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ABSTRACT
Computer-aided design (CAD) tools are vital to themodern product commercialization process. CAD
models and modeling activities are evaluated for various industrial, educational, and research pur-
poses. However, there are no standard objective complexity metrics to use when evaluating these
models or modeling procedures. Researchers and educators are often forced to use ad hoc quan-
tities to normalize or account for CAD component variability. This work uses both quantitative and
qualitative subjective assessments of CAD model complexity to evaluate objective geometric com-
plexity metrics for CAD. These geometric complexity metrics are then compared to CAD model
attributes related toCADmodel complexity andmodelingprocedures.Modelingprocedure includes
the amount of time spent engaging in particular modeling activities. Curved and irregular surfaces
are deemed difficult to model. Subjective quantitative assessments are found to be significantly
correlated with objective geometric complexity metrics. Certain geometric complexity metrics are
found to be related to computational processing time. Geometricmetrics normalized by the number
of features in a component are found to be significantly negatively correlated with modeling time.
These results provide evidence of the relationship between the use of fewer features and modeling
efficiency for components of a given complexity.
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1. Introduction

Computer-aided design (CAD) tools are vital to themod-
ern product development and commercialization pro-
cess. As some companies move towards a model based
enterprise (MBE); their role becomesmore critical. In the
MBE, the CADmodel is at the nexus of design and devel-
opment activities; various professionals in the MBE will
access the digital representation of the part to complete
numerous tasks (e.g., finite element analysis or computer-
aidedmanufacturing) [18]. CAD assists in improving the
development process through virtual development [4].
The combination of these various computer-aided design
tools is known as CAx and has become an integral part of
product commercialization [15]. This requires the abil-
ity to share data across the enterprise [25]. Given the
role of the CAD model in the development process, it
is important to understand how various aspects of the
model may impact its use in some of these tasks. One
important aspect of CADmodels that impacts numerous
functions is the complexity of the model or component.
There is no standard objective complexity metric used to
assess a component in CAD [1].
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An objective assessment of CAD model complexity
can be useful in assessing case studies, evaluating the
results of experiments, or evaluating student projects
[36]. Braha and Maimon [6] also note the importance
of these metrics for research and practical purposes.
Camba, et al. [9] examine the ease of alteration for alter-
native modeling strategies; this is done for models with
varying complexity. The complexity of a component can
affect numerous aspects of the design process as well as
particular engineering activities. It should be noted that
while geometric complexity and CAD model complexity
are likely highly related, they are not the same. As defined
here, geometric complexity refers to the overall geomet-
ric complexity of a component. CAD model complexity
refers to the complexity of the CAD model used to rep-
resent the component and incorporates the features and
the relationships among those features. As an example, a
cube could be created from the intersection or combina-
tion of numerous interrelated complex features in a CAD
model. In this unlikely and stylized example, there would
be a divergence between the geometric complexity (sim-
ple cube) and the CAD model complexity (numerous
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complex features). Given the likely relationship, it is
important to understand geometric complexity and its
effects on model complexity and modeling procedure.

Several authors have noted the likely effects of CAD
model complexity. Amadori, et al. [1] note there is no
widely acceptedmetric for CADmodel complexity; how-
ever, in their experience increased CADmodel complex-
ity results in lessmodel robustness and flexibility. Bodein,
et al. [3] also report that complex models can make it dif-
ficult to determine design intent or alter CAD models.
Bodein et al., [4] highlight the role of part complexity on
various stages of model alteration; in their analysis com-
plexity is captured by using the number of surfaces of
the modeled component. In this case they are using geo-
metric complexity as a proxy for CADmodel complexity.
Salehi andMcMahon [34] also discuss the need to reduce
model complexity to allow the reuse potential of product
lifecycle management (PLM) systems to be used to their
fullest.

Another area where geometric complexity can have a
significant impact on time and cost is in finite element
analyses (FEA) [39]. One of the most time consuming
aspects of FEA is the generation of the mesh required for
the analysis. White et al. [38] develop a meshing com-
plexity metric based on the number of surfaces, edges,
and the “sweepable” nature of the component. Osada,
et al. [31] propose developing a probability distribution
of 3D shapes to evaluate how dissimilar the shape under
consideration is to evaluate its complexity.

In addition to the direct quantifiable aspects of com-
plexity that can be easily related to manufacturing or
analysis, complexity can also affect the design process.
Understanding how geomteric complexity affects model
complexity and design processes can allow for both a bet-
ter understanding and assessment of the CADmodelling
process. InHamade, et al. [24], design skill is measured as
using fewer features to create given geometry; a geomet-
ric complexity metric could help normalize this assess-
ment. Another assessment example could evaluate the
alteration time for models and if that is more dependent
on geometric orCADmodel complexity; thiswould be an
extension of Camba et al., [9]. These assessments could
be taken into account when assessing development time-
lines. General metrics of component and/or CADmodel
complexity might also be used to evaluate the number of
design annotations necessary to explain it or the qual-
ity assurance plan necessary to evaluate it. As opposed
to a purely quantitative assessment of component com-
plexity, any valid measure should also be well correlated
to the subjective assessment of complexity by CAx tool
users. To evaluate the relationship among objective met-
rics, subjective assessments, model attributes, and mod-
eling procedures, the paper is organized as follows. In the

next section, previous work in this area is detailed. Next,
the methods are presented; these are followed by results
and the discussion. Finally, limitations, future work, and
conclusions are detailed.

2. Previous work

Rossignac [33] identifies five types of complexity related
to 3D CAx type components: algebraic, topologi-
cal, morphological, combinatorial, and representational.
Algebraic complexity is related to the complexity of
the polynomials required to represent the component.
Topological complexity refers to the non-regular and
internal complexity (e.g., self-intersections) of a com-
ponent. Morphological complexity is related to feature
size and “smoothness”; those components having more
and smaller features would be deemed more complex.
Combinatorial complexity refers to the number of ver-
tices in a polynomial mesh. Representation complexity is
a measure of data structure and file size. These types of
complexity are informed by both the design intent as well
as its geometric representation of the component. Design
intent can be defined as the way in which design deci-
sions influence the way in which the final CAD model
representation is formed [14]; this also includes any con-
straints imposed on the design [7]. As mentioned previ-
ously, CADmodel complexity and geometric complexity
are related, but not the same.

