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Time optimal driving on curvilinear path with kinematic constraints
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ABSTRACT
A time optimal driving algorithm is obtained for the moving on a curvilinear path in space. The
algorithm takes velocity, acceleration and jerk as constraints. By imposing a jerk constraint, the accel-
eration time-derivative is limited and smooth driving is guaranteed. It is concluded that the moving
object’s dynamics must be analyzed directly by using curvature and torsion of the path. It is also
found that the given path must possess G2 or higher continuity for applying a jerk constraint. For a
given set of velocity, acceleration and jerk constraints, it is proved that the minimum driving time
depends on path length, curvature, torsion and curvature’s path length derivative along the path.
The resultant driving pattern guarantees minimum-time smooth driving.
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1. Introduction

In work such as parts transport and processing, the parts
or the effectors of a robot are often driven on a speci-
fied curvilinear path. Also, a car or a train often runs on
a curved road or railway. When moving an object on a
curved path, the force acting on the object includes not
only the component in tangential direction but also the
component in normal direction. Since the force acting
on moving object is influenced by curvature and torsion
of the path, they must be taken into account. How is an
object driven through a curvilinear path as quickly as
possible while limiting the force acting on it? It is the
subject to be studied in this paper.

In this study, by formulating the velocity, accelera-
tion, and jerk of a path moving object with the path
curvature and torsion, the solution’s uniqueness and exis-
tence of the minimum time driving pattern subject to the
given constraints are clarified. Then an algorithm for cal-
culating the minimum time driving pattern and several
calculating results are provided. Also, comparisons with
traditional driving method are shown and verification
results with a real robot are described.

So far, cam curves have been often used for path driv-
ing [13]. These curves are formulated by some elemen-
tary functions, so they are easy to be used. However, these
curves were originally created for linear motion, not for
curvilinear path. Its driving velocity does not take into
account the change in curvature of the path and it takes
more driving time than necessary.

As a study of the shortest time driving on the
curvilinear path, Bobrow et al. suggested a method by
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considering limitations of angular velocity and torque of
actuators [1]. They expressed the dynamics of the driving
system with curve length of the path. Then, the mini-
mum time driving pattern is created by maximally accel-
erating and maximally decelerating segments. By this
mean, the resultant driving pattern guarantees shortest
time driving. However, the acceleration in acceleration-
deceleration switching position is not continuous. This
driving method is so-called bang-bang control, and is
evidently not a smooth driving.

In order to overcome the disadvantages of the bang-
bang control described above, some improving studies
were carried out [3–4],[6–7],[10–12],[16]. In addition to
limiting the angular velocity and the maximum torque
of actuators, the limitation on torque’s time derivative
was also considered. However, in practical application,
one wishes to limit the forces acted on an object moving
on the path rather than its actuator’s torque. These two
subjects are actually not equivalent. For example, when
rotating a manipulator’s arm fixed on the vertical shaft
of a motor with high speed, an object fixing on the arm
top moves on a circular orbit. In this case, a strong cen-
trifugal force will be acted on it (in radial direction), but
this force is absorbed by the bearing of rotating shaft and
is not reflected on rotational torque of the motor. A car
passing through a curvilinear road at high speed with-
out considering this centrifugal force may face dangers
of falling or side-slipping.

In this research, the focus is put not on torque of
the actuators but on object moving on its path with
given kinematic constraints such as velocity, acceleration
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and jerk. Up to now, this approach has not been well
studied.

2. Constraints and formulation

2.1. Kinematic constraints

In curvilinear motion, velocity, acceleration and jerk of
the moving object are vectors. We take maximum abso-
lute values of those vectors as the constraints. The velocity
need to be limited for safety reasons. Limitation of maxi-
mum acceleration is important because it is proportional
to the force acted on the moving object. By limiting max-
imum jerk, the changing rate of acceleration is restricted
and smooth movement can be realized.

