
COMPUTER-AIDED DESIGN & APPLICATIONS, 2018
VOL. 15, NO. 1, 11–24
https://doi.org/10.1080/16864360.2017.1353728

A two-dimensional bin packing-based split-and-pack approach for decomposing
large three-dimensional structures into convex items

Erkan Gunpinar

Istanbul Technical University, Turkey

ABSTRACT
In this study,wepresent a technique to pack a three-dimensional (3D) structure into bins tominimize
bin waste. The proposed approach is different from two-dimensional bin packing (2Dbp) methods:
Rather than starting with fixed size items of the 3D structure (with widths or heights smaller than
those of the bin), as is done in 2Dbp algorithms, combined items (with widths or heights that can be
greater than those of the bin) are utilized. These items are obtained by combining the neighboring
items. A method of generating combined items from a 3D structure is first explained. The packing
approach for the combined itemsobtained is thendescribed. Four operators are introduced for com-
bined items’ packing. Packing positions (Pp) on bins are computed by Pp finder. Following this, the
orientations of combined items are changed via orientation modifier to find better packing orien-
tations for combined items. Split operator splits combined items during packing if they exceed the
bin boundary. Placement decision-maker (Pd-maker) determines which combined item is placed on
which packing position via a cost function attaining lower values if packing produces less waste. A
shipbuilding problem is utilized throughout the paper to explain the proposedmethod. A given ship
hull is packed into bins, and experiments show that the proposed approach is advantageous in terms
of minimizing bin waste.

KEYWORDS
Computational geometry;
Two-dimensional bin
packing; Optimization

1. Introduction

This study investigates an extended version of the two-
dimensional bin packing (2Dbp) problem, which can
be employed for packing large three-dimensional (3D)
structures into bins. 2Dbpmethods pack items into iden-
tical bins, each with length L and width W. Each item j
is defined by a length lj and width wj, where lj ≤ L and
Wj ≤ W (i.e., item size constraint), for 1, . . . , n. Here, the
overall goal is to minimize the total waste of bins, with
no items overlapping with other items and all items con-
tained in the bins. Here, rather than starting with fixed-
size items (with lengths or widths that are smaller than
those of the bin), as is done in 2Dbp algorithms, we argue
that it is advantageous to utilize larger items (obtained by
combining neighboring items) whose lengths or widths
can be greater than those of the bin. These large items can
be dynamically split into smaller items while packing.

Figure 1 illustrates the basics of the proposed
approach. Let us consider a two-dimensional (2D) struc-
ture (Fig. 1(a)) that has to be produced using 2D flat bins
(Fig. 1(b)). One way to accomplish this is to decompose
this structure into small items manually while consider-
ing shape of the given 2D flat bins. These items can then
be packed into the bins. The gray items shown in Fig. 1(c)

CONTACT Erkan Gunpinar gunpinar@itu.edu.tr

and (d) are packed into the bins without producing any
bin waste. In contrast, the items in pink are packed into
the bins with some amount of bin waste (Fig. 1(e)).When
the proposed approach in this study is applied, the items
from (1) to (12) are combined while considering their
neighboring relationships; thus, three combined plates
(in blue) are obtained (Fig. 1(d)). These combined plates
are split at the required location during packing, which
can decrease bin waste production. The items (2) and (3)
are split wherever required, and no bin waste is produced
(Fig. 1(f)).

The remainder of the paper is organized as follows.
Section 2 reviews relevant literature, while Section 3 illus-
trates a shipbuilding application and details the genera-
tion of combined items. Section 4 describes the Split-and-
Pack approach, and numerical results of the proposed
method are given in Section 5. Concluding remarks and
opportunities for future work are presented in Section 6.

2. Related literature

2Dbp techniques pack a given set of 2D rectangles io
rectangular bins while minimizing the number of bins
used. Gilmore et al. [12] proposed the first model for

© 2017 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/16864360.2017.1353728&domain=pdf
http://orcid.org/0000-0002-0266-5546
mailto:gunpinar@itu.edu.tr
http://www.cadanda.com

12 E. GUNPINAR

Figure 1. A two-dimensional (2D) structure (a) is produced using 2D flat bins (b). Items shown in gray and pink (c) are packed into bins
with somebinwaste (e). Once combined items (in blue) obtainedbymergingneighboring items (d) are utilized, no binwaste is produced,
as the items can be split at the required location (see dashed yellow line in (f)).

2Dbp problems. Beasley [3] considered the cutting stock
problem, which is a variant of the 2Dbp problem, and
formulated it based on an integer linear programming
formulation. Other studies [2, 17] proposed amethod for
2Dbp problems where guillotine cuts are utilized. Guil-
lotine cuts are edge-to-edge cuts parallel to the edges
of bins.