2.1. Design and CADmodel complexity

There are several complexity metrics with respect to
design. InAxiomaticDesign, Suh [35] defines complexity
as the uncertainty in meeting the functional require-
ments. Given the main functional requirement of a CAD
model is to convey the design intent, a CAD-specific ver-
sion of this complexity metric would be the uncertainty
in conveying that design intent. Bhaskara [2] notes that
model complexity makes it difficult to understand design
intent and proposes the use of the design structurematrix
to reorganize features and make the model less com-
plex. Summers and Shah [36] propose several alternative
complexity metrics. Those related to CAD include: the
amount of information required to describe something,
the amount of effort required to design it, and the number
of operations needed to solve the problem. The infor-
mation analog could be related to metrics for geometric
complexity. Camba et al., [9] note the number of features,
dependencies, and leaf nodes as metrics of CAD compo-
nent complexity. The amount of time required to create a
CAD model has been reported and used as a metric for
CADmodeling [17, 21, 24] and alteration [9, 26] quality.
The number of operations is a proxy for the number of
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features or operations required to create a specific piece
of CAD geometry. This work examines the relationships
among these various types of complexity.

2.2. Geometric complexitymetrics

Several researchers have used objective metrics of geo-
metric complexity to assess components or assign some
quantitative value to the complexity of a component for
differentiation purposes. Bodein et al., [4] examine parts
of various complexity based on the number of surfaces a
component has (55 – low complexity; 369 – high com-
plexity). Denkena et al., [16] also use the number of
surfaces as a proxy for complexity, but in their case it
is to determine die casting mold costs. Boothroyd, et al.
[5] also use the number of surfaces to determine the
complexity, and thus cost, of injection molding tools.

Another metric for geometric complexity is the num-
ber of stereolithography (STL) file triangles required to
represent an object. Valentan et al., [37] used the number
of triangles (and that number normalized by component
envelope volume) along with expert opinions to evalu-
ate complexity. This was done with a goal of determining
the preferredmanufacturing process. Rossignac [33] also
discuss triangle meshes and associate the complexity of
an object with the number of vertices.

Other geometric metrics include those based on a
components area or volume, usually in relation to some
other shape. Joshi and Ravi [27] evaluate a sphere vol-
ume related measure of complexity as well as an area
related measure of complexity (along with other compo-
nent metrics) to assess their relationship to the manufac-
turing costs of cast parts. They also propose the volume of
a part as compared to the volume of its bounding box as
a complexity metric. Chougule and Ravi [11] use a cube
based volume ratio (and other component attributes)
to also evaluate casting costs. While alternative metrics
exist, two aspects are missing from the existing litera-
ture: 1) an assessment of these alternative metrics as an
assessment of the geometric complexity of CAD models
and 2) a comparison of these metrics to other aspects of
complexity such as the number of feature or the effort
required to create the CAD model. This work aims to
address these gaps in the literature.

3. Methods

To assess the relationship among objective component
complexity metrics, subjective complexity assessments,
model attributes, and the time spent modeling, the fol-
lowing data collection and assessment methods were
used. A set of 10 test components is used to solicit
subjective assessments of complexity. A group of 47

experimental components is used to evaluate the rela-
tionship among objective metrics of complexity, model
attributes, and modeling time.

3.1. Complexity survey, test components, and
experimental components

To examine the relationship between objective geometric
complexity metrics and subjective assessments of com-
ponent complexity, a survey was presented to 169 stu-
dents of varying expertise. This survey asked them to
list the number of CAx courses they had taken; these
included both traditional CAD courses as well as CAM
or CAE courses. It then asked them: “what shapes do
you think are difficult to model with respect to CAD”
as a free response. Next the students were asked to eval-
uate 10 components based on their assessment of that
component’s geometric complexity; these 10 items used
are shown in Figure 1 and consist of a range of simple,
stylized, and actual manufactured components. This was
done using a 5-point Likert [30] scale. The scale consisted
of: 1-very simple; 2-simple; 3-moderate; 4-complex; and
5-very complex. It should be noted that the parts did not
have titles when provided as part of the survey.

The experimental components were part of a project
assessing CAD education practices. As part of that
project, students were asked to bring a component from
their home and model it in class. This modeling exer-
cise occurred at the end of the semester after the students
had received approximately 20 hours of CAD instruction
and practice in a third year college course. Students were
given a maximum of one hour and 15 minutes to model
the component. Components modeled by 47 students
over the course of several semesters comprise the exper-
imental data. Examples of the experimental components
(CAD models and photos) are shown in Figure 2. All
components (both test and experimental) were modeled
in PTC Creo (or its predecessor Pro|Engineer).

3.2. Geometric complexitymetrics

To evaluate the geometric complexity of the components
several metrics were selected based on the existing lit-
erature. These consisted of: the number of surfaces, the
number of triangles in the STL file (as well as normal-
ized by part and bounding box volume), a part volume
ratio, the cube area ratio, and the sphere area ratio. As
noted in the literature [4, 9, 16], the number of surfaces
of a component can be a measure of its geometric com-
plexity. To determine the number of component surfaces,
the components were imported into AutoDesk Inven-
tor Professional 2015; surfaces were calculated using the
BIM Exchange Check Design feature. This tool returned
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Figure 1. Test components for complexity survey.

the number of surfaces of the component as well as the
length, width, and height of a box bounding the compo-
nent. The sphere and cube test components were used to
check the validity of the returned data.

The PTC Creo Parametric program’s analysis tool was
used to determine the surface area and volume of the
components. This program was also used to create the
STL files and determine the resultant number of trian-
gle; the number of STL file triangles can be used as a
metric of complexity [33, 37]; The deviation control fac-
tors used consisted of a chord height of 0.002 cm and
an angle of 0.5. The number of triangles was noted, and
like Valentan et al., [37] the number of STL file triangles
were normalized by the volume of a bounding box of the
component.

