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ABSTRACT
In recent years, the use of 3D anthropometry for product design has become more appealing
because of advances inmesh parameterisation, multivariate analyses and clustering algorithms. The
purpose of this study was to introduce a new method for the clustering of 3D head scans. A novel
hierarchical algorithm was developed, in which a squared Euclidean metric was used to assess the
head shape similarity of participants. A linkage criterion based on the centroid distance was imple-
mented, while clusters were created one after another in an enhanced manner. As a result, 95.0% of
the studied sample was classified inside one of the four computed clusters. Compared to conven-
tional hierarchical techniques, our method could classify a higher ratio of individuals into a smaller
number of clusters, while still satisfying the same variation requirements within each cluster. The
proposed method can provide meaningful information about the head shape variation within a
population, and should encourage ergonomists to use 3D anthropometric data during the design
process of head and facial gear.

KEYWORDS
3D anthropometric data;
clustering algorithm;
hierarchical algorithm

1. Introduction

One of the main objectives of human factors, when
applied to engineering and industrial design, is to con-
ceive equipment and devices that closely “fit” the people
who use them. This is usually accomplished by collecting
and processing anthropometric data of a group of users,
describing the body dimensions relevant for the specific
design. Subsequently, these data need to be summarised
in a simplified and useful manner in order to be used
efficiently by the product design team.

The recent developments in 3D scanning technologies
have encouraged the use of 3D anthropometric measure-
ments for product design [6,22,24,25]. These data pro-
vide an in-depth description of the size and shape char-
acteristics of the scanned subjects due to the large set of
data points they contain. However, it remains difficult to
analyse proficiently these data and to present body shape
information in a summarised form for the population of
interest. As the type of information provided to design-
ers must be simplified, size and shape characteristics are
typically presented as a series of genericmodels; i.e.,man-
nequins and headforms. To create these models, it is nec-
essary to first group subjects with similar size and shape
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attributes into a set of representative clusters. Multiple
methods have been presented in the past to describe
how these groups could be created. However, only a few
focused on 3D data only. In this study, we introduce an
original method based on clustering algorithms.

Arguably, the following requirements should be satis-
fied when creating clusters of individuals for 3D-sizing
systems;

• first, the generated clusters should be as compact as
possible to favour better-fitted designs of ergonomic
products such as helmets (for 3D head scans, the
whole geometry of the head should be similarly
shaped for all subjects in a cluster),

• second, the method should be robust against outliers
to avoid the creation of too many clusters (very dis-
similar objects could belong to no clusters), but should
also aim to accommodate a large ratio of people from
the studied population,

• third, the method should be able to capture clusters
with various densities and shapes in order to represent
the full spectrum of the 3D shapes considered. Indeed,
while it is envisaged that a large proportion of the data
could be clustered in a couple of very dense clusters, it
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is important that less frequent shapes are also detected,
• fourth, the algorithm’s complexity should be in line

with the size of the dataset considered (i.e., the larger
the dataset, the more efficient the algorithm).

2. Prior work

In recent years, researchers have used statistical analyses
(Principal Component Analysis PCA) and/or data min-
ing methods (clustering algorithms) to outline the shape
variation of the human body from 3D anthropometric
data [1,5,15,17–19,24,26]. These studies were facilitated
by Allen et al. [1] who further developed a method called
point set registration [8, 9] for the study of 3D shapes of
human body parts. In such technique, a uniform polygon
mesh called the template is warped over the raw 3D scans
of numerous subjects using regularized transformations,
therefore enabling shape comparisons on a point-by-
point basis. Theoretically, a point i on the corner of the
left eye socket should be identically located across all
subjects if they share the same registration process.

