
COMPUTER-AIDED DESIGN & APPLICATIONS, 2018
VOL. 15, NO. 1, 34–46
https://doi.org/10.1080/16864360.2017.1353736

Hybrid state transactional database for product lifecycle management features in
a multi-engineer synchronous heterogeneous CAD environment

Devin Shumway , Jonathan Sadler and John L. Salmon

Brigham Young University, USA

ABSTRACT
As interoperability between Computer Aided Design (CAD) systems becomes a possibility, a need
arises for a way for the Neutral Parametric Canonical Form (NPCF), as designed at the BYU Site of
the NSF Center for e-Design, to be integrated with Product Lifecycle Management (PLM). The only
method currently available to users to sync with a PLM system at this time would be to choose one
CAD system and create files based off of the NPCF data then save those part files in the PLM system.
This database expansion to theNPCF allows theNPCF to hold the entire part history aswell as enable
future work revision history and configuration management. Enforcing referential integrity within
the database allows for part data to never get corrupted and the NPCF allows any CAD system with
the appropriate plug-ins to read the uncorrupted data.

KEYWORDS
Interoperability; CAD
Database; PLM; Multi-User

1. Introduction

Due to the number of Computer-Aided Design (CAD)
applications that are used in a manufacturing supply
chain, companies are forced to interface with differing
CAD file formats than the CAD system that is used in
house. Currently, that is done using translation practices,
namely the International Graphics Exchange Standard
(IGES) [19] or the Standard for the Exchange of Prod-
uct Model Data (STEP) [16]. These standards have their
benefits, but each has their limitations as well [1, 14].
IGES represents only geometric data contained within
the model. While IGES improves upon this limitation,
only Boundary Representation (BREP) data is translated
and features such as associativity are lost.With STEP, cur-
rent research is being done on Solid Model Construction
History (SMCH) which stores BREP data [3] and con-
struction history [4] to not only keep the geometry but
tries to preserve design intent [7]. This leads to large file
sizes [17] and results in failure rates as great as 50% [6].
The objective of this research is to reduce file sizes further
by reducing repeated data as well as reduce failure rates
by denying corrupted data from being translated in the
first place.

1.1. Neutral parametric canonical form

PLM refers to any system or software that tries tomanage
data relevant to a certain product [20]. For the purposes

CONTACT Devin Shumway devin.shumway@gmail.com; Jonathan Sadler jonathansdlr@gmail.com; John L. Salmon johnsalmon@byu.edu

of this research, PLMwill specifically refer to the systems
that attempt to manage CAD system data. The neutral
parametric canonical form (NPCF) is a new neutral for-
mat for storing CAD information in a base mathematical
definition [5]. In eachCADsystemaplugin iswritten that
takes every feature that has been created and using that
CAD systems application programming interface (API)
breaks the feature down into its mathematical definition.
This mathematical definition for a feature is the NPCF.
The NPCF has been implemented into a database for-
mat or the neutral parametric database (NPDB). Due to
the NPCF being a neutral format with information to be
accessed bymany different CAD systems, no CAD-based
PLM system exists to store NPCF information for use in
Product Lifecycle Management (PLM). The data can be
stored in PLM systems but many PLM features such as
configuration management would not be available. Typ-
ical interaction between the CAD system and the PLM
system requires the storage of binary part files such as
NX’s.prt files, or CATIA’s.catprt files. There is no way
currently to store PLM data in a synchronous, collab-
orative, multi-engineer, interoperable database environ-
ment. To save a part into a PLM database currently while
using the NPCF and NPDB, the user must convert to
the system that is interacting with their PLM service and
save the file directly. Due to this conversion between sys-
tems, the benefits gained from having a multi-engineer
synchronous heterogeneous database are lost because the

© 2017 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2017.1353736&domain=pdf
http://orcid.org/0000-0002-5186-7857
http://orcid.org/0000-0002-8073-3655
mailto:devin.shumway@gmail.com
mailto:jonathansdlr@gmail.com
mailto:johnsalmon@byu.edu
http://www.cadanda.com

COMPUTER-AIDED DESIGN & APPLICATIONS 35

saving process defaults to single user and single CAD sys-
tem reliant. Another issue is that currently saved CAD
files are typically stored in binary and lack the ability to
retain referential integrity, the parts files can become cor-
rupted. Within a database format, the product exists as a
mathematical representation of the part and is inherently
stable.

The NPCF format developed at BYU helps to solve
some of the translational problems between current CAD
systems by providing full geometric data through the
state-based format in which the data is stored [5]. This
data is feature specific and thus maintains design intent.
However, unlike STEP, the database format developed
at BYU for the storage of NPCF data does not allow
for the storage of the construction history, which does
result in a lack of full design intent being saved. The
database of the NPCF stores the feature data for every
feature present in a CAD file, part, or assembly. These
features are stored in the database and every client with
access to the database can access the data that relies on
that client’s CAD system to compute and display the data
through exposing the particular system’s application pro-
gramming interface (API). This allows any user to not
only access the data in the database but to push data into
the database and receive data when it is uploaded. The
server monitors traffic and simply pushes a message to
other clients who then process the data locally, result-
ing in a thick client, thin server architecture [18]. This
architecture supports a multi-user synchronous collabo-
rative environmentwheremultiple users can bemodeling
in the same part and or assembly. This environment is
also heterogeneous which allows one user to be work-
ing in Siemens NX and another user to be working on
Dassault’s CATIA simultaneously in the same part or
assembly receiving live updates from the other clients.