Other calculated metrics of complexity are based on
the geometry of the component; these take the form
of a ratio defined by the component’s area or volume
as related to another shape. The volume ratio [27] is
calculated as:

RVol = 1 − VP

VB
(3.1)

where VP is the volume of the component and VB is
the volume of the bounding box of the component. The

sphere ratio [27] is calculated as:

RSphere = 1 − ASphere

APart
(3.2)

where ASphere is the surface area of a sphere of equal vol-
ume to that of the component andAPart is the surface area
of the component. The cube ratio [11] is calculated as:

RCube = 1 − ACube

APart
(3.3)

where ACube is the surface area of a cube of equal volume
to that of the component and APart is the surface area of
the component.

3.3. Feature andmodel attribute data

The feature and model attribute data for the experimen-
tal components were calculated and tabulated using the
methods detailed in the works of Diwakaran and John-
son [17, 26]. The quantities tabulated included those
thought to be related to CAD model complexity; these
included: the number of features in the model, the refer-
ence geometry in the model (e.g., datum planes or axes),
and the number of mirror and pattern features necessary



COMPUTER-AIDED DESIGN & APPLICATIONS 65

Figure 2. Representative experimental components from the modeling exercise.

to replicate the necessary geometry.Another key attribute
thought to be related to CAD model complexity would
be feature complexity as defined by the number of sketch
segments per revolve or extrusion feature. Sketches serve
as the basis for geometry that ismanipulated through fea-
tures (e.g., extrusions or revolves) in most modern CAD
tools. Therefore, the number of sketch segments is noted
as a complexity proxy. The product of these segments
per feature and the total number of features is defined
as the total number of segments. It is also proposed that
more complex models will be more difficult to properly
constrain. This would lead to constraint errors, namely
the number of incorrect feature termination (e.g., a hole
extruded an excessive distance as opposed to a defined
through hole) and the number ofweak dimensions (those
not explicitly defined by the user or constraints generated
by the modeling software).

3.4. Time usage data

As noted above, the experimental component data are
part of a larger project. As part of that project in
addition to students bringing components into class to

model, their modeling procedures were recorded using
the screen capture software Camtasia. These videos were
analyzed using a running log that tabulatedwhich activity
was taking place as the participant worked. Five distinct
activities were catalogued: doing, searching, thinking,
trial and error, and regeneration or waiting. Doing is
defined as the participant engaging in productive model-
ing activities (e.g., creating a feature). Searching is defined
as the participant trying to locate or assess how to use
a particular aspect of the software; this is identified by
non-productive cursor movement or clicks. Thinking is
identified by a lack of cursor movement or panning (or
rotating) without purpose. Trial and error encompasses
the creation or a feature or some geometry and its subse-
quent deletion. Regeneration orwaiting time is defined as
the user waiting for the program to complete some pro-
cess. Both the absolute time spent engaging in these activ-
ities as well as their percentages of the overall modeling
time are tabulated.

To examine the validity of the time usage categoriza-
tions, inter-rater reliability tests were used to examine
the agreement of two raters using three sample videos.
Results of these three samples are shown in Figure 3.
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Figure 3. Time usage data as tabulated by alternative raters.

Table 1. Coefficients of agreement for video analysis.

p0 pc k kM sig.

Component 1 61.4% 34.3% 0.412 0.604 0.022
Component 2 81.8% 43.0% 0.681 0.987 0.035
Component 3 84.1% 41.1% 0.730 0.903 0.035

Representative examples of the item from home (Com-
ponent 1), a model from a stylistic drawing (Component
2), and a model from a 3D printed part (Component 3)
were analyzed. The time usage overlap coded for the same
category was deemed as agreement. The Cohen Kappa
[12, 20] was used to account for chance agreement.
Kappa (k) shows the chance adjusted agreement and the
maximum Kappa (kM) takes into account the differing
marginal ratings for the raters. The agreement between
the raters (p0), the agreement expected due to chance
(pc), the Kappa calculations, and significance of Kappa
are shown in Table 1. The lowest agreement was for Com-
ponent 1; this can be seen in the difference between the
thinking and doing categories in Figure 3. The amount
of agreement in the other Components are much higher.
Overall, the average k is 0.61 which is deemed “substan-
tial” agreement by the Landis-Koch benchmark [28].

3.5. Modeler skill assessment

As part of the above mentioned CAD modeling course,
a laboratory practical is administered near the end of
the semester. As part of the laboratory practical students
are given a drawing or physical component and asked
to recreate the solid model geometry over the course of
an hour. The practical requires students to use various
modeling skills that have been introduced over the course
of the semester; these include major feature creation
methods (e.g., extrusion) as well as geometry replication

methods (e.g., patterns). The practical is graded on a 20
point scale according to a scoring rubric that accounted
for the major model geometry and other required fea-
tures. In the case of this work, the laboratory practical
also serves as an overall proxy for CAD modeling skill.

4. Results

The test components were used to compare subjective
views of complexity with objective complexity metrics.
The experimental components were used to examine
the relationships among geometric complexity metrics,
model attribute data, and modeling time usage. The
results are as follows.

4.1. Complexity survey results

The survey data was taken from 169 students ranging
from freshman level to senior level college students that
had taken at least one CAD modeling course. These stu-
dents ranged in experience from having taken between
1 and 4 courses with a significant CAx (e.g., computer-
aided design or manufacturing) component. The mean
number of CAx related courses was 1.72 (with a stan-
dard deviation of 0.99). The first step in the analysis of
the results was to compare the free responses of diffi-
culty and ratings of CAD complexity. Figure 4 shows a
Word Cloud of the free responses to the question regard-
ing shapes that are difficult to model. As can be seen in
Figure 4, irregular, curved, and surfaces were the three
aspects that stood out.