In actual operation, the constraints of velocity, acceler-
ation and jerk are decided by the purpose of application.
For example, when moving a fragile object such as a
cake, both acceleration and jerk ought to be lowly lim-
ited. By setting the constraints suitably, it is possible to
achieve time optimal driving while reducing the moving
vibration.

2.2. Formulation of curvilinearmotion

For brevity, we consider the moving object as a mass
point. A curvilinear path is shown in Fig. 1. Here, s is the
curve length from path start point, h represents total path
length and r(s) represents position vector of the moving
mass point. The definitions of velocity v, acceleration a
and jerk j are given in Eqn. (2.1).

⎧⎪⎨
⎪⎩

v = ṙ(s) = dr(s)/dt
a = r̈(s) = d2r(s)/dt2

j = ...r (s) = d3r(s)/dt3
(2.1)

⎧⎪⎨
⎪⎩
dT/ds = κN
dN/ds = −κT + τB
dB/ds = −τN

(2.2)

⎧⎪⎨
⎪⎩

v = ṡN
a = s̈T + ṡ2κN
j = (

...s − ṡ3κ2)T + (3ṡs̈κ + ṡ3κ ′)N + ṡ3κτB
(2.3)

Figure 1. A particle moving on curvilinear path.

At an arbitrary pointP on the curvilinear path,we express
the corresponding curvature as κand the corresponding
torsion as τ . The Frenet-Serret formulas [9] are shown
in Eqn. (2.2). Here, T, N and B are unit vectors in tan-
gential, normal and bi-normal directions respectively.
Notice d/dt = (ds/dt) d/ds and dr/ds = T, we can com-
bine Eqn. (2.1) and (2.2) to obtain Eqn. (2.3). Here, ṡ, s̈
and ṡ are the first, second and third order derivatives of
s with respect to time, κ ′ is derivative of the curvature
to curve length. In Eqn. (2.3), ṡ represents the velocity
(tangential direction), s̈ and ṡ2κ represent tangential and
normal acceleration component, 3

...s − ṡ3κ2, 3ṡs̈κ + ṡ3κ ′
and ṡ3κτ represent the tangential, normal and bi-normal
jerk components respectively.

In curvilinear motion, the velocity has only a tangen-
tial component. But acceleration has two components
which are in tangential and normal direction, its compo-
nent in the normal direction is proportional to curvature
and square of velocity. Jerk usually has three components
which are in tangential, normal and bi-normal direc-
tion. While moving on a circle with constant velocity,...s = 0, s̈ = 0, τ = 0, κ ′ = 0. In this case, the jerk compo-
nents in normal and bi-normal direction are zero, but its
tangential component is − ṡ3κ2 because the direction of
acceleration (point to the circle center) changes contin-
uously. In order to apply jerk limitation, Eqn. (2.3) also
shows that a path must possess G2 or higher continuity if
ṡ �= 0.

2.3. Formulation of the Problem

Let V, A and J represent the constraints (the maximum
absolute values of v, a and j), h represents the total path
length, tf represents the final moving time. Our optimiz-
ing problem can be expressed as Eqn. (2.4). The limi-
tations of ṡ, s̈ and are determined in Eqn. (2.5). Here,
stationary states are supposed at both start and end point.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds/dt = ṡ
d2s/dt2 = s̈
d3s/dt3 = ...s
0 ≤ s ≤ h
0 ≤ ṡ ≤ V
s̈2 + ṡ4κ2 ≤ A2(...s − ṡ3κ2)2 + (

3ṡs̈κ + ṡ3κ ′)2 + ṡ6κ2τ 2 ≤ J2

s(0) = 0, s
(
tf

) = h
ṡ (0) = 0, ṡ

(
tf

) = 0
s̈ (0) = 0, s̈

(
tf

) = 0

minimize[tf =
h
∫
0
(1/ṡ) ds]

(2.4)
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ṡH = min
{
V , (A/κ)1/2