While the NPCF helps to solve many issues surround-
ing CAD interoperability, it does leave the user with a
deflated user interface because the NPCF has not been
developed for all features yet, in which they lose many of
the actions that they could perform in a typical CAD sys-
tem. Some of these features include copying parts, undo,
redo, returning to a previous position in the feature tree
for editing, and returning to a previous work position
without deleting. The lack of these features does not rep-
resent an impossibility, but rather an avenue of research
yet to be explored.

Some of the features listed above are typically handled
by PLM systems. This may be an integrated PLM sys-
tem like Team Center or as simple as a user manually
keeping track of all revisions in Excel. Copying parts and
revising parts are tracked using integrated PLM systems.
In current integrated PLM systems, part files are stored
to represent the parts. Since the NPCF uses a database

structure to store feature data, instead of copying part
files, it is possible to add a reference to the new part giv-
ing it a parent part. With a parent part selected, the data
in the parent part can be used to recreate the child part on
loading, thereby reducing the amount of storage needed
for configuration management.

1.2. Multi-engineer synchronous heterogeneous
CAD

For example, multiple users can work in multiple sys-
tems at the same time and receive updates. In Fig. 1, there
are six users working simultaneously on a model of a
guided rocket. Two of the users are working in NX, two
in CREO and two in CATIA. They are all working on one
assembly file and as one user makes a change to any part,
that change can be seen on every other screen that has
the assembly open. The CATIA user in the bottom right
of the screen is working on a servo that moves one of
the control flaps. To show additional functionality, this
user is working directly in a part file and does not have
the assembly part open. As this user makes changes to
the servo, every user that has the assembly file open still
receives their change to the servo but the user does not
receive any updates to the assembly because they do not
have it open. The plugins to the different CAD systems
used in this example utilize the NPCF and the NPDB and
make up the program called Interop.

Interop, a program created at BYU in the CAD lab,
is a thin server, thick client synchronous heterogeneous
CAD modeling program. This program uses the NPCF
to formulate its database and allow users to work in mul-
tiple CAD systems simultaneously [5] similar to the idea
postulated for neutral modeling commands by Li [10, 11,
12]. The current database format has tables for each sup-
ported feature. These tables have a parent part and when
the part is loaded into any system for which a plugin to
the Interop environment has been written, that system
takes the data from the features that have the current part
as their parent part and creates them locally. When a fea-
ture is edited, the data for that feature is overwritten so
that there is only one record of that feature in the database
at any time. Therefore, there is no traditional interpreta-
tion of undo, redo, or history for the part. If the feature
is deleted it is kept in the database but a delete flag is
inserted so that the system knows the feature has been
deleted and should be removed as soon as possible on the
other clients. This is similar to current CAD system files
in that the database contains the information for a state
and this state and associated tables are equivalent to the
save file for the part.

This approach to CAD is different in that multiple
users can edit the CAD file simultaneously in multiple

36 D. SHUMWAY ET AL.

Figure 1. Multiple users working in the same CAD part file in NX pictured in the top left and right corners. CATIA pictured in the bottom
right with the blue background and CREO in the two windows in the bottom left.

different CAD systems and receive the edits of all other
users in the part in real time. The benefit of this structure,
using the NPDB for state saving is quick loading times
because the current state of the part is all that is avail-
able to be loaded at any time and no previous edits need
to be performed to the geometry as was implemented
in previous multi-user CAD tools such as NXConnect.
The downsides are that with the current system only the
current state is saved, no previous data is stored, and
only one revision of each part or feature can be saved
in the database without completely remaking or copying
the part. Design intent is not preserved past the current
state of the part but a portion of design intent is pre-
served because the feature tree is maintained across CAD
systems in the current implementation of multi-engineer
synchronous heterogeneous (MESH) CAD.

1.3. Referential integrity

One of the objectives of this research was to require ref-
erential integrity within the NPCF database structure to

maintain correct data. Also, included in the objectives
was to maintain the quick loading of parts compared to
current multi-user CAD packages that rely on loading
all features and edits chronologically, while preparing the
NPCF database for some PLM capabilities. In the cur-
rent implementation of the NPCF, quick loading is taken
care of through a multiton pattern [2]. The multiton pat-
tern is similar to a singleton pattern except that multiple
instances of the class can be created. This enforces all
parent features be loaded before a child feature can be
instantiated [2]. This speeds up loading times compared
to other multi-user CAD systems because the complexity
of the loading algorithms is handled within the multiton
pattern themselves so that no computations are required
for consistency and loading proceeds quickly.

Referential integrity is the process of enforcing every
database table to have all foreign keys point to a valid ref-
erence [9, 15]. Most database engines will automatically
handle references; however, this is only effective when
the database has been set up in a way to handle every
possible rule. Enforcement of foreign key references in

COMPUTER-AIDED DESIGN & APPLICATIONS 37

the new NPCF database is vital for keeping the database
stable. Referential integrity will help the database recog-
nize corrupted or incomplete data which in turn will be
rejected from the database. Rejected data will remain on
the client that attempted to send it instead of propagat-
ing through each client that is currently in the multi-user
session. Referential integritywill also protect the database
from corrupt data existing in the part history thus allow-
ing it to be more accurate in storing information. Further
checks are implemented on the client side in each CAD
system’s plug-in to check that data sent to the database is
consistent with the feature the user is trying to create.