PCA is a variable-reduction technique, which aims to
decrease the large number of variables (i.e., the num-
ber of points in the template mesh) into a smaller set
of artificial variables called Principal Components (PCs).
Measuring the statistical dispersion of the PCs can pro-
vide a reasonable understanding of the shape variability
of the population. The study of these dispersions has led
researchers to the creation of PC-based clusters [17, 24].
However, the inherent characteristics of PCA have made
the process of creating these clusters problematic. First,
PCA suffers from the all or nothing dilemma, whereas
each variation of a PC’s value acts on all the points of
the mesh model, often in a confusing and unintelligible
manner. Second, the number of PCs to consider in the
analysis is often based on subjective assessments, result-
ing in a non-optimal solution. PCA produces as many
components as there are points in the template mesh,
accounting for all the variance in the sample. However,
compromises have to be made, as the purpose of the
analysis is to explain as much variance as possible using
as few PCs as possible. Third, interpreting and combin-
ing the shape variation caused by each selected PC into
meaningful clusters have proved to be difficult, especially
when three or more components are used. For instance,
these limitations caused Meunier et al. [17] to restrict
their grouping study to only two PCs, resulting in a sta-
tistical model representing only 50% of the sample’s total
variance.

Clustering algorithms group objects that are “simi-
lar” to each other into clusters. Many clustering methods
have been proposed in the past, which all have some
advantages and drawbacks. The algorithm’s selection

is generally application-dependent. Connectivity models
such as hierarchical clustering performwell for the gener-
ation of compact clusters, but can be slowwhen analysing
large datasets (O(N3)). They may also suffer from the so-
called single-link effect, where apparent distant clusters
end up connected due to a thin line of objects between
them. Density models like DBSCAN [12] or OPTICS [3],
and centroid models like k-means [16] and k-medoids
[14], are faster to solve, but require input parameters that
are usually difficult to define efficiently (e.g., minPts and
ε for DBSCAN, k for k-means). For example, Niu et al.
[18] clustered 3D head scans of Chinese soldiers using
a k-means algorithm. They set the number of clusters
k to seven beforehand but did not provide any detailed
analysis that justified this selection.

3. Contributions

In this study, we introduce an algorithm that divides and
classifies small to medium size samples of 3D head scans
into clusters. Following a modified hierarchical cluster-
ing algorithm, distance metrics between pairs of regis-
tered head scans are calculated and implemented in a
step-by-step process, where clusters are created one after
another (instead of simultaneously) in an enhancedman-
ner. Contrary to conventional hierarchical methods, this
approach generates a smaller number of clusters while
still complying with the same distance metric require-
ments and classifying a large ratio of subjects. As shown
in section 5, a high level of intra-cluster similarity (head
shape similarity of the individuals in the same cluster) can
still be achieved with this method.

The paper is organized as follows. In section 4, we
first present the point set registration method applied
in our study and then move to the introduction of the
fundamental notions of standard hierarchical clustering
algorithms.We then describe in detail the new algorithm.
The algorithm is then tested on a database of 3D head
scans. In section 5, an evaluation of the algorithm’s per-
formance is presented where we compare our results to
those obtained using conventional hierarchical clustering
methods. Finally, in section 6, we discuss how the cluster-
ing requirements described in the introduction are dealt
with in the proposedmethod, andwhy it could be consid-
ered as a better alternative than other clustering methods
for the study of 3D head scan data for small to medium
size datasets.

4. Materials andmethods

4.1. Point set registration and head alignment

A point set registration method is used in our study
to process the raw 3D head scans of participants. Since
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several registration algorithms exist in the literature,
we focused our selection onmethods that take advantage
of the similarity of the shapes being registered (i.e., the
head), and the ability to deal with missing data in the tar-
get geometry. Some of our 3D scans may indeed contain
missing regions that need to be filled in a practical way.
This filling is performed by using the shape curvature
information encrypted in the template. For example, if a
small region around the top of the head of a subject’s scan
is missing, the algorithm will automatically fill the miss-
ing data points by extrapolating the curvature continuity
of the template mesh around this area.