Table 2 shows the mean complexity ratings and stan-
dard deviation from the survey data as well as geo-
metric quantities and complexity metrics for both the
test parts and representative experimental components.
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Figure 4. Word cloud of responses to modeling difficulty questions.

Table 2. Data for test components and representative experimental components.

# Name Surfaces STL
L

(mm)
W

(mm)
H

(mm)
Volume of
Box (mm3)

Volume of
Part (mm3)

Surface
Area
(mm2)

Part
Volume
Ratio

Cube
Ratio

Sphere
Ratio

Mean
Comp.

SD
Comp.

1 Intermediate Part 103 992 254 38 127 1229030 341097 74891 0.722 60.89 0.685 2.917 0.960
2 Ring 144 6788 127 107 229 3097155 1058796 104939 0.658 40.60 0.521 3.450 0.925
3 Sphere 1 10148 508 508 508 131096512 68641970 810734 0.476 −24.07 0.000 1.393 0.819
4 Cover 128 7102 93 19 111 198332 20395 21659 0.897 79.32 0.833 3.805 0.84
5 Simple Part 13 464 305 51 381 5899343 4934784 284005 0.164 38.76 0.506 1.593 0.641
6 Handle 485 9678 220 165 105 3811174 74201 61804 0.981 82.86 0.862 4.799 0.431
7 Plate 19 496 330 19 279 1757513 1711662 210529 0.026 59.22 0.671 1.834 0.721
8 Complex Part 117 2588 155 25 75 290625 73648 29328 0.747 64.05 0.710 3.657 0.868
9 Cube 6 12 254 254 254 16387064 16387064 387096 0.000 0.00 0.194 1.124 0.348
10 Latch 107 1406 29 54 45 69975 6948 3128 0.901 30.16 0.437 3.728 0.792
11 Comb 346 7012 346 45 1 18519 6966 12777 0.624 82.87 0.862
12 Brush 213 25734 114 48 127 696860 38278 18613 0.945 63.39 0.705
13 Plug 40 308 25 45 25 28759 17461 5036 0.393 19.81 0.354
14 Guard 186 2742 54 19 64 65416 8322 11261 0.873 78.12 0.824

The component deemed the simplest, with an average
complexity rating of 1.124 was the cube; the component
deemed the most complex with an average complex-
ity rating of 4.799 was the handle. As a test, the parts
deemed simple, intermediate, and complex maintained
the appropriate ordinal ranking of complexity with aver-
age ratings of 1.593, 2.917, and 3.675, respectively. The
qualitative and quantitative responses were in agreement.
The handle, complex part, and cover had more irreg-
ular surfaces and curved features; these were rated as
more complex. The cube, plate, and simple part did not
have these types of features and were generally rated with
lower complexity.

Next the subjective complexitymetricswere compared
to calculated objective complexity metrics for the test

components. These correlation are shown in Table 3. The
upper number in each cell is the Pearson’s correlation
coefficient and the lower parenthetical number is the p-
value (this is also the case with all similar tables in this
work). With the exception of the STL triangle metrics, all
other geometric complexity metrics were statistically sig-
nificantly (α =0.05) correlated (henceforth denoted by
significantly correlated) with the subjective mean com-
plexity rating. The highest correlation was for the vol-
ume ratio metric. There were also significant correla-
tions among the various complexitymetrics. The number
of surfaces was significantly correlated with the volume
ratio. The cube and sphere ratio are perfectly correlated;
this is as to be expected, given they are both based on the
component surface area.
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Table 3. Correlations of complexity metrics for test components and survey data.

2 3 4 5 6 7 8

1. Surfaces 0.296 0.026 0.130 0.674* 0.601 0.601 0.822**
(0.407) (0.944) (0.72) (0.033) (0.066) (0.066) (0.004)

2. STL 0.042 0.082 0.466 −0.279 −0.279 0.244

(0.908) (0.823) (0.174) (0.435) (0.435) (0.497)

3. STL/Box Volume 0.990** 0.470 0.033 0.033 0.389

(0.000) (0.171) (0.927) (0.927) (0.266)

4. STL/Part Volume 0.499 0.058 0.058 0.431

(0.142) (0.874) (0.874) (0.213)

5. Volume Ratio 0.473 0.473 0.903**

(0.167) (0.167) (0.000)

6. Cube Ratio 1.000** 0.723*

(0.000) (0.018)

7. Sphere Ratio 0.723*

(0.018)

8. Mean Complexity

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed).

4.2. Geometric complexity, model attributes, and
modeling time usage results

To assess the relationships among geometric complexity
metrics, model attribute data, and modeling time usage,
a set of experimental components modeled by students
were used. These experimental components had ranges
for the various geometric complexity metrics that were
generally wider than those of the test components; the
one exception was that of the cube ratio which had an
anomalous result in the test set due to the sphere compo-
nent. These data are shown in Table 4. Also shown are the
descriptive statistics for the laboratory practical that eval-
uates modeler skill, model attribute data, and time usage
data (both absolute and as a percentage of the total).

Table 5 shows the correlations for the various com-
plexity metrics among themselves for the experimental
components as well as with the model attribute data. In
the case of the experimental data, the surfaces metric
was significantly correlated with the various STL metrics
(unlike in the test component data).However, in this case,
the number of surfaces was not significantly correlated
with the volume ratio. The volume ratio was significantly
positively correlated with the cube and sphere ratios.
The volume ratio was also negatively correlated with
the number of pattern features and both the cube and
sphere ratios were positively correlated with the number
of incorrect feature terminations.

Table 6 shows the correlations between the various
geometric complexity metrics and the time spent engag-
ing in the various categories of modeling activity. To
assess if there was a relationship between complexity
and modeling behavior, these correlations compared the
complexitymetrics to themodeling time usage categories

Table 4. Descriptive data for experimental components.