1.4. Objective

The objective of this research is to define the database
structure to allow for full history storage of every NPCF
state that the CAD part goes through during the editing
process. This data will be the groundwork for integrating
PLM features within a synchronous, collaborative, multi-
user, interoperable database environment. The research
proposed here would not complete a full PLM system,
but rather move the NPCF database into a format where
the data needed for the PLM features of revision history
and configuration management are represented within
the NPCF database.

In order for data to be stored for more than just
the current state, the NPCF requires a couple of objects
attached to the features and for some restructuring of the
database itself. The restructure occurred in such a way
as to allow a list of the associated feature edits, as well
as the feature itself, to be stored. For the state system
to remain intact, each feature stored in the database has
complete history state data and allows the system to still
load quickly without having to apply each edit sequen-
tially. This allows for quick loading of the part no matter
what state is loaded, from the first sketch or datum placed
in the part to the last edit of an extrude. One disadvan-
tage is that this expands the size of the database, although
this becomes less of a problem with improved com-
putational speeds and larger memory available. Despite
this requirement, data added to the system will still
not be duplicated.

2. Methodology

As shown seen in Fig. 2 the conventionalmethod for revi-
sion history takes all saved or checked in parts and saves
off a binary part file that represents the part at that point.
The proposed change to the NPDB will allow for a revi-
sion to be tagged after every single change to the part but
saves to the part are not necessary and the save button
is not implemented with the NPDB but instead saves a

Figure 2. Example showing how conventional revision history
works with save points in blue vs the proposed expansion to the
NPDB with revisions in green.

normal CAD binary file from the CAD system in which
the user is working to their computer. With the part file
being set up as a database there is no need to save the part.
Instead, each change is added to the database and every
single change becomes a revision. To allow for additional
control over which revisions are important a user has the
ability to tag revisions. This allows for complete control
over which revisions are important but no information is
lost if revisions are not saved. Tags can further be added
at any time.

In order to implement this the NPDB will be revised
to include state tables for each feature that store the
actual state information for that feature removing it from
the feature itself. SQL is used for the database and to
implement the code for working with the changes to the
NPDB based on the API of each CAD system, for exam-
ple NXOpen for NX. This approach is a database change
that supportsmaintaining referential integrity and imple-
menting new features into the NPDB for use in MESH
CAD.

3. Implementation

The implementation of this database can be broken
down into four key operations, which include: revision
history, referential integrity, configuration management,
and quick loading, and are explained in detail in the
following sections.

3.1. Revision history

The main impetus in further developing the NPCF was
to include full part history in the database. In order to
achieve this, a new database structure was created in the
Interop database or neutral parametric database (NPDB)
as can be seen in Fig. 3. ADBInteropState table was added
that inherits from themain object table DBInteropObject
as shown in Fig. 4. This table also points to a DBFeature

38 D. SHUMWAY ET AL.

Figure 3. High-level database structure showing added tables for revision history in green and configuration management in yellow.
Previous version of database structure can be seen in blue.

table; this relationship is a one to many with one DBFea-
ture having many DBInteropStates. The reason behind
this was that each feature has many states and each state
is needed to preserve revision history. This small change
caused a cascade of other necessary changes to the CAD
plugins already included in the Interop environment.

The current state of the NPDB before this change had
all database tables as children of the DBFeature table. In
order to store all of the feature data in the database, this
data wasmoved under a new table calledDBInteropState.
The DBFeature tables such as DBExtrude and DBSketch
remain as children of DBFeature however they no longer
contain the feature data that is stored in the matching
DBInteropState table. The DBFeature tables now store a

list of theDBInteropStateswhich then contain all the state
information.

When a user creates or edits a feature a new state is
created for that object which is a database table entry for
a state as can be seen in the right side table of Fig 4. If that
state is a new state, a DBFeature is created along with the
new state, left side table in Fig. 4. When an edit is made,
the DBFeature is first captured from the current state by
following the navigational property for the states DBFea-
ture seen in the DBInteropState table in Fig. 4. Then a
new state table entry is added to the DBFeature and time-
stamped accordingly. Thus, if the user creates an extrude
object and edits that extrude object multiple times, the
database would have one DBFeature table entry for the

COMPUTER-AIDED DESIGN & APPLICATIONS 39

Figure 4. Database tables showing the relationship between DBFeature and DBInteropState with a one to many relationship.

extrude and then several DBInteropState tables that con-
tain the data for the extrude’s geometric properties at
different times.

3.2. Referential integrity

This implementation creates a database that has an entry
for each feature. That database entry has a full list of states
for every edit in the part’s history. Unfortunately, this
method still does not fully address referential integrity
as discussed earlier because a DBInteropState can be
attached to any DBFeature such as a DBLine2D, which
points to the DBFeature table for the end point and the
start point. Since DBFeature can be any type of feature
this is an issue. However, with the new implementa-
tion no other data or tables other than DBFeature is
referenced, because all sub tables were deleted. These
sub tables were not necessary to set up the references
needed to create the states. Now the DBFeature table is
all that remains but is not enough to maintain referen-
tial integrity.Without referential integrity, data being sent
to the server can become corrupted and can be difficult
to recover as CAD systems will fail when trying to open
the part.