We followed theOptimal StepNonrigid Iterative Clos-
est Point (ICP) algorithm (N-ICP-A) [2] (Fig. 1), which
extends ICP methods to non-rigid deformations. The
ICP method assumes that every point in the template
model corresponds to the closest point to it on the tar-
get model. It then aims to minimize the error (distance)
between these pairs of points by finding the least square
rigid transformation. This process is replicated until an
error threshold value is reached. The N-ICP-A works
with an additional stiffness term, which can manage the
amount of rigid and non-rigid deformation that can be
applied at each iteration.

The optimization problem consists of minimizing a
cost function E(X) defined by three error terms; Ēd, Es
and El:

E(X) = Ēd(X) + αEs(X) + βEl(X) (4.1)

The data error Ed is a weighted sum of the squared dis-
tances between the transformed template mesh and the
target mesh for fixed vertex correspondences. The stiff-
ness error Es penalises the weighted difference of the
transformations of neighbouring vertices. More specif-
ically, this term ensures that similar deformations are
applied to triangles located in the same region of the head.
The landmark term El is added to guide the start of the
transformation, especially when the two meshes are too
far apart at the beginning of the registration process. α

Figure 1. The applied head template mesh, a typical head mesh
from the dataset, and the registration result.

is the stiffness weight, which influences the amount of
rigid and non-rigid deformation that can be performed
at a given iteration, and β is the landmark weight that
dissipates the effect of the landmark term toward the end
of the registration algorithm.

The process starts with a high stiffness value, to force
nearly rigid transformations, and then release the stiff-
ness gradually as the iterations progress to permit more
non-rigid transformations to be applied. For our study,
we iterated the process ten times during which the stiff-
ness term was changed in the following way:

for (0 < i ≤ 10),α = k0eλi (4.2)

where i is the iteration number, k0 = 5000, and

λ =
ln

(
k∞
k0

)
imax

(4.3)

with k∞ = 15. Additionally, β = 0.25α. This optimiza-
tion scheme was partly based on [13].

Finally, a rigid transformation method was used to
align the head scans of our sample after the registration
process. This extra step allowed a much greater align-
ment of the subjects compared to the standard Frankfort
plane method. Rigid transformations include rotations
and translations, in that order. We defined correspon-
dence vertices between the template and the registered
target mesh and applied the Iterative Closest Point (ICP)
method [7]. In the algorithm, the reference (template)
was kept fixed while the sources (registered targets) were
transformed to best match the reference. The estimate
combination of the best rotations and translations was
defined by a Mean Squared Error (MSE) cost function,
which was minimized using a solution based on Singular
Value Decomposition (SVD) [4].

For the correspondence, we used the vertices of the
3D mesh lying on the boundary edge of the surface that
defined the proportion of the head that should be under
helmet protection (HPP). This concept was introduced in
[10]. This curve position (Fig. 2) is significant for the
design of headgear, such as helmets, as it ensures the
same position of the main features of the head (i.e.; ears,
forehead, and occipital region) for all participants.

The vertices of the mesh located above the blue curve
in Fig. 2 were referred to as the Head Covering Points
(HCP) and used in the clustering algorithm for the com-
putation of the squared Euclidean distance metric. To
our knowledge, this is the first time that clusters are only
based on the portion of the head that should be under
helmet protection (i.e. face is not included).
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Figure 2. Left: The HPP curve (blue) used to define the vertices
in correspondence for the rigid transformation. Right: The Head
Covering Points (HCP) used in the clustering algorithm.

