restriction volume that contains areas
where tool movements are not desired or dangerous. For

example, during roughing path planning for ball end tool,
restriction volume includes an offset volume of a target
geometry with an offset value equal to a tool radius plus
some small extra distance. By not allowing path planning
in areas that are too close to a part surface, it predicts
overcuts because a tool center will never come closer than
a tool radius and a tool surface will never intersect a part
surface as a result. A restriction volume also limits filling
algorithm in a way that only a desired part of a surface
is processed even if an entire surface is not processed
yet. This is useful for protecting against fixture collision.
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Figure 11. Restriction volume for the “head” model.

For example, Fig. 11 demonstrates the restriction vol-
ume for the “Head” model that contains two parts: offset
volume of the model with offset distance equal the tool
radius and a box volume in the bottom for protecting
fixtures. The entire surface filling process is described in
Algorithm 4.

Themost important property of the developed surface
filling algorithm is parallelizability. Since it is based on a

volume offset and volume intersection algorithms, which
are both parallel, the entire surface filling algorithm
becomes naturally parallel and all algorithms that use it
are also naturally parallel.

Algorithm 4 Surface filling
1: Current curve = Initial curve
2: Do:
3: Offset current curve
4: Calculate Intersection curve between Target

surface and Offset volume
5: If intersection curve exists:
6: Save intersection curve as a tool path

component
7: Current curve = Intersection curve
8: End If
9: Until: Intersection curve does not exist

8. Robust tool trajectory generation for 5-axis
machines

The 3D contour offset algorithm is used both for the
roughing and the finishing tool path planning by apply-
ing different target surfaces. In the case of finishing a
model offset volume surface is used as a target surface.
An offset value in this case is equal to a tool radius. A con-
tour offset value controls path step and it is selected based

Figure 12. Surface filling for finishing tool path generation.
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Figure 13. Initial curve selection for roughing process.

on a desired scallop height. As it was mentioned before,
limiting tool center movements to an offset surface pre-
vents overcuts by a ball part of a tool. For the finishing
path generation, an initial curve can be selected in many
ways but the current implementation uses an intersection
between a horizontal plane and a top of an offset model.

Figure 12 demonstrates an example of the surface fill-
ing process used for a finishing tool path generation and
Algorithm 5 demonstrates the algorithm steps. Intersec-
tion curves calculated during this process are used as tool
center trajectory curves in a finishing tool path.

Algorithm 5 Finishing tool path generation
1: Calculate intersection curve between part offset vol-

ume and horizontal plane
2: Apply the surface filling algorithm starting with the

intersection curve (Algorithm 4)
3: Generate a finishing tool path by combining all gen-

erated curves

The roughing tool path generation process is a bit
more complicated than the finishing process because it
has to process a volume, not a surface. There are three
main differences. First, it uses an iterative approach to
generate a tool path that removes material layer by layer
until it reaches a part surface. Second, a target surface for
roughing process is a workpiece material surface itself.
Similarly to the finishing process, it uses surface filling
algorithm for generating a set of curves on a material
surface that are used as tool center trajectory curves.
And finally, roughing algorithm selects initial curves dif-
ferently. The current implementation uses the intersec-
tion between a workpiece and a model offset volume for
selecting an initial curve. After the intersection is cal-
culated, the longest intersection curve is selected (Fig.
13), and the surface filling algorithm is used. This pro-
cess repeats until all intersection curves are processed.
All roughing path planning steps are demonstrated in
Algorithm 6.

Algorithm 6 Roughing path planning
1: Calculate part and fixtures offset volume

(Algorithm 3)
2: Do:
3: Calculate intersection curves between workpiece

and part offset volumes
4: While non-processed intersection available:
5: Select the longest intersection curve
6: Apply the Surface filling algorithm starting with

the selected curve
7: Generate a roughing tool path for a layer by

combining all generated curves
8: EndWhile
9: Until: intersection curves exist
10: Generate a roughing tool path by combining all

layers

Figure 14 demonstrates workpiece geometry after
removing each layer of material during a roughing pro-
cess with a tool path generated by the described roughing
algorithm. It is also easy to see the exact tool trajec-
tory on the first few layers. The finishing and rough-
ing tool path planning approaches have some important
properties that should be mentioned. First of all, these
algorithms follow the developedmethodology and essen-
tially perform volume offset, volume intersection and
surface filling operations. Since all these operations are
naturally parallel because they employ the highly parallel
data structure presented, the resulting tool path plan-
ning algorithms are also highly parallelized. The second
important property is robustness. In context of this work,
robustness refers to the ability to generate a valid tool
path for any given geometry. It is easy to see that both
algorithms just perform a set of steps without any a pri-
ori knowledge about geometry itself making them geo-
metrically indifferent and able to produce paths for any
possible 3D model. Both algorithms stop only after pro-
cessing an entire surface or volume since it is part of
exiting conditions.