Minimum Maximum Mean Std. Deviation

Modeler Skill
Practical Score 0 20 13 5
Complexity Metrics
Surfaces 14.0 3790.0 287.6 651.8
STL 308.0 25734.0 3714.2 4924.8
STL/Part Volume 39.0 106189.1 5429.1 15965.7
STL/Box Volume 19.6 23700.8 1439.5 3843.9
Volume Ratio 0.1 1.0 0.6 0.2
Cube Ratio 11.3 91.0 50.8 22.5
Sphere Ratio 0.3 0.9 0.6 0.2

Model Attributes
Number of Features 5.0 31.0 14.3 6.0
Reference Geometry 0.0 9.0 2.1 2.4
Incorrect Terminations 0.0 6.0 0.7 1.2
Patterns 0.0 6.0 1.3 1.5
Segments/Feature 0.7 8.7 3.2 1.7
Weak Dimensions 0.0 39.0 11.4 11.2
Total Segments 12.0 100.0 43.3 22.7

Modeling Time Usage
Doing (s) 471 2496 1414 588
Searching (s) 0 642 130 122
Thinking (s) 286 2016 991 437
Trial and Error (s) 67 2222 665 490
Regeneration (s) 2 371 45 69
Total (s) 1464 4319 3244 761
Doing (%) 14.2% 70.2% 44.0% 15.5%
Searching (%) 0.0% 17.4% 3.9% 3.5%
Thinking (%) 10.1% 57.4% 30.9% 12.0%
Trial and Error (%) 1.9% 60.4% 19.8% 12.2%
Regeneration (%) 0.1% 8.9% 1.4% 2.2%

as well as overall modeling time. The premise was that
component complexity would be correlated with either
the direct modeling (doing and trial and error) or plan-
ning (searching and thinking) related time categories.
There were no significant correlations between any of the
complexity metrics and the direct modeling or planning
categories. The surfaces and normalized STL metrics
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Table 5. Correlations of complexity metrics with model attributes and derived quantities.

2 3 4 5 6 7 8 9 10 11 12 13 14

1. Surfaces 0.510** 0.780** 0.706** 0.105 0.195 0.195 −0.030 0.030 −0.176 0.124 −0.146 −0.208 −0.128
(0.000) (0.000) (0.000) (0.483) (0.189) (0.189) (0.842) (0.842) (0.237) (0.408) (0.327) (0.161) (0.392)

2. STL 0.435** 0.386** 0.188 0.232 0.232 0.001 −0.148 −0.107 0.221 0.080 0.197 0.148

(0.002) (0.007) (0.206) (0.116) (0.116) (0.997) (0.322) (0.476) (0.136) (0.595) (0.185) (0.32)

3. STL/Part Volume 0.968** 0.172 0.285 0.285 −0.025 0.125 −0.147 0.139 −0.107 −0.127 −0.090

(0.000) (0.248) (0.052) (0.052) (0.869) (0.402) (0.323) (0.35) (0.473) (0.394) (0.549)

4. STL/Box Volume 0.071 0.255 0.255 0.035 0.160 −0.146 0.175 −0.147 −0.158 −0.101

(0.636) (0.084) (0.084) (0.816) (0.283) (0.327) (0.238) (0.323) (0.288) (0.500)

5. Volume Ratio 0.568** 0.568** −0.199 0.134 −0.071 −0.301* 0.066 0.272 −0.073

(0.000) (0.000) (0.181) (0.371) (0.637) (0.04) (0.658) (0.064) (0.626)

6. Cube Ratio 1.000** 0.038 −0.013 −0.137 0.065 −0.095 0.292* −0.021

(0.000) (0.799) (0.932) (0.357) (0.666) (0.524) (0.046) (0.889)

7. Sphere Ratio 0.038 −0.013 −0.137 0.065 −0.095 0.292* −0.021

(0.799) (0.932) (0.357) (0.666) (0.524) (0.046) (0.889)

8. Number of Features 0.372* −0.038 0.267 −0.250 −0.099 0.516**

(0.01) (0.798) (0.069) (0.09) (0.510) (0.000)

9. Reference Geometry −0.154 −0.164 −0.322* −0.095 −0.081

(0.3) (0.272) (0.027) (0.527) (0.587)

10. Incorrect Terminations −0.362* −0.044 0.176 −0.061

(0.013) (0.77) (0.237) (0.684)

11. Patterns −0.158 −0.197 0.098

(0.29) (0.184) (0.511)

12. Segments/Feature 0.349* 0.667**

(0.016) (0.000)

13. Weak Dimensions 0.215

(0.147)

14. Total Segments

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed).

were all positively significantly correlated with regener-
ation time. This is an expected result; geometric com-
plexity is related to the level of detail and thus processing
requirements [32]. The correlations for the time usage
percentages are shown in Table 7. Again, the premise
being that complexity would be correlated in someway to
a larger percentage of planning or direct modeling time.
However, these results were similar to those of the abso-
lute data; the only significant correlations were those of
the surfaces and the normalized STL metrics with the
portion of regeneration time.

To control for modeler skill, the lab practical vari-
able was “nullified” [19] using a first order partial cor-
relation for the complexity metrics and the time usage
data. The proposition here being that the skill level of
the various modelers would be a significant contribut-
ing independent variable. By controlling for this vari-
able, any relationships between the complexity metrics
and the modeling procedure data might become more
evident. These results are shown in Table 8. Again,

even when controlling for modeler skill, there were no
significant correlations between the complexity metrics
and the time usage categories. The one exception was
regeneration time, which maintained a significant pos-
itive correlation with the surface and STL normalized
metrics.

To assess the role of feature complexity, the objective
complexity metrics were normalized by the number of
features in each of the components. The premise here
being that for a given level of complexity, if fewer features
were used the quicker the modeling could be completed.
This is in line with the work of Hamade et al., [23] who
equate fewer features for a given model with modeler
skill. These results are shown in Table 9. For a model
of given complexity, an increase in the number of fea-
tures used is associated with greater modeling time; this
is evidenced by the negative correlations for each of the
complexity metrics normalized by the number of fea-
tures. However, only the volume ratio normalized metric
is significant.
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Table 6. Correlations of complexity metrics with time usage data.