4.2. Standard hierarchical clustering algorithms

A hierarchical clustering algorithm, also known as link-
age clustering, is a method that group objects together
into clusters on the basis that close-by objects are
more related to each other than objects that are further
apart [21]. The common strategy is to use a bottom-
up approach, called agglomerative, where N observa-
tions start in their own cluster and pairs of clusters are
merged together as one moves up the hierarchy. The dis-
tances between the objects are computed using a distance
metric (e.g., Euclidean distance, squared Euclidean dis-
tance, Manhattan distance, Maximum distance). In addi-
tion, it is necessary to define a linkage criterion between
the clusters since there are multiple objects to compute
the distance from when the clusters contain more than
one element. The common linkage criteria are:

• Single-linkage and Complete-linkage clustering, where
the distance between clusters equals the distance
between the elements (one in each cluster) closest or
farthest away from each other.

• Mean linkage clustering, where the distance
between clusters is equal to the average of all distances
between pairs of objects in each cluster.

• Centroid linkage clustering, where the distance
between clusters is equal to the distance between their
respective centroid positions.

The main disadvantage of these methods is the fact that
they are not robust against outliers, which can add redun-
dant clusters or cause other clusters to merge (especially
for single-linkage clustering).

The algorithm process is typically presented in a
Dendrogram (Fig. 3), representing each step of the

Figure 3. Dendrogram of a classical agglomerative hierarchical
clustering.

hierarchical clustering. A threshold value can be set to
stop the clustering algorithm before all elements are
merged into one cluster. The threshold values generally
fall into two categories: (i) a distance criterion, which
stops clustering as clusters become too far apart, and (ii)
a number criterion, which stops after the specified num-
ber of clusters has been reached. In the example in Fig. 3,
the algorithm is stopped when eight subjects are grouped
into two clusters ({2,3,5} and {4,6,1,7,8}).

4.3. The new clustering algorithmmethod

Hierarchical clustering methods assume that “close-by
objects” are more alike when distance measures between
these objects are small. This assumption is particularly
true when applied to the comparison of head shapes. Two
persons with similar head shape will show small distance
values for each pair of points defining their head geom-
etry (i.e. HCP). In our approach, the centroid linkage
clustering algorithm was modified in order to sort opti-
mally participants into large, but compactly supported
clusters.

In contrast to a conventional hierarchical algorithm,
the clusters were generated one after another in the com-
putational process. At each iteration, only one cluster was
extracted from the pool of available subjects. The sub-
jects belonging to that cluster were then removed from
the dataset before the next iteration. The objective was,
therefore, to select the single “best” possible cluster from
the data at each iteration. The “best” cluster in our appli-
cation was one that combined a high level of intra-cluster
similarity and a large number of subjects. To achieve this
objective, we created multiple clusters candidates at each
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iteration and used several measures criteria (Section 4.4)
to select the “best” cluster.

The algorithm was repeatedly solved until the num-
ber of participants classified in one of the clusters had
reached a predefined threshold.

The algorithm was developed around four key
principles:

1. At each iteration, multiple cluster candidates were
computed. One candidate was created for each pri-
mary pairwise permutations included in the data
(e.g. the merge of subject #4 and subject #6 is a pri-
mary pairwise permutation in Fig. 4). For instance,
when the algorithm is executed on a dataset of 8
participants, a total of 56 clusters candidates is gener-

ated (#ClusterCandidates = 2 ×
(
8
2

)
= 56). How-

ever, the odds of computing clusters with the same
participants were high. Therefore, only dissimilar
clusters candidates were kept for the selection anal-
ysis (Section 4.4).

2. The metric employed to determine the next par-
ticipant to be included in one of the cluster candi-
date was a squared Euclidean distance, which placed
greater dissimilarities on objects that were farther
apart. A linkage criterion based on the centroid dis-
tance was applied where the HCP coordinates of all
participants in a cluster were merged after each step.

3. The distance metric was only calculated for the cur-
rent cluster candidate and the remaining partici-
pants, as the goal was to create only one cluster at
the time. In the example below (Fig. 4), after sub-
jects 4 and 6 had been grouped, only six pairwise
comparisons (as opposed to 21 for a standard hierar-
chical clustering) were performed to reveal the next
element in the cluster ({4,6} vs 1, 2, 3, 5, 7, 8). Fol-
lowing the same rule, the cluster was built gradually

Figure 4. Dendrogram of the algorithm, in which the algorithm
starts with permutation {4,6}.

until one of the stopping criteria was reached (Fig. 4:
the final cluster is {4,6,1,7,8}).