In order to maintain tighter referential integrity, a
FeatureTypeID is added to the DBFeature object. The

FeatureTypeID is simply an integer value that corre-
sponds to a list and every feature is assigned an integer
value. This FeatureTypeID acts as a check for when a
client adds a state to a feature. If the FeatureTypeID
matches the ID of the state object then the addition is
allowed. If the FeatureTypeID does not match then the
addition is not allowed and the addition is rejected from
the database as it implies that the state was not created in
the correctmanner. This change to the database structure
helps maintain tighter referential integrity.

DBInteropState is the parent table of many different
state tables including a number of sketch tables such as
DBPoint2DState and DBLine2DState. These tables store
the state data for the points and lines that reside within a
sketch. Inside the DBLine2DState, there are two naviga-
tion properties that are the links that show which points
in the database are the associated start and end points for
that line as can be seen in Fig. 5. With the addition of
states to the database, the endpoint and the start point
can each contain a list of states. These states are con-
tained within a DBFeature’s DBInteropStates reference
list. Thus, a line state has a reference to a start point,
which has a list of states for every revision of that point.
The challenge is that with the change in the database
every reference goes back to a DBFeature object because
that is what contains the state list. Although the state list

40 D. SHUMWAY ET AL.

Figure 5. Line2DState table showing the references to Start Point
and End Point.

does not allow for different states to be stored, from the
perspective of the DBLine2DState table there is no way
to know if the reference to its start point is actually a
point2D or an extrude. Therefore, this method does not
maintain referential integrity.

In order to maintain referential integrity, a matching
schema under DBFeature was developed that mimics the
architecture under DBInteropState. For every state table,
a matching DBFeature object table such as DBLine2D
that inherits from DBFeature was added. This way, when
a feature such as DBLine2DState references two exter-
nal DBFeatures referential integrity can be enforced
through the existence of DBPoint2D as a table. The
DBLine2DState has two references in it that are one-to-
one; they each point to a separate DBPoint2D object and
each of these points has their own state tables. The cor-
rect state is chosen to represent that line at any given time.
This table is nearly blank, containing an inherited global
unique identifier (GUID) from the parentDBFeature that
allows the table to be referenced. This forces an external
reference that is contained in a state table to point to a
DBFeature that is an instantiation of the feature that is
actually desired, thus maintaining referential integrity.

This structure also allows the database to store a
DBLine2D state that never needs to change when the ref-
erenced points are edited. It does this by allowing the
points to have separate DBPoint2DState tables which can
have their own states. This way, when an edit is made to
a point, a state table is added to that point feature, but it
is not needed to change the DBLine2D or add a state to it
because it has been handled by the point state table and
no duplication of data is necessary. For example, if the
user has a line that has start point A and end point B, and
the user edits start point A to a new location, a new point
state is created. However, no new state is needed for the
line because it did not receive a new start point table but
rather the existing start point was edited.

3.3. Configurationmanagement

Configuration management is the process of producing
and managing different configurations of a part that all
contain geometry from other configurations. An exam-
ple of this would be a car manufacturer having two CAD
assembly files for their regular and luxury models of each
of their designs. These two files expectedly share a lot of
the same geometry. For example, they may have the same
seat belts designs and they may have the same audio sys-
tem and all its associated parts. This type of data is all
relevant for making the various models of the car. If a
change is made in a part to a feature, then currently a
new part file with a revision number at the end is cre-
ated. Continuing with the car example, if a car company
desired their sport edition model to have a hood scoop,
they would keep the geometry of the rest of the hood and
add a scoop to the center. This results in a new part file
and this new part file duplicates a lot of the data that is
contained in the original part file. To implement a new
database structure that would allow the user to add a
hood scoop to one part file and keep the original part
file intact for their othermodel, a method from computer
programming was applied called “branching” [13].

In order to keep track of branching, a branchID was
added in the form of a GUID to the DBInteropState table
which can be seen in Fig. 4. A user can create a new
branch manually which creates a new branchID. This
branchID serves as a unique identifier for the current
branch that the state is created on. Figure 6 shows three
points being created and edited across multiple branches.
This example shows how multiple users can take advan-
tage of the branching functionality and the new approach
to configuration management where configurations are
handled at a feature level and not a part level.

Figure 6 shows a part that has four different desired
configurations labeled Branches 1 through 4. In Branch
1 multiple users start out in the part. Each user can use
the CAD system of their choice between NX, CATIA and
CREO and one of the users creates the first point in any
systemwhile all other users receive the addition of a point
in real time. At this point, a couple of users create a new
branch which adds a DBBranch table entry for the cre-
ation of that branch. They then proceed to create a new
point labeled Point 3, edit that point and subsequently
edit Point 1. At the same time the users that remain in
Branch 1 create a new point labeled Point 2 and edit
Points 1 and 2 multiple times. At this point two different
users create Branches 3 and 4 and edit Point 1 on each
branch. At the end there are four different branches with
three points in different configurations, multiple users
are allowed in each branch at a time on different CAD
systems and when a user makes an edit on a branch other

COMPUTER-AIDED DESIGN & APPLICATIONS 41

Figure 6. Example timeline of three points being created and edited on different branches at different times.

users do not receive that edit unless they are currently
working on the same branch on which the edit wasmade.