There are off-line and on-line 2Dbp algorithms: Off-
line algorithms have full knowledge of the input item
set, as in the present work; in contrast, on-line algo-
rithms [9] pack items as soon as they are encountered
without knowledge of the subsequent items. In the litera-
ture, on-line algorithms are classified into two categories,
namely one-phase and two-phase algorithms. One-phase
algorithms (i.e., 2Dbp) pack the items into finite bins,
whereas two-phase algorithms [2, 8, 11] (i.e., strip pack-
ing) pack items into a single strip (i.e., bin with a specific
width and infinite height). The problem of the present
study requires a one-phase algorithm. Level algorithms
are generally used for bin or strip packing; here pack-
ing is achieved by placing items, from left to right, in
rows forming levels. Three methods for level packing
have been proposed for the one-dimensional (1D) case.
Next-fit DecreasingHeight (NFDH) packs items in a left-
justified manner if they fit. Otherwise, a new level is
formed and a new item is packed left justified to that. In
the First-fit Decreasing Height (FFDH) approach, items
are left justified on the first level where they fit. If there
is no fit, a new level is initialized, as in NFDH. Best-
fit Decreasing Height (BFDH) packs items left justified
on the current level, among those that fit, for which the
unused horizontal space is minimized. If there is no level

where the items fit, a new level is initialized, as in NFDH.
Frenk et al. [11] proposed the Hybrid Next-fit (HNF)
algorithm, where NFDH is utilized in the first phase. The
1D bin-packing problem is then solved by the Next-fit
Decreasing (NFD) algorithm in the second phase, which
packs an item to the current bin if it fits and starts a
new bin otherwise. Several one-phase algorithms were
also proposed by Berkey et al. [4]. Finite Next-fit (FNF)
directly packs the items into finite bins in the same way
as HNF. Finite First-fit (FFF) packs items on the low-
est level of the first bin where they fit; if no level can
accommodate an item, a new level is formed in the first
bin with sufficient vertical space. Otherwise, the new
level is formed in a new bin. Finite Bottom-left (FBL)
and Next Bottom-left (NBL) are two other one-phase
bin-packing approaches mentioned in the paper. Read-
ers can refer to the work of Lodi et al. [21] for additional
2Dbp techniques.

More recently, Honga et al. [19] presented a mixed
packing algorithm that combines a heuristic with Best
Fit and is based on simulated annealing and binary
searching. Beyaz et al. [5] used state-of-the-art meta-
heuristics and local search techniques to minimize the
number of bins while maintaining the load balance.
Martinez Sykora et al. [23] packed a set of irregular
pieces into bins with fixed dimensions in such a way
that the utilization was maximized. Their procedure
allows free orientation for the pieces. Zhao and Shen [26]
presented a 2D. online rectangular packing algorithm
with three bits of advice per item. Lai et al. [20] pro-
posed a heuristic approach for 2D bin-packing problems
with a guillotine-cut constraint while considering three

COMPUTER-AIDED DESIGN & APPLICATIONS 13

criteria, including packing priority and packing spaces.
Bansal and Khan [1] studied packing of 2D. rectangu-
lar items with and without rotations. As stated in the
paper, their technique achieves 1.405 approximation for
the bin-packing problem. The bin-packing technique of
Camachoa et al. [7] handles both 1D and 2D prob-
lems involving irregular concave polygons. The method
was based on a hyper-heuristic methodology. Trivella
and Pisinger [25] formalized the load-balanced, multi-
dimensional bin-packing problem using mixed-integer
linear programming models.

Nesting algorithms [10, 13, 18, 27] are used for pack-
ing items into bins. These all start with a fixed size
of items, which are then packed into bins. Zheng [27]
approximated blocks as isosceles trapezoids, right trape-
zoids, parallelograms, and triangles before the packing
process and utilized these approximated blocks dur-
ing the packing process. This study explored the effec-
tive block spatial layout under the condition of spa-
tial constraints. Hana et al. [18] generated guillotine-
cutting layouts of irregular shapes. Pieces were first
enclosed within rectangle shapes, and then the rectan-
gles were packed. However, additional waste was pro-
duced using this methodology. Griffith [13] provided
techniques for decomposing 3D geometry into devel-
opable surface patches and cut patterns. In this method,
a decomposition application receives a triangulated 3D
surface as input, and approximately developable surface
patches are determined from the 3D surface using a type
of k-means clustering. Dash et al. [10] proposed an auto-
mated method that optimally designs plates to satisfy an
order book at a steel plant. Here, the yield of the designed
plates can be maximized while using capacity fully to
satisfy order deadlines.