9. Experimental results

All described tool trajectory planning algorithms were
implemented using a combination of Python, C++ and
OpenCL languages during the research project. The
developed system was tested on a computer with 3
GPUs (2x NVidia GTX580 and 1x NVidia GTX480)
and showed great parallelizability and almost linear scal-
ability. The following results were achieved with the
developed automated tool path planning system that
also includes orientation selection and milling simula-
tion algorithms which were not discussed in this paper.
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Figure 14. Layer by layer material removing during a roughing process.

In order to validate developed methodology and algo-
rithms, the path planning system was used for gener-
ation G-code programs for multiple geometries. These
G-code programs were feed on an Okuma MU500VA
5-axis milling machine. Although actual computation
time depends significantly on target geometry and res-
olution, computing tool paths for demonstrated models
took on average 10–30 minutes of computing time when
the underlying model has a 50-micron resolution. For
example, the “Fan” part took about 15 minutes of com-
pute time in contrast to 2 hours of human time required
to generate a similar tool path using traditional CAM
software. This allows to get a significant speedup espe-
cially considering almost linear scalability and the fact
that the software has being running on reasonably old
GPUs (single modern GPU like Tesla V100 provides 3X
more compute power (15 TFLOPS) than 3 used GPUs
together). The Fig. 15 demonstrates simulation perfor-
mance (it uses the same data structure and algorithms,
so it exhibits the same performance properties as trajec-
tory generation software) for various amount of available
computational resources (it was measured by using var-
ious combinations of GPUs). It does not make sense
to compare this software running on CPUs with GPUs
since it was specifically designed for GPU architecture
and CPUs will provide 2–3 orders of magnitude worse
performance.

The following pictures (Fig. 16–18) demonstrate sim-
ulation andmachining results for various testmodels and
materials. It is easy to see the finishing path for the “Head”
model on the Fig. 12 as the path is generated by intersect-
ing the offset surface with the filling curve, so the path
follows the curve.

Some of test parts are not completely finished due to
various reasons. The “Fan” model on Fig. 17 contains

Figure 15. Simulation scalability.

material that was not completely removed due to a lim-
ited availability of fixture and milling tools at the time of
the test. Basically, it was not possible to remove mate-
rial safely under the fan using single setup with fix-
tures that were available. It is also important that the
tool path planning algorithm has managed to consider
this limitation and generate a tool path that removed
all possible material on top of fan blades without over-
cuts. Considering two other models, entire tool paths
were generated for both models but finishing tool paths
were not machined completely due to significant time
requirements. As result, the machined parts have dif-
ferent surface quality in different areas as shown. Con-
sidering described limitations of the testing process, the
described algorithms have successfully generated valid
tool paths for machining reasonably complicated geom-
etry in a completely automated fashion almost with-
out human interaction. It is important to note that the
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Figure 16. Test model “head.”

Figure 17. Test model “fan.”

developed system does not require from a user to select
a particular path mode (zig-zag, spiral, etc) but in most
cases the finishing path will look like a contour-offset
path (Fig. 12) while roughing path will look like a zig-zag
path at the beginning and a more complicated trajectory

at the end (Fig. 14). Since the developed system con-
struct both roughing and finishing, the user is required
to specify maximum scallop height that will be used to
determine distance between two consecutive finishing
passes.

Figure 18. Test model “puppy.”



88 D. KONOBRYTSKYI ET AL.

10. Conclusion

This paper has described the design methodology for
a set of highly parallel algorithms for determining a
sequence of contact points for 5-axis tool path. These
algorithms include a solution for common computational
geometry problems, such as offset surface calculations
or volume surface intersections and a set of robust algo-
rithms for multi-axis tool path planning used in CNC
milling. Following the designmethodology and using the
developed highly parallel geometry representation have
resulted in high parallelizability and scalability of these
algorithms. These contact point sequence algorithms
were combined with orientation determining algorithms
discussed in a second paper to produce an automatic path
planning system. The experimental results have demon-
strated that a GPGPU approach can be used for accelera-
tion and automation of the tool path planning process for
CNC milling machines.
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