Another example where branching may be useful
would be in the example of designing a bike rim as can
be seen in Fig. 7. In this example two users enter the part
and create the center and outside edge of the rim as can
be seen in Fig 7(a). One user creates a second branch of
the part and adds a configuration of the part that has a
few spokes in Fig. 7(b). At the same time a second user
creates a configuration on a separate branch with many
spokes as can be seen in Fig. 7(c). In this example both
users were able to use the geometry from Fig. 7(a) with-
out saving a part file, copying that part file and uploading
the part file into the database. They are also allowed to be
working in different CAD systems simultaneously with
one users using NX as can be seen in Fig. 6 and the other
user using either CATIA or CREO.

This method of configuration management is new by
allowing users to create different configurations at the
feature level but also new in the fact that users can work
across CAD systems simultaneously. A benefit that is
added to the design process is that the analytics team
could create a branch of the part at any point, take that
part and run their analysis while the design team work-
ing on the part does not need to check in the part, save or
do anything to allow the analytics team to have the most
recent version of the part. They can also continue work-
ing on the part while the analysis is running, no longer
are parts stuck in a silo of design or analysis but can be
worked on simultaneously by both parties.

Table 1. Table showing the creation and edits of 3 points onmul-
tiple branches in order, according to time with a branch being
created in the middle and one point being edited on the new
branch.

PointID XCoord YCoord BranchID

1 0 0 1
2 1 1 1

Branch 2 Created – –
1 1 4 2
2 1 2 1
3 4 3 1

Table 1 shows a hypothetical, incomplete list of states
for a DBPoint2D feature to serve as an example of how
this branching method works.

The chain of events as to how this table is created is
that a user creates two points: one at coordinates of (0,0)
and (1,1), respectively. They then branch off of this part
and change point one on the new branch to coordinates
(1,4). They then return to branch one and move point
two to coordinates (1,2) and create a new third point at
coordinates (4,3). (Although this simple scenario demon-
strates how this implementation works, the fundamental
steps would be identical in the context of a real and more
complicated scenario). If two users were actively editing
this part concurrently and one was working on branch
one and the other was working on branch two, then the
user working on branch one at the end of this editing sce-
nario would have three points at coordinates of (0,0) (1,2)
and (4,3). The user working on branch two would have
two points located at coordinates of (1,4) and (1,2). It is a

Figure 7. Branching example for a bike rim. The base features being created in (a) and two different configurations of the part being
shown in (b) and (c).

42 D. SHUMWAY ET AL.

simple chronology of events detailing what has happened
in the part up to this point in time.

Table 2 shows the branch history of Branch 1 while
Tab. 3 shows the history of Branch 2. In order for the
full history to be preserved, Branch 2 contains all of
the information from Branch 1 as well as all additional
changes made after Branch 2 was created. As expected,
Branch 1 contains all data for the changes made on
Branch 1. Since the point state table really only contains
four point states, this schema has successfully created
two parts without duplicating data and reducing the stor-
age size of the objects. A downside for this method is
that the state based loading scheme, mentioned in the
introduction does not hold and loading becomes more
complicated. However, data is still not duplicated and one
additional step in the loading process is added out from
every branch that is created in sequence to overcome this
downside.

One other benefit of this process, beyond the scope
of this research, is the ability to keep features associative
with a parent feature. In one scenario,multiple user could
be editing a base feature while working in a different con-
figuration of the part resulting in the part updates based
on the changes to the base features. An example of this
would be if a car rim designer wanted to create two differ-
ent rims but bothmodels needed to have the samemating
mechanism for connecting to the axle of the car. In this
scenario, if a user were to design the mating mechanism
which is part of the part and then create a branch where
they create the second design of the rim they could have
the mechanism be associative to the first part. Therefore,
when a change needs to be made to the mating mecha-
nism, it could be made in the first part and automatically
be made in the second part. No wave linking would have
to take place, no added features would be needed, and
the user could select to make that section of the part
associative. The potential of this technique would require
additional research into design practices and finding use

Table 2. Table showing the edits and creations that took place on
Branch 1.

PointID XCoord YCoord BranchID

1 0 0 1
2 1 1 1
2 1 2 1
3 4 3 1

Table 3. Table showing the edits and creations that took place to
make up Branch 2.

PointID XCoord YCoord BranchID

1 0 0 1
2 1 1 1
1 1 4 2

caseswhere this could be beneficial, but it is an interesting
research topic that is now enabled through the full history
with associativity and configuration management.

3.4. State based loading

Previous attempts at multi-user CAD, such as NXCon-
nect, implement a full history transaction database that
handles loading by performing all operations performed
by users after the last part save in order to create the
part [7]. This is a good method of making sure that all
users in the part are at the same point and have the same
data after loading. The problem is that if the part has
not been saved in a long time there are many operations
that need to be processed and the part takes a long time
to load [8]. Also, within a heterogeneous CAD environ-
ment, the CAD files cannot be saved into their respective
CAD systems part files without losing the benefits created
by having the NPCF, including the fact that every time
the part is loaded it would have to be translated back into
the NPCF for use by the other systems. A user could have
changed their mindmultiple times about the height of an
extrude, and as a result, the loading process itself would
change the extrudemultiple times. The benefit of the cur-
rent state based database is that it stores the current state
of the part so only one action is performed per feature
and no edits are computed.