4. The chosen stopping criterion was the maximum
Euclidean distance between any two participants in
the cluster at any of the HCPs, after outliers were
removed (i.e. distance values outside the whiskers
(1.5 times the Interquartile Range)). We used the
stopping criterion in two different implementations.
In the first one, named InstaStop, we stopped the
clustering process as soon as the next detected
merge of subject had reached the predefined limit.
In the second implementation, named LaterStop, we
discarded such a merge and moved to the next pos-
sible subject that passed the criterion. The clustering
process was stopped once no more subject could be
merged with the current cluster candidate without
trespassing the limit.
In addition, a minimum number of subject in each
cluster was required.

4.4. Best cluster evaluation criteriameasures

At each iteration, a combination of four internal qual-
ity criteria, namely a, b, c, and d was used to optimally
select a large cluster with the overall most similar head
shapes from the pool of clusters candidates. The combi-
nation of these four parameters (i.e. a through d) pro-
vided a broad understanding of the similarity of the head
shapes within each cluster. Fig. 5 shows an example of the
position dispersion of 30 individuals at one of the HCP
(orthographically projected for clarity).

For convention, N is the number of participants in
one cluster candidate, n is the number of HCPs, Pk−j
gives the point coordinates of subjects j within one of the
computed clusters at HCP k, the red dot Pk is the cen-
troid point of all participants in the cluster at HCP k, and
Lk−j is the distance between participant j and the cluster’s
centroid coordinates Pk at HCP k.

The four internal quality criteria are defined as follows:

• a is the average mean deviation for each HCP in
relation to the cluster’s centroid coordinates.

a = 1
Nn

n∑
k=1

N∑
j=i

Lk−j (4.4)

• b is the standard deviation of a.
• c is the maximal HCP mean deviation from the clus-

ter’s centroid coordinates.

c = max
k∈[1,n]

1
N

N∑
j=i

Lk−j (4.5)
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Figure 5. Example of cluster dispersion at one of the Head
Covering Point.

• d is the maximal deviation of all Lk−j distances.

d = max
j∈[1,N],k∈[1,n]

Lk−j (4.6)

Each independent cluster candidate was ranked accord-
ing to the four parameters. In addition, a weighted aver-
age rank was calculated.

Weighted Rank= (wa.rank(a)+wb.rank(b)+wc.rank(c)

+ wd.rank(d))/(wa + wb + wc + wd)

(4.7)

The weighted rank was then adjusted to take the number
of participants in each cluster into consideration, as we
sought a compromise between creating large clusters of
individuals, andmaintaining a high degree of head shape
similarity within each of these clusters. To meet these
objectives, a negative exponential distribution function
with a rate parameter λ was implemented. The Selection

Criterion (SC) was defined as

SC = Weighted Rank(
eλ∗ Nb of subjects in current cluster

Max Nb of subjects in any cluster

)
− 1

(4.8)

The cluster candidate with the lowest SC was selected as
the “best” cluster for the current iteration.

The weights wa,wb,wc and wd and the rate parame-
ter λ were defined as hyper-parameters in the clustering
model. Their values were chosen during the experiment
to achieve the largest, but most compactly supported
clusters from the clusters candidates at each iteration.
We used only 2% of the HCPs (i.e. 260 HCPs) ran-
domly located around the head in this selection process
to reduce the computing time.

wa,wb,wc,wd ∈ [1, 2, 4] and λ ∈ [1, 5, 10] (4.9)

Therefore, a total of 243 (35 = 243) tests were run
beforehand to select the best combinations of hyper-
parameters.