2 3 4 5 6 7 8 9 10 11 12 13

1. Surfaces 0.510** 0.780** 0.706** 0.105 0.195 0.195 −0.213 −0.102 −0.046 −0.116 0.362* −0.249
(0.000) (0.000) (0.000) (0.483) (0.189) (0.189) (0.151) (0.495) (0.756) (0.438) (0.013) (0.092)

2. STL 0.435** 0.386** 0.188 0.232 0.232 0.017 −0.036 −0.187 −0.151 0.132 −0.185

(0.002) (0.007) (0.206) (0.116) (0.116) (0.912) (0.809) (0.208) (0.312) (0.375) (0.213)

3. STL/Part Volume 0.968** 0.172 0.285 0.285 −0.106 0.085 −0.045 −0.105 0.351* −0.130

(0.000) (0.248) (0.052) (0.052) (0.477) (0.569) (0.766) (0.482) (0.016) (0.384)

4. STL/Box Volume 0.071 0.255 0.255 −0.037 0.168 −0.063 −0.116 0.320* −0.084

(0.636) (0.084) (0.084) (0.806) (0.26) (0.673) (0.436) (0.028) (0.576)

5. Volume Ratio 0.568** 0.568** 0.018 0.091 −0.176 −0.240 0.184 −0.210

(0.000) (0.000) (0.903) (0.545) (0.238) (0.105) (0.215) (0.157)

6. Cube Ratio 1.000** 0.147 0.205 −0.008 −0.173 0.106 0.040

(0.000) (0.324) (0.167) (0.959) (0.245) (0.478) (0.789)

7. Sphere Ratio 0.147 0.205 −0.008 −0.173 0.106 0.040

(0.324) (0.167) (0.959) (0.245) (0.478) (0.789)

8. Doing (s) 0.462** −0.323* −0.274 −0.058 0.480**

(0.001) (0.027) (0.063) (0.698) (0.001)

9. Searching (s) −0.118 −0.254 −0.013 0.284

(0.428) (0.084) (0.931) (0.053)

10. Thinking (s) 0.184 0.098 0.432**

(0.216) (0.513) (0.002)

11. Trial and Error (s) 0.062 0.502**

(0.677) (0.000)

12. Regeneration (s) 0.140

(0.348)

13. Total (s)

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed).

5. Discussion

This work examined the relationships between subjec-
tive assessments of CADmodel complexity and objective
geometric complexity metrics as well as the relationships
among complexity metrics, model attributes, and mod-
eling time usage. Two sets of components were used to
examine these relationships: the firstwas a test set of com-
ponents that consisted of 10 stylized and actual industry
produced components. The second set of 47 experimen-
tal components consisted of CAD models created by
students of physical items with their modeling proce-
dure recorded using screen capture software and subse-
quently analyzed to categorize time usage into particular
categories.

To determine the ability of objective geometric com-
plexity metrics to properly account for the perceived
complexity of CAD components, a comparisonwasmade
between thesemetrics and a survey of studentCADusers.
There were statistically significant positive correlations
between the subjective complexity metrics and the num-
ber of surfaces in a component, the volume ratio, the
cube ratio, and the sphere ratio. The highest and most

significant of these correlations was the volume ratio. The
quantitative assessments of complexity were also con-
sistent with the qualitative survey data collected in the
survey; those components that had attributes associated
with perceivedmodeling difficulty (irregular surfaces and
curved features) were rated as more complex that those
that did not. The combination of objective metrics and
subjective metrics is analogous to the procedure used by
Valentan et al., [37]. These objective complexity metrics
have the ability to add to several aspects of CAD research
and education. These complexity metrics allow for the
evaluation of different components and the comparison
of cases and experiments [6, 36]. For example, in thework
of Company et al., [13], quality assessments are proposed
to improve CAD education and promote preferablemod-
eling strategies; including the volume ratio complexity
metric could allow for instructors to ensure that these
rubrics are appropriate for that level of complexity. Sim-
ilarly, the annotations required to help understand the
design intent of CAD models as highlighted in Camba
et al., [8] could be checked against a geometric com-
plexity metric to ensure that a model has a reasonable
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Table 7. Correlations of complexity metrics with time usage percentage data.

2 3 4 5 6 7 8 9 10 11 12

1. Surfaces 0.510** 0.780** 0.706** 0.105 0.195 0.195 −0.127 −0.072 0.150 −0.049 .471**
(0.000) (0.000) (0.000) (0.483) (0.189) (0.189) (0.394) (0.632) (0.315) (0.743) (0.001)

2. STL 0.435** 0.386** 0.188 0.232 0.232 0.136 0.002 −0.102 −0.103 0.162

(0.002) (0.007) (0.206) (0.116) (0.116) (0.361) (0.987) (0.495) (0.491) (0.276)

3. STL/Part Volume 0.968** 0.172 0.285 0.285 −0.084 0.137 0.066 −0.075 0.439**

(0.000) (0.248) (0.052) (0.052) (0.574) (0.357) (0.661) (0.616) (0.002)

4. STL/Box Volume 0.071 0.255 0.255 −0.032 0.224 0.013 −0.106 0.396**

(0.636) (0.084) (0.084) (0.833) (0.13) (0.933) (0.476) (0.006)

5. Volume Ratio 0.568** 0.568** 0.130 0.119 −0.054 −0.180 0.189

(0.000) (0.000) (0.382) (0.425) (0.717) (0.225) (0.204)

6. Cube Ratio 1.000** 0.081 0.197 0.022 −0.189 0.042

(0.000) (0.588) (0.184) (0.882) (0.204) (0.778)

7. Sphere Ratio 0.081 0.197 0.022 −0.189 0.042

(0.588) (0.184) (0.882) (0.204) (0.778)

8. Doing (%) 0.354* −0.694** −0.675** −0.092

(0.015) (0.000) (0.000) (0.541)

9. Searching (%) −0.327* −0.414** 0.007

(0.025) (0.004) (0.965)

10. Thinking (%) −0.009 0.015

(0.952) (0.921)

11. Trial and Error (%) −0.079

(0.599)

12. Regen (%)

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed).

amount of annotation for its complexity. This evaluation
of objective complexity metrics for CAD modeling fills
a gap in the existing literature. While this does not pro-
vide the missing “universal” CAD complexity metric [1],
these results do provide promising candidates that can be
further studied and used in future work.