Proper application of branching is vital to implement-
ing a fast loading scheme. The current loading scheme
can always be fast because it has one state of the part,
which is extracted from the database, and then constructs
the geometry through the CAD system’s API. With the
additional information stored in the database, the client
needs to know which state is being loaded and on what
branch. When the part has multiple branches, the server
needs to know which latest version of each feature must
be loaded by the client and send that data to the client to
open the child branch without errors.

The loading can become fairly complicated when
multiple branches exist, but the fundamentals can be
described in the terms of the example shown above in
Tab. 2 and Tab. 3. In order to load Branch 1, the latest
state of each feature with the branchID equal to Branch 1
would be loaded into the part and loading would be com-
plete. Loading for a single branch is as simple as grabbing
the last state saved in the database.

For loading Branch 2, the schema loads all of Branch 1
up until the creation of Branch 2. It then loads all updates
to those features that exist onBranch 2. The process, how-
ever, does not load the updates to those features that exist
on Branch 1. Essentially, it loads Branch 1 up until Branch
2 and then switches to Branch 2 and does not execute any
of the changes that are on Branch 1. Creating new states

COMPUTER-AIDED DESIGN & APPLICATIONS 43

is as simple as adding a new state with the appropriate
branchID for the current branch.

This approach to loading is not an improvement on
traditional CAD part loading for single user systems,
in fact since no binary files are used it is slower than
traditional loading as the API must perform all of the
operations to create the part on load. This approach was
designed to allow for loading the most recent state of the
part without having to load any previous edits as was
available with the previous NPDB due to not having the
additional part states saved in the database. To get to the
final state of the part as is implemented in NXConnect
as mentioned above would have to load every edit. This
approach combines the state based loading available with
the NPDB in its old form with the full transaction his-
tory provided in NXConnect without having to increase
loading times, improving on a full transactional database
loading time but not on traditional loading times.

4. Results

As a result of this research, the NPDB has been expanded
while still utilizing the NPCF to allow for incorporation
of revision history and configurationmanagement. These
added capabilities were successfully demonstrated by a
team of users by modeling each feature supported in the
database in NX. Upon successful creation of each feature,
users were asked to edit each feature. After successful
edits were made to each feature and propagated across
all clients, the database was manually checked to ensure
that datawas stored correctly. No specificmodel was used
and users had the freedom to create features in whichever
manner they saw fit. Edits were done in the same fashion
allowing users to make changes as needed. This validated
that NPDB with the end model containing every feature
supported in the NPDB at this time.

In order to test the NPDB expansion across multiple
CAD systems, the extrude feature was implemented in
the plugins for CATIA, CREO and NX. Three users each
working in a different CAD system at the same time on
different machines modeled a simple extrude as seen in
Fig. 8 (a) and edited the height of the extrude multiple
times as can also be seen for comparison in Fig. 8 (a).
Each client was able to pull the extrudemade by the other
clients and apply them on their own machine as well as
update the model and receive edits on their machine.
As before, in order to ensure that data was pushed for
not only the creation of the extrude but also for each
subsequent edit the database was checked manually and
verified its implementation as can be seen in Fig 8 (b).
This validates the process because the data shows the dif-
ferent limits used by the multiple clients on the three
different Referenced Profile GUIDs. Each state contains

its identifying GUID, while each DBFeature is associated
withmultiple states demonstrating proper function of the
database where each state should have their own GUID
which is represented in Fig. 8 (b) in the left column.

To test for the correct implementation of referential
integrity, users were asked to constrain a sketch line to
a point that was outside of the current sketch in three-
dimensional space which should have a table identity of
Point3D. Line2D has references for start and end points
that only allow Point2D as seen in Fig. 5. Since the
point being referenced was a Point3D but the database
expected a Point 2D, this data was rejected from the
database and the other users in the part did not receive
this edit. In a full CAD system, this action would be
allowed, so further research is required to allow for mul-
tiple different features of objects to be used as reference
objects.

Branching separate parts is functional in the database
and the database knows how to handle the received
information. However, no method has been instantiated
in the CAD plug-ins at the moment that would allow
the user to access this functionality. For testing pur-
poses, the branchIDs were entered manually to test the
functionality of the database on receiving the data. The
database worked as expected in this regard rejecting bad
data and storing the data correctly for multiple different
branches.

Loading is fast and allows users to have created mul-
tiple different branches in the database but shows all
branches as a single part. Although this may not be
desired in the future, the proof of concept database as
part of this research that would handle the multiplicity
of branches was demonstrated and not necessarily the
graphical user interface on how the user would interact
with them. For testing these features, the database calls
were manually intercepted and a branchID was added to
the call so that the database could store the correct data.
Database messages were also manually sent with new
branch ID’s to the other clients to test receiving data that
is not in the current branch. Further research is needed to
implement branching of parts locally in the CAD client
as well as additional research on how to automate the
loading of the data correctly without mending database
messages.

The objective of this researchwas to expand theNPDB
to allow for advanced PLM features to be implemented
locally and utilize the NPCF. Based on these validation
tests, theNPDBhas been correctly enhanced and iswork-
ing appropriately to store all the data for creating, delet-
ing, and editing features in a MESH CAD environment.
With further research, additional large add-ons can be
achieved to increase the capability of the MESH CAD
environment.