}
s̈H = (

A2 − ṡ4κ2)1/2
s̈L = −(

A2 − ṡ4κ2)1/2
...s H = ṡ3κ2 + (J2 − (

3ṡs̈κ + ṡ3κ ′)2 − ṡ6κ2τ 2)1/2
...s L = ṡ3κ2 − (J2 − (

3ṡs̈κ + ṡ3κ ′)2 − ṡ6κ2τ 2)1/2

(2.5)
Notice that the acceleration and jerk of a moving

object are a and j, not s̈ and
...s . The latter ones are simply

used as convenient variables for finding the time optimal
driving pattern. Actually, s̈ is the tangential component of
a, but

...s is not even the tangential component of j. The
tangential component of j is

...s − ṡ3κ2 indeed.

3. Features of time optimal driving

3.1. Maximum velocity achievable

In this section, we will show that the maximum achiev-
able velocity must be obtained in time optimal driving.
We also prove that one of ṡ(t), s̈(t) or

...s (t) must touch
their limitation at any driving interval.

To make it easier to understand, we explain from a
calculated pattern shown in Fig. 2. In this figure, ṡ(t),
s̈(t),

...s (t), and their limitations are shown. This is a cal-
culated time optimal pattern for driving on a circle path.
At time t = t0 = 0 (start point), ṡ(t0) = 0, s̈(t0) = 0. At
time t = t5 (end point), ṡ(t5) = 0, s̈(t5) = 0. Here, ṡH , s̈H,
s̈L,

...s H and
...s L are calculated by Eqn. (2.5).

Figure 2. A time optimal driving pattern on a circle path.

[t0, t1] is the accelerating interval with best effort using
limitations of

...s H and s̈H. [t1, t2] is the decelerating inter-
val with best effort using limitations of

...s L. At time t2,
s̈ become zero and ṡ reaches its limitation ṡH . Notice
that this driving pattern of ṡ is the fastest one in interval
[t0, t2]. It is because in interval [t0, t1], no higher ṡ can be
obtained due to limitations of

...s H and s̈H. Also in inter-
val [t1, t2], if any higher ṡ is assigned, the limitation ṡH
must be broken even with full braking. In interval [t2, t3],
ṡ = ṡH , this is evidently the fastest driving in [t2, t3].

In interval [t3, t5], it is the braking pattern using
...s L, s̈L,

and
...s H . In interval [t4, t5], s̈ is brought to zero by using...s H for satisfying boundary conditions at end point. This

driving pattern of ṡ is also the fastest one in interval
[t3, t5]. In fact, if any higher ṡ is assigned in this interval,
the boundary conditions at end point cannot be satis-
fied.We call this braking pattern as time optimal stopping
pattern.

Based on the above analysis, this driving pattern of ṡ is
the fastest one in whole interval of [t0, t5] which satisfies
the given constraints. The time optimal driving pattern
consists of maximum accelerating and maximum decel-
erating segments. This is always true because more com-
plicated cases can be subdivided into the same segments
as showing in Fig. 2.

Next, we prove that one of ṡ(t), s̈(t) or
...s (t)must touch

their limitation at any driving time. First, we assume that
a time optimal pattern is obtained and none of ṡ(t), s̈(t) or...s (t) touches their limitation during some interval [ta, tb].
Let the corresponding path segment is [sa, sb]. For this
interval, we define v(s) = ε(s − sa)4(s − sb)4. Here, ε is
a positive real number with units of m−3s−1. Notice that
d/dt = (ds/dt)d/ds and differentiate v(s) with time, v̇(s)
and v̈(s) can be obtained. At ta,tb, all of v(s), v̇(s) and
v̈(s) are zero. In interval (sa, sb), all of v(s), v̇(s) and v̈(s)
are positive. Then, we replace ṡ, s̈ and

...s with ṡ + v, s̈ + v̇

and
...s + v̈ in interval [sa, sb]. In doing so, we get a faster

driving patternwhich also satisfies all given constraints as
long as ε is small enough. But this contradicts the fact that
the original driving pattern is time optimal as we have
assumed. So, for a time optimal driving pattern, one of
ṡ(t), s̈(t) or

...s (t)must touch their limitation at any driving
interval.