The assessment of geometric complexity metrics with
relation to other CADmodel attributes (i.e., those related
to CAD model complexity) and modeling effort also
provide insights. The geometric complexity metrics for
the experimental data set were correlated CAD model
attributes and derived quantities. The only significant
correlations were the volume ratio being negatively cor-
related with the number of incorrect feature termina-
tions (an unexpected result) and the positive correlations
between the cube and sphere ratios and the number of
weak dimensions. More complex models did not lead to
more features or more complex features as identified by
more feature segments or segments per feature. The fea-
ture correlation could be explained by the variation of
modeler skill; as seen in Table 4, some participants were
unable to create any significant geometry as part of their
laboratory practical and scored a zero on the exercise.
Hamade et al., [23] note that more skilled modelers use

fewer features. This lack of correlation also underscores
the variability with which the same geometric can be
created and thus further underscores the possible diver-
gence between geometric complexity and CAD model
complexity.

While several researchers [17, 22, 23, 26] have exam-
ined the interaction of modeling time and certain aspects
of CAD models, this is usually done for a component of
the same geometry and does not take into account how
the modeling time is spent. A notable exception is the
work of Chester [10] which used screen capture tech-
niques to examine CAD modeling procedures. In this
work screen capture videos were analyzed and the mod-
eling activities were categorized into 5 categories: doing,
thinking, searching, trial and error, and regeneration. It
would be expected thatmore complexmodels would take
longer to model and/or that complexity would be posi-
tively correlated with particular time usage categories. As
seen in Table 6, the only time usage category significantly
correlated with the complexity metrics was regeneration
time; it was positively correlated with the surfaces and
normalized STL metrics. This was an expected result;
geometric complexity is related to processing require-
ments [32]. More complex components required more
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Table 8. Correlations of complexity metrics with time usage data controlling for lab practical performance.

2 3 4 5 6 7 8 9 10 11 12 13

1. Surfaces 0.482** 0.771** 0.697** 0.009 0.150 0.150 −0.192 −0.124 −0.025 −0.097 0.315* −0.219
(0.001) (0.000) (0.000) (0.953) (0.321) (0.321) (0.202) (0.411) (0.871) (0.52) (0.033) (0.144)

2. STL 0.412** 0.365 0.119 0.197 0.197 0.041 −0.052 −0.173 −0.136 0.081 −0.157

(0.004) (0.013) (0.431) (0.19) (0.19) (0.785) (0.73) (0.251) (0.367) (0.593) (0.296)

3. STL/Part Volume 0.967** 0.111 0.256 0.256 −0.088 0.074 −0.029 −0.091 0.319* −0.104

(0.000) (0.462) (0.086) (0.086) (0.562) (0.626) (0.85) (0.547) (0.031) (0.493)

4. STL/Box Volume 0.011 0.229 0.229 −0.019 0.159 −0.050 −0.104 0.292* −0.060

(0.941) (0.126) (0.126) (0.898) (0.292) (0.743) (0.491) (0.049) (0.692)

5. Volume Ratio 0.540** 0.540** 0.066 0.069 −0.154 −0.225 0.093 −0.164

(0.000) (0.000) (0.665) (0.646) (0.308) (0.134) (0.537) (0.276)

6. Cube Ratio 1.000** 0.175 0.195 0.012 −0.159 0.053 0.076

(0.000) (0.244) (0.194) (0.94) (0.291) (0.725) (0.617)

7. Sphere Ratio 0.175 0.195 0.012 −0.159 0.053 0.076

(0.244) (0.194) (0.94) (0.291) (0.725) (0.617)

8. Doing (s) 0.474** −0.336* −0.286 −0.030 0.471**

(0.001) (0.022) (0.054) (0.843) (0.001)

9. Searching (s) −0.113 −0.250 −0.033 0.300*

(0.455) (0.094) (0.829) (0.043)

10. Thinking (s) 0.177 0.127 0.425**

(0.238) (0.402) (0.003)

11. Trial and Error (s) 0.089 0.497**

(0.557) (0.000)

12. Regeneration (s) 0.191

(0.204)

13. Total (s)

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed).

regeneration time. The same was true when assessing the
portion of modeling time for each category: the same
three complexity metrics were positively correlated with
regeneration time. Given the relationship between mod-
eling skill andmodeling time [22, 23], a first order partial
correlation was used to control for modeling skill using
the laboratory practical score. Again, only the regen-
eration time usage category was significantly positively
correlated with the surfaces and normalized STLmetrics.

Finally, given the interaction between the number of
features, the complexity of the component, and the mod-
eling time, the complexity metrics were normalized by
the number of features and correlated with time usage
data. As noted in Hamade et al. [24], fewer features can
result in less modeling time. For a component of given
complexity, if it has fewer features, it should be modeled
more quickly. As seen in Table 9, this was the case; the
volume ratio was negatively correlated with the overall
necessary modeling time. The volume ratio, cube ratio,
and sphere ratio were all also significantly negatively cor-
related with trial and error time. Given the skill required
to model a complex component with minimal features,

the participants likely needed to try alternative model-
ing solutions prior to completing their component. This
result along with the high correlation between the sub-
jective complexity survey and the volume ratio make this
a useful objective complexity metric that combines both
geometric and CAD model attributes. When the geo-
metric complexity metrics were normalized by the total
number of feature segments, there were no significant
correlations of note (with the exception of regeneration
time).

These results should be viewed in light of the study’s
limitations. First and foremost, both the survey data and
themodeling data were generated by a sample population
comprised totally of students. While some of them were
senior-level students surveyed just prior to graduation,
they do not have the same modeling experience as prac-
ticing CAD using professionals. However, given the sig-
nificant correlations between their assessments and the
objective complexitymetrics thismight be of limited con-
cern. Some of the lack of significant correlations between
any of the complexity metrics likely stems from the lim-
itation of the experimental data set. Students were asked
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Table 9. Correlations of complexity metrics normalized by features with time usage data.