4.5. Participants and data collection

The algorithm was applied to the 2014 3D Anthropomet-
ric Database of Australian Cyclists [20], from which 200
participants were selected to be included in the analysis.
Detailed descriptions of the data collection and digitisa-
tion processes were presented in [10].

5. Results

5.1. Clusters description

In this example, the algorithm was solved using a dis-
tance stopping criterion of 20mm. Furthermore, a cluster
had to comprise at least 5% of participants from the
initial sample size (i.e. 10 participants). The combina-
tion of hyper-parameters that yielded the best cluster-
ing results during testing was wa = 2,wb = 1,wc = 1,
wd = 4, and λ = 5.

Table 1. Participants distributions inside the four clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

Starting sample
size (N)

200 92 39 25 200

No. of Participants
in the cluster

108 53 14 15 190

Proportion of the
full sample (%)

54.0 26.5 7.0 7.5 95.0

Parameter a (mm) 4.12 4.23 4.03 4.27
Parameter b (mm) 0.71 0.44 0.61 1.06
Parameter c (mm) 5.61 5.69 5.49 6.39
Parameter d (mm) 11.90 11.37 10.97 11.45
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Figure 6. The mean head shape for each of the four computed
clusters.

Table 2. Summary statistics of the best cluster selection criteria
for cluster 1.

Mean± SD Min Max

Parameter a (mm) 3.65 ± 0.37 2.63 4.42
Parameter b (mm) 0.55 ± 0.12 0.28 1.61
Parameter c (mm) 5.25 ± 0.74 3.81 10.18
Parameter d (mm) 12.58 ± 0.92 10.67 17.98
Cluster size 66.5 ± 24.69 10 113

Using these values on the full dataset and 100% of the
HCPs provided (i.e. 13000 HCPs), a total of four clusters
were generated by the algorithm, classifying 190 partic-
ipants from the sample (95.0%). Tab. 1 summarises the
results. Fig. 6 shows the mean head shape of the four
computed clusters. See [11] for more details on the four
created head shapes.

For instance, for cluster No 1, a total of 19900 pairs((
Ns
2

)
= 19900 with Ns = 200

)
were tested twice, with

the InstaStop and LaterStop alternatives. 16135 of them
were under the 20mmdistance threshold value. Amongst
the 32270 clusters candidates computed (2 × 16135),
5091 were dissimilar and were kept for the best cluster
selection analysis. Summary statistics of these indepen-
dent clusters for parameters a through d and cluster size
are listed in Tab. 2.

5.2. Algorithm evaluation

We evaluated our algorithm’s performance by comparing
the clustering results to four conventional hierarchical

methods, specifically the single-linkage, complete-linkage,
mean linkage, and centroid linkage algorithms. Similar to
the presented study, the distance metric was the squared
Euclidean distance, and the stopping criterion was the
maximum Euclidean distance between any two partici-
pants in the same cluster at any of theHCPs. The distance
threshold limit was also set to 20mm. Likewise, the stop-
ping criterion was implemented in the InstaStop and Lat-
erStop alternatives. Moreover, a cluster had to comprise
at least 5% of participants from the sample to be consid-
ered as a final cluster. The final number of clusters, the
number of participants in a cluster, and the mean values
of the four key measures are presented in Tab. 3.

6. Discussion

As shown in Tab. 3, the proposed method could clas-
sify a high proportion of the participants in the sample
into one of the created clusters (95.0%), while still main-
taining a small number of partitions (four) compared to
the other methods. Some conventional hierarchical algo-
rithms were also able to classify a high proportion of
participants (up to 95.5% of the sample), but in order to
do so, more clusters were created (up to eight). However,
since the parameter values a through d are slightly higher
in our method, we conclude that the resulting clusters
are less compact than those obtained from standard hier-
archical methods. Nonetheless, the stopping criterion
implemented in the process ensured that the maximum
distance between any two individuals in a clusterwas held
under a critical threshold value (20mm is this example)
for all clusters.