3.2. Uniqueness and existence of the solution

As discussed in 3.1, for a time optimal driving pattern,
its ṡ(t) must be the maximum achievable one at any
time during driving. First, we assume there are two such
solutions with moving time T1, T2 and denote them as
ṡ1(t), ṡ2(t) respectively. Evidently T1 = T2 because both
ones are time optimal driving. Also, because both ṡ1(t)
and ṡ2(t) are the maximum achievable ones during driv-
ing, ṡ1(t) ≥ ṡ2(t) and ṡ2(t) ≥ ṡ1(t)must hold. Thismeans
ṡ1(t) = ṡ2(t) andT1 = T2. So, time optimal driving solu-
tion is unique.

Regarding the existence of the solution, it depends
on the constraints, the boundary condition and the path
shape. First, the constraints V, A and J must be greater
than zero. If the boundary condition is stationary, a solu-
tion must exist as long as it is driven at a velocity low
enough. However, if the boundary condition is not sta-
tionary, there is a possibility that the solution does not
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exist. For example, when a very high velocity is assigned
at starting point and a stationary state is assigned at end-
ing point, you may not avoid breaking the constraints
even if you decelerate with maximum effort. This can be
confirmed only by calculating.

4. Algorithm and results

4.1. Algorithm

As shown in Eqn. (2.4), our problem is formulized as
simultaneous differential equationswith assigned bound-
ary condition and nonlinear constraints on state vari-
ables. The solution to this kind of problem has not been
well established [2],[8],[14–15]. The algorithm proposed
here can be considered as the jerk extension of Bobrow
et al. The algorithm uses bisection method [14]. Though
this is not a fast algorithm, but it can give accurate results
and it is reliable. First, we define AME and BME driving
pattern as follows.

AME: Accelerating withMaximumEffort by using
...sH

while s̈ < s̈H, otherwise using s̈H.
BME: Braking to stop with Maximum Effort by using...s L while s̈ > s̈L, otherwise using s̈L. At the braking end,

bothṡ = 0 and s̈ = 0 must be satisfied. It means that s̈
must be brought to zero by using

...sH when reaching
stop. The switch timing to use

...sH can be calculated by
bisection method.

Calculating Procedure

(1) Set s1 = 0, ṡ1 = 0 and s̈1 = 0.
(2) From s1, ṡ1 and s̈1 state, calculate AME until it con-

tradicts the given constraints. Denote the final state
as s2, ṡ2 and s̈2.

(3) For [s1, s2], using bisection method to calculate the
optimal point which switches from accelerating to
braking. This procedure is an iterative calculating of
AME and BME.

(4) If s at the end of Step.3 just reaches final position
s = h, all calculating is finished. Otherwise, move
onemini step along the calculatedBME. Set the new
state to s1, ṡ1 and s̈1, then repeat Step.2.

The iterative calculation of AME and BME is the core
of this algorithm. Notice s̈must be continuous because of
jerk constraint.

4.2. Calculating results

As calculating examples, the time optimal driving pat-
tern on a s-shape path and on a helix path are shown
in Fig. 3 and Fig. 4. The path shape, curvature, torsion
and the curvature’s derivative are plotted with respect to

Figure 3. Time optimal driving pattern on a S-curve path of
h = 1000mm.

curvilinear path length. The speed, acceleration and jerk
of the calculated time optimal driving pattern are plotted
with respect to time. ṡ(t), s̈(t) and

...s (t) are drawn with
thick lines and the others are drawn with thin lines. The
calculation conditions are listed as follows.

• Constraints: V = 1000mm/s, A = 1000mm/s2,
J = 5000mm/s3.