2 3 4 5 6 7 8 9 10 11

1. Surfaces/Features 0.874** 0.113 0.170 0.158 −0.222 −0.062 −0.035 −0.144 0.393** −0.259
(0.000) (0.451) (0.252) (0.288) (0.133) (0.681) (0.817) (0.333) (0.006) (0.079)

2. STL/Part Volume/Features 0.154 0.262 0.238 −0.134 0.091 −0.023 −0.119 0.355* −0.146

(0.301) (0.076) (0.108) (0.371) (0.544) (0.879) (0.425) (0.014) (0.327)

3. Volume Ratio/Features 0.812** 0.863** −0.127 0.030 −0.097 −0.369* 0.027 −0.384**

(0.000) (0.000) (0.396) (0.839) (0.517) (0.011) (0.856) (0.008)

4. Cube Ratio/Features 0.986** −0.009 0.175 −0.014 −0.369* 0.006 −0.224

(0.000) (0.952) (0.24) (0.924) (0.011) (0.97) (0.13)

5. Sphere Ratio/Features −0.050 0.148 −0.016 −0.398** −0.012 −0.281

(0.737) (0.322) (0.917) (0.006) (0.938) (0.055)

6. Doing (s) 0.462** −0.323* −0.274 −0.058 0.480**

(0.001) (0.027) (0.063) (0.698) (0.001)

7. Searching (s) −0.118 −0.254 −0.013 0.284

(0.428) (0.084) (0.931) (0.053)

8. Thinking (s) 0.184 0.098 0.432**

(0.216) (0.513) (0.002)

9. Trial and Error (s) 0.062 0.502**

(0.677) (0.000)

10. Regeneration (s) 0.140

(0.348)

11. Total (s)

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed).

to bring a component that they thought they couldmodel
in one hour; there was likely selection bias in the data set.
There was a significant positive correlation between the
participant lab practical score and the volume ratio com-
plexity metric of the component they modeled (N = 47,
r = 0.379, p = 0.009). There were also no alternative
variables related to the assessment of different types of
complex features (e.g. lofts or sweeps). While there was
no reported use of such features, a method to tabulate
them and their associated complexity could be useful.
The data also only includes completed models; so stu-
dents that might have been more ambitious (and less
skilled) in their choice of component may not have fin-
ished and thus would not be included in the data set.
The participants also did not receive any additional credit
for modeling their component quickly. This may have
reduced the pressure to model quickly, even for those
students that could have done so.

Future work will attempt to rectify some of these lim-
itations. Possibly having students model components of
varying complexity with corresponding time limits and
incentives for quickness might provide a wider range of
data for a given skill level. This work is also limited to
the initialmodeling of single components. As highlighted
by several researchers [4, 13, 17, 29, 34], one key con-
cern with respect to complexity is the ability to alter a

component. A similar methodology to that detailed here
can be used to assess the effects of component complexity
on alteration processes. This would be similar to thework
by Diwakaran and Johnson [17], but incorporate model
complexity as an independent variable to be correlated
with model perception and alteration time. Rarely do
complex products consist of single components. Again,
building on the methods defined here, future work will
aim to derive analogous complexity metrics for assem-
blies and incorporate the effect of component and assem-
bly complexity on assemblies.

6. Conclusions

No universally accepted metric of CAD model complex-
ity exists [1]. However, there are numerous cases where a
CAD complexity metric could be used for educational,
practical, and research purposes. These include assess-
ing student work, normalizing case data, and ensuring
that the necessary information is presented to help others
understand a given model. This work examined several
objective quantitative geometric CAD complexity met-
rics. The first portion of this work used a test set of 10
CADmodels of both stylized and actual industry compo-
nents along with a survey of 169 participants to examine
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the relationship betweenperceived complexity andobjec-
tive metrics. The second part of this work used a set
of 47 experimental CAD models; complexity metrics for
these components were compared with model attribute
data and time usage data from the screen capture of the
modeling procedure.

The qualitative portion of the survey indicated that
components with irregular or curved features were dif-
ficult to model. This was also shown in the quantita-
tive ratings of complexity; those components in the test
data set with curved or irregular features were deemed
more complex. There were statistically significant posi-
tive correlations between the subjective complexity rat-
ings and the objective geometric complexity metrics.
These included the number of surfaces, the volume ratio
metric, the cube ratiometric, and the sphere ratiometric.
The highest correlation with the greatest significance was
the volume ratio.

The experimental data set was used to examine the
relationships among complexity metrics, CAD model
attributes, and modeling time usage. There were no
expected significant correlations between the geometric
complexitymetrics and the CADmodel attributes.When
examining the relationships between the geometric com-
plexity metrics and time usage (both absolute and pro-
portional), the only significant correlations were between
the surfaces and normalized STL metrics and required
regeneration time. This was an expected result given the
relationship between geometric complexity and required
processing [32]. To account for the role of modeler skill
a first order partial correlation was used to remove the
effect of the lab practical score variable (a proxy for mod-
eler skill); this did not produce any additional significant
correlations between the geometric complexity metrics
and the modeling time usage categories.

To account for the role of efficiency afforded by using
fewer features, the complexity metrics were normalized
by the number of features.Whennormalized by the num-
ber of features, the volume ratio was significantly neg-
atively correlated with the overall modeling time. This
is an expected result given the role that fewer features
plays in modeling efficiency [24]. The feature normal-
ized volume ratio, sphere ratio, and cube ratio metrics
were also significantly negatively correlated with trial and
error time. The modeling of complex features using few
features likely required some trial and error.

Overall, this work has presented an assessment of
objective geometric complexity metrics. The volume
ratio was found to be significantly correlated with subjec-
tive assessments of model complexity. The volume ratio
when normalized by the number of features was also
found to be significantly negatively correlated with mod-
eling time. This metric could be used as a tool for various

research and educational purposes to normalize the CAD
models under consideration.
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