44 D. SHUMWAY ET AL.

(a)

(b)

Figure 8. (a) Final state of extrudes shown in both the CATIA and NX CAD clients. (b) Database table data for extrudes shown in (a) as
well as all edit data.

5. Conclusion

5.1. Summary

While MESH CAD and the NPCF have been developed
to help increase design transparency across a heteroge-
neous CAD environment, these solutions are still in the
early stages of development and lack full connection into
PLM systemswhich are necessary to the designworkflow.
In order to better test and develop these systems to help
address issues, such as the cost of translation of CAD file

data, there is a need to allow interaction with features
that users are accustomed to having in a PLM system.
In a multi-user environment, it becomes increasingly
important to know what other designers were intending
to do while creating a part and allowing a user to see
each change made to the part in correct chronological
order thereby moving toward greater visibility between
designers. Keeping the database in a state in which refer-
ential integrity is maintained helps keep the data passed
between designers valid and allows for greater trust in

COMPUTER-AIDED DESIGN & APPLICATIONS 45

models that are being developed by multiple designers
at the same time. Configuration management tools allow
users to select features needed for a new design with-
out having to copy data or duplicate work, which allows
for quicker modeling practices and a faster turnaround
time during the design process. These features add to the
validity of the multi-user environment and the NPCF.

PLM systems manage great amounts of data and the
changes made to the NPDB only account for a very select
feature set managed by PLM. These features however
increase the capabilities available to a multi-user envi-
ronment and the small feature set allows for them to be
implemented securely and accurately. Future work will
allow for greater control over CAD data in any system
and a greater decrease for the time and money required
currently for translation.

5.2. Future work

As mentioned, currently in order to create a branch the
database tables must be edited manually. Ultimately, a
GUI could be implemented to create a new branch or
configuration of a part. This feature would expand the
functionality of the MESH CAD environment allowing
for configuration management. Due to the nature of the
NPDB, this configuration management could be enabled
at the feature level. This is different than the current
state of configuration management which is only done
at the part level. Additional research would be required
to understand if this additional functionality is beneficial
to the design process. In order to facilitate this change,
multiple changes are needed to each of the MESH CAD
plug-ins, including the creation of a GUI with which to
interact to create a new branch. This will allow for quick
adjustments to be made to the configuration of assem-
blies, subassemblies, and features. An additional feature
that would be beneficial to a user would be the ability to
create a new configuration based off a previous revision
of the part. In order to facilitate this change a differ-
ent GUI would be required to allow the user to revert
to a previous state of the part and then create a branch
from that point. These features should allow for the addi-
tion of the functionality that is desired by the expansion
to the NPDB and, having these features available in the
CAD systems, could result in a greater design transfer-
ability and transparency. It could also lead to a reduction
in time required to make different configurations of the
parts which decreases the time from conception to part
realization.

These changes are important because they help to inte-
grate PLM features into the CAD system giving more
power to the designers and allowing for more collabo-
ration. With increased collaboration, it is believed that

there will be fewer turn backs in the design process
due to errors and more innovation due to the ability to
collaborate with other users in real time.

Acknowledgments

This research was in part supported through membership
funding through the National Science Foundation Center for
e-Design – Brigham Young University Site.

ORCID

Devin Shumway http://orcid.org/0000-0002-5186-7857
John L. Salmon http://orcid.org/0000-0002-8073-3655

References

[1] Basu, D.; Kumar, S. S.: Importing mesh entities through
IGES/PDES, Advances in Engineering Software, 23(3),
1995, 151–161. http://doi.org/10.1016/0965-9978(95)000
75-5

[2] Bowman, K.; Shumway D.; Jensen G.: Pseudo-Singleton
Pattern and Agnostic Business Layer for Multi-Engineer,
Synchronous, Heterogeneous CAD. In press http://doi.
org/10.1080/16864360.2016.1240449.

[3] Cheng, Y.; He F.; Wu, Y.; Zhang, D.: Meta-operation Con-
flict Resolution forHuman-Human Interaction inCollab-
orative Feature-Based CAD Systems, Cluster Computing,
19(1), 2016, 237–253. http://doi.org/10.1007/s10586-016-
0538-0.

[4] Choi, G. H.; Mun, D.; Han, S.: Exchange of CAD part
models based on the macro-parametric approach, Inter-
national Journal of CAD/CAM, 2(1), 2009.

[5] Freeman, R. S.; Bowman, K. E.; Red, E.; Staves, D.
R.: Neutral Parametric Canonical Form for 2D and
3D Wireframe CAD Geometry. In ASME 2015 Interna-
tional Mechanical Engineering Congress and Exposition,
2015, V011T14A004-V011T14A004, American Society
of Mechanical Engineers. http://doi.org/10.1115/IMECE
2015-51969

[6] Haenisch, J.: (1990, November). CAD-exchange-towards
a first step implementation. In Industrial Electronics Soci-
ety, IECON’90, 16th Annual Conference of IEEE, 1990,
734–739, IEEE. http://doi.org/10.1109/IECON.1990.
149231

[7] Han, S.: Macro-parametric: an approach for the history-
based parametrics, in Soonhung Han (guest editor), Spe-
cial issue: The future of CAD interoperability: History-
based parametrics, Int. J. Product Lifecycle Management
(IJPLM), 4(4), 2010, 321–325. http://doi.org/10.1504/
IJPLM.2010.036485

[8] Hepworth, A. I.; Tew, K.; Nysetvold, T.; Bennett, M.;
Jensen, G.: Automated Conflict Avoidance in Multi-user
CAD, Computer-Aided Design and Applications, 11(2),
2014, 141–152. http://doi.org/ 10.1080/16864360.2014.
846070.