• Path length h = 1000mm.
• Mini time step adopted for calculation: �t= 1ms.



126 F. LAN AND K. T. MIURA

Figure 4. Time optimal driving pattern on a helix path of
h = 1000mm.

On the s-shape path, the curvature is zero at the start-
ing point, the midpoint and the end point. The path
has a segmental linear curvature distribution. Since the
curvature changes along the path, ṡ(t), s̈(t) and

...s (t)
possess complicated shapes. The maximum curvature is
κmax = 3π/1000 rad/mm. The required driving time is
T = 3129ms.

On the helix path, the curvature and torsion are con-
stant. Its curvature is κ = π/250 rad/mm and its tor-
sion is τ = π/1000 rad/mm. The required driving time
is T = 4097ms. Notice that s̈(t) and

...s (t) also possess
complicated shapes even the curvature and torsion are
constant on whole path. If torsion is assigned to zero,
this helix will become two turn circles and the driving

time will be T = 4096ms, only 1ms shorter than before.
It shows torsion contributes very little on driving time.

4.3. Comparisonwith camdriving curves

Driving time comparison between the traditional Cam
driving curve and the time optimal driving pattern are
shown in Tab. 1. Typically, modified constant veloc-
ity, cycloid and 5-order Cam driving curves are used.
Those results are calculated for the s-curve path with the
same constraints described above. Fig. 5 shows the cal-
culated driving pattern when using modified constant
velocity driving curve on the same path of Fig. 3. Here,
its dimensionless parameters are T1 = 0.125, T2 = 0.25,
T3 = 0.75, T4 = 0.875. Because Cam driving curves
cannot adjust its velocity according to the path curva-
ture, it always takes longer driving time than that of time
optimal driving.

Figure 5. Modified constant velocity driving patterns on the
s-curve of Fig. 3.

Table 1. Driving time comparison for the s-curve path of Fig. 3.

Time optimal Modified constant velocity Cycloid 5-order

3129ms 4093ms 5177ms 4914ms

4.4. Verification using real manipulator

The actual verification is shown in Fig. 6 and Fig. 7.
This is an experiment of tracking s-shape path using a
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Figure 6. Plot s-curve by a manipulator.

Figure 7. Driving results of Fig. 6 by using time optimal pattern
(top graph) and using modified constant velocity Cam pattern
(bottom graph).

manipulator with orthogonally driving arms. The driving
data to motors are sending via EtherCAT which trans-
mits data at high speed with 1 ms cycle [5]. Since the
movable range of this manipulator cannot draw s-shape
of 1000mm length, a half scale condition is adopted as
follows.

• Constraints: V = 500mm/s, A = 500mm/s2,
J = 2500mm/s3.

• Path length h = 500mm.
• Mini time step adopted for calculation: �t = 1ms.

Fig. 7 shows the measured result (created with the
angle sensor on motor shaft) by using both time opti-
mal driving pattern and traditional cam driving pattern
(the modified constant velocity Cam curve). To obtain
the same driving time, the maximum acceleration when
using the time optimal pattern is lower than that of using
the modified constant velocity Cam pattern. This means
smoother curvilinear movement is realized.

5. Consideration on actuator’s torque

Up to now, we focused on time optimal moving on a
curvilinear path with given kinematic constraints such
as velocity, net acceleration and net jerk. We consciously

take no consideration on structure, dynamics and con-
trol of any actuator. By doing so, we obtain some general
results which depend only on path shape (i.e. its curva-
ture and torsion). These results can be widely applied
to robot effectors, cars or trains moving on a curvilin-
ear path as long as the driving system possesses enough
abilities and no actuator runs into saturation.