As the use of 3D anthropometric measurements for
product design should not be associated with a signifi-
cant increase in manufacturing costs, keeping the num-
ber of available sizes for a product as small as possible
should be of utmost importance when creating 3D siz-
ing systems. Clustering methods of 3D data for prod-
uct design should, therefore, emphasize on minimizing
the number of clusters needed to describe the popu-
lation, while maximizing the shape resemblance of the

Table 3. Clustering comparison of the 3D head dataset using standards hierarchical methods.

Algorithm No of clusters

No of participants inside a
cluster. Ratio of the sample

size. ā(mm) b̄(mm) c̄(mm) d̄(mm)

New clustering algorithm 4 190 (95.0%) 4.16 0.71 5.80 11.42
Single-linkage InstaStop 4 74 (37.0%) 2.75 0.46 4.20 8.77
Single-linkage LaterStop 5 176 (88.0%) 3.88 0.61 5.38 11.43
Complete-linkage InstaStop 6 75 (37.5%) 2.60 0.39 3.90 9.01
Complete-linkage LaterStop 8 191 (95.5%) 3.54 0.54 4.87 10.89
Mean linkage InstaStop 6 99 (49.5%) 2.66 0.37 3.83 9.45
Mean linkage LaterStop 8 176 (88.0%) 3.34 0.44 4.59 10.56
Centroid linkage InstaStop 6 101 (50.5%) 2.82 0.42 3.95 8.98
Centroid linkage LaterStop 7 182 (91.0%) 3.43 0.52 4.79 11.02
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subjects within each cluster. Taking into account the
above, the clustering process would allow the design-
ers to create close-fitted products that could address the
current comfort and safety issues encountered in many
applications.

However, selecting the correct minimum number of
clusters for a specific application could be a difficult task.
Clustering algorithms such as k-means that require this
input parameter could be less suitable than hierarchical
methods for the creation of 3D sizing systems.

Unlike multivariate analyses such as Principal Com-
ponent Analysis (PCA) [17, 24], clustering algorithms
can account for most of the sample’s head shape variabil-
ity when creating the size clusters.

The main drawback of hierarchical clustering is the
cubic complexityO(N3) toward the sample sizeN, which
makes it inadequate for large data sets of 3D scans. The
overall order of growth of our algorithm’s running time
was even worse at N3n for each cluster creation, with n
being the number of HCPs. However, the methods could
still be competitive for 3D databases containing up to a
few hundred subjects. For example, the running time of
our algorithm on a standard desktop computer was only
six hours for 200 3D head scans and 13000 HCPs, mean-
ing that it would take less than a day to process 1000
subjects defined by 1000 HCPs.

7. Conclusion

In this study, we presented a new method for the cluster-
ing of 3D head scans.We based our algorithm on amodi-
fied hierarchical method (i.e.; centroid linkage). Multiple
pairwise comparisons inside each loop of the hierarchical
clustering algorithm were performed, which allowed the
creation of several clusters candidates to choose from at
each iteration. The selection was based on four parame-
ters (a, b, c, and d) as well as the number of participants
contained in each cluster. These measures provided a
broad understanding of the head shape similarity within
each cluster.

The method was tested on the 3D Anthropomet-
ric Database of Australian Cyclists and compared to
other standard hierarchical clustering methods. The new
algorithm categorized participants into fewer clusters
than standardmethods, while still classifying a high ratio
of the sample into one of the four computed clusters.
However, to quantify that such gains are consistently
made, experiments on greater number of data-sets should
be performed. The authors intend to apply the new clus-
tering algorithm to other 3D sizing systems of the human
body in the future (i.e. for footwear and handwear appli-
cations).

Despite the limitations of the proposed method,
the study demonstrated that 3D anthropometric data of
the head can be summarised and simplified into valu-
able information for the product designers. These results
should encourage ergonomists to use 3D data during the
design of head and facial gear.
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