[9] Kappe, F.: (1996). A scalable architecture for main-
taining referential integrity in distributed information
systems. In J. UCS The Journal of Universal Com-
puter Science, 1996, 84–104, Springer Berlin Heidelberg.
http://doi.org/10.1007/978-3-642-80350-5_8

http://orcid.org/0000-0002-5186-7857
http://orcid.org/0000-0002-8073-3655
http://doi.org/10.1016/0965-9978(95)00075-5
http://doi.org/10.1016/0965-9978(95)00075-5
http://doi.org/10.1080/16864360.2016.1240449
http://doi.org/10.1080/16864360.2016.1240449
http://doi.org/10.1007/s10586-016-0538-0
http://doi.org/10.1007/s10586-016-0538-0
http://doi.org/10.1115/IMECE2015-51969
http://doi.org/10.1115/IMECE2015-51969
http://doi.org/10.1109/IECON.1990.149231
http://doi.org/10.1109/IECON.1990.149231
http://doi.org/10.1504/IJPLM.2010.036485
http://doi.org/10.1504/IJPLM.2010.036485
http://doi.org/ 10.1080/16864360.2014.846070
http://doi.org/ 10.1080/16864360.2014.846070
http://doi.org/10.1007/978-3-642-80350-5_8

46 D. SHUMWAY ET AL.

[10] Li, M.; Gao, S.; Wang, C. C. L.: Real-Time Collabora-
tive Design With Heterogeneous CAD Systems Based
on Neutral Modeling Commands, Journal of Computing
and Information Science in Engineering, 7(2), 2007, 12–15.
http://doi.org/10.1115/1.2720880.

[11] Li, M.; Gau, S.; Li, J.; Yang, Y.: An approach to sup-
porting Synchronized Collaborative Design within Het-
erogeneous CAD Systems, ASME 2004 International
Design Engineering Technical Conferences, 2004, 511–519.
http://doi.org/10.1115/DETC2004-57703.

[12] Li, M.; Yang Y.; Li, J.; Gao, S.: A preliminary study on syn-
chronized collaborative design based on heterogeneous
CAD systems, PhD thesis, Zhejiang University, 2003.
http://doi.org/10.1109/CACWD.2004.1349025.

[13] Loeliger, J.; McCullough, M.: Version Control with Git:
Powerful tools and techniques for collaborative software
development. “O’Reilly Media, Inc.’’, 2012.

[14] Marjudi, S.; Amran M.; Abdullah, K. A.; Widyarto, S.;
Majid, N.; Sulaiman, R.: A Review and Comparison
of IGES and STEP, Proceedings of World Academy of
Science, Engineering And Technology. 62, 2010, 1013–
1017.

[15] Markowitz, V. M.: Safe referential integrity structures in
relational databases (No. LBL-28363; CONF-9109190–1).
Lawrence Berkeley Lab., CA (USA), 1991.

[16] Pratt, M. J.: Introduction to ISO 10303—the STEP stan-
dard for product data exchange, Journal of Computing and
Information Science in Engineering, 1(1), 2001, 102–103.
http://doi.org/10.1115/1.1354995

[17] Pratt, M.J.: Extension of the Standard ISO10303 (STEP)
for the exchange of parametric and variational CADMod-
els, Proceedings of the Tenth International IFIP WG, 5(3),
1998.

[18] Red, E.; Jensen, G.; Weerakoon, P.; French, D.; Benzley,
S.; Merkley, K.: Architectural limitations in multi-user
computer-aided engineering applications, Computer and
Information Science, 6(4), 2013, 1.

[19] Smith, B.; Wellington, J.: Initial graphics exchange speci-
fication (IGES); version 3.0 (No. PB-86-199759). US. Nat.
Bureau Stand, 1986.

[20] Stark, J.: (2015). Product lifecycle management. In Prod-
uct Lifecycle Management, 2015, 1-29. Springer Inter-
national Publishing. http://doi.org/10.1007/978-3-319-
17440-2_1

http://doi.org/10.1115/1.2720880
http://doi.org/10.1115/DETC2004-57703
http://doi.org/10.1109/CACWD.2004.1349025
http://doi.org/10.1115/1.1354995
http://doi.org/10.1007/978-3-319-17440-2_1
http://doi.org/10.1007/978-3-319-17440-2_1

	1. Introduction
	1.1. Neutral parametric canonical form
	1.2. Multi-engineer synchronous heterogeneous CAD
	1.3. Referential integrity
	1.4. Objective

	2. Methodology
	3. Implementation
	3.1. Revision history
	3.2. Referential integrity
	3.3. Configuration management
	3.4. State based loading

	4. Results
	5. Conclusion
	5.1. Summary
	5.2. Future work

	Acknowledgments
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