However, in real application, some actuators may be
run into saturation. This will happen if acceleration is
assigned beyond its actuator’s ability. In this case, much
more constraints (such as limitation on actuator’s torque)
must be added to our original problem. In fact, the actu-
ator’s dynamics had been studied by many other ones
[1–4], [6–7], [11]. In general, the dynamics of a manip-
ulator with n actuators can be expressed as Eqn. (5.1).
Here, τ is the n × 1 torque vector and θ is the n × 1
joint angle vector of the actuators, θ̇ and θ̈ are the corre-
sponding angular velocity and angular acceleration vec-
tor respectively, M(θ) is the n × n mass matrix of the
manipulator, V(θ, θ̇) is the n × 1 vector of friction and
centrifugal terms and G(θ) is the n × 1 vector of gravity
terms. Notice thatM(θ), V(θ, θ̇) andG(θ) depend on part
mass, structure and posture of the manipulator. Because
θ is determined by path positions, this can be expressed
as θ = θ(s). Using s, Eqn. (5.1) can be written as Eqn.
(5.2). Here, c(s, ṡ) and b(s, ṡ) are n × 1 vectors depend-
ing on s and ṡ. Let τ h and τ l express the n × 1 maximum
and minimum torque vectors of the actuators, the torque
constraints can be written as Eqn. (5.3). For example, if
we have 3 actuators in a driving system, its torque con-
straints can be expressed as Eqn. (5.4). From Eqn. (5.4),
we conclude Eqn. (5.5).

τ = M(θ)θ̈ + V(θ, θ̇) + G(θ) (5.1)

τ = c(s, ṡ)s̈ + b(s, ṡ) (5.2)

τl ≤ c(s, ṡ)s̈ + b(s, ṡ) ≤ τ h (5.3)
⎧⎪⎨
⎪⎩

τ1l ≤ c1(s, ṡ)s̈ + b1(s, ṡ) ≤ τ1h

τ2l ≤ c2(s, ṡ)s̈ + b2(s, ṡ) ≤ τ2h

τ3l ≤ c3(s, ṡ)s̈ + b3(s, ṡ) ≤ τ3h

(5.4)

⎧⎪⎨
⎪⎩
f1(s, ṡ) ≤ s̈ ≤ g1(s, ṡ)
f2(s, ṡ) ≤ s̈ ≤ g2(s, ṡ)
f3(s, ṡ) ≤ s̈ ≤ g3(s, ṡ)

(5.5)

{
s̈max = min{s̈H , g1, g2, g3}
s̈min = max{s̈L, f1, f2, f3}

(5.6)

To include torque constraints of actuators, we need to
replace s̈H and s̈Lwith s̈max and s̈min expressed in Eqn.
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(5.6). This only inserts more constraints to our origi-
nal problem and algorithm 4.1 keeps the same. Further-
more, to achieve a designed driving pattern precisely,
the control system’s response is also important. In fact,
when the control system’s response is too slow, some
driving pattern cannot be achieved accurately, while the
control system’s response is too quick, the moving will
become noisy. It is worthwhile to make the control sys-
tem’s response just suitable for the designed driving
pattern. This can be done by simulations or practical
experiments.

6. Conclusions

In this paper, an algorithm for calculating time optimal
driving pattern on a curvilinear path is obtained. The
driving pattern satisfies constraints of velocity, accelera-
tion and jerk. By applying restraint of jerk, noise, vibra-
tion and mechanical fatigue can be reduced and smooth
driving is obtained. Our analysis also leads to following
conclusions:

• The dynamics of a moving object on a path has to
be calculated directly by path curvature and torsion
rather than by torques of actuators.

• Compare with cam curves, when applying the same
constraints, time optimal pattern provide shorter driv-
ing time. When assigning same driving time, time
optimal pattern provides lower peek acceleration.

• In time optimal driving pattern, one of ṡ(t), s̈(t)or
...s (t)

must touch their limitation at any driving interval.
• Although the influence of path curvature on driving

time is large, the influence of path torsion on driving
time is little.

• If the boundary condition is stationary, the solution
exists uniquely. If the boundary condition is not sta-
tionary, theremay be no solution for some initial states
and constraints.
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