We formulate the bin-packing problem differently
from the way it is considered in 2Dbp techniques. Instead
of starting with a given set of items, neighboring items
are combined, and items with large sizes are obtained
(called combined items). In 2Dbp techniques, the width
and length of items should be smaller than those of
the bins before packing. Hower, combined items may
have larger sizes than the bins. Therefore, items are split
wherever required while satisfying the minimum length
and angle criteria. Here, we propose a new set of algo-
rithms for decomposing a large 3D structure into con-
vex items. Combined items are produced first and these
are utilid as a set of input items for an extended ver-
sion of the 2Dbp technique. Items are dynamically split
into sub-items during packing. We think that utilizing
this approach can better minimize bin waste, since the
splitting process splits combined items at the required
locations.

3. An application and generation of combined
items

3.1. A shipbuilding problem

A ship hull is a large 3D structure and cannot be pro-
duced all at once. Therefore, it must be decomposed
into producible plates that aremanufactured individually.
These plates are then assembled and welded to produce
the hull. Producible plates are generated using rectangu-
lar flat plates, and waste minimization of these plates is
one of the most important criteria. There are inherently
more criteria, such as cost estimation and minimization
of welding length between the producible plates, for ship
hull decomposition. However, only the waste minimiza-
tion criterion of the rectangular flat plates is considered
for the validation of the proposed approach.

A ship hull, H,. is given as a 3D triangular mesh model
and consists of 3D producible plates on H. A producible
plate can be a triangular region (with three corners and
three boundaries) or a quad region (with four corners and
four boundaries), as plates in triangular and quad geome-
tries are easy to bend. Let Q be a set of producible plates,
andH = ∪iQi,Qj ∩ Qk = ∅. (i.e., no overlap betweenQj.
and Qk), Qj,Qk ∈ Q., j, k = 1, . . . , a, j �= k., and a be the
number of producible plates. A flattened plate, called a
hull item, is a planar triangular or quad region, which
is produced by flattening the producible plate to 2D.
The geometric characteristics (i.e., quality criteria) of hull
items are as follows:

• The maximum length constraint: Each edge length of
a hull item should be smaller than lmax, which varies
according to the item position. Hull items residing on
less curved portions of the ship hull have greater val-
ues of lmax than those on highly curved portions. Note
that hull items with greater edge lengths are difficult to
bend and transport;

• The minimum length constraint: Each edge length of
a hull item should be greater than lmin. Items with
smaller edge lengths are difficult to weld and bend;

• The minimum angle constraint: The angle between
consecutive edges of a hull item should be greater
than αmin. Hull items with smaller angles of αmin are
difficult to weld.

A ship hull is produced from rectangular flat steellates
called bins, and items are packed into these bins while
minimizing waste. The research question here is how to
obtain a set of hull items for a given ship hull while mini-
mizing bin waste. Starting from a mesh model (H), the
ship hull is first segmented into non-overlapping mega
blocks as shown in Fig. 2 user constraints depicted in

14 E. GUNPINAR

Figure 2. Required preprocessing steps before the generation of combined items and Split-and-Pack approach: Mega blocks are gener-
ated from a given mesh model of a ship hull (a) (of about 320m in length). The mega block is cut into several sub-meshes based on the
user constraints in (b), and the 3Dmesh models of these blocks are flattened to 2D (c, d, e).

Fig. 2(b) are defined by themanufacturing or design engi-
neer to determine the sub-mesh boundaries of the mega
block (see the 3Dmesh models in Fig. 2(c, d, e)). For the
sake of simplicity, only a few user constraints are utilized
in this study, but there can be more in practice. Finally,
sub-meshes between these constraints (boundaries) are
flattened to 2D using the ReSurf MeshFlatten standalone
application [24], and flattened blocks are obtained; these
are represented using planar 2Dmeshes (see the 2Dmesh
models in Fig. 2(c, d, e)). These flattened meshes will be
utilized to produce combined items.

3.2. Combined items’ generation

3.2.1. Bin template formation
Flattened blocks are covered using bin templates of equal
size in this step. Bin templates are produced from bins
in such a way that they do not generate bin waste while
packing. Assume that we have a bin with length L. and
width W. Bin templates with length l. and width w. are
generated from bins, where l ≤ L andw ≤ W. Bin tem-
plates will be used to cover the flattened blocks. Here,
l. and w are determined based on the minimum and
maximum length constraints (lmin and lmax, respectively)
described in Section 3.1. Figure 3 illustrates the gener-
ation of bin templates from bins. Starting from a bin
(see Fig. 3(a)), horizontal and vertical cuts are gener-
ated (in pink and green in Fig. 3(b)). These cuts divide
the bin into equally-spaced regions, each of which will

be a bin template, as shown in Fig. 3(c). To compute l
and w., the number of required cuts in the horizontal
and vertical directions (nh and nv) are first determined,
and these are calculated as follows: nh = f (W/lmax) and
nv = f (L/lmax)., where f (x)maps a real number x to the
largest previous integer. Finally, l and w are computed
using nh and nv : l = L/(nv + 1). and w = W/(nh + 1).
This formula favors the generation of larger length and
width of equal-sized bin templates. Bins with a width of
2.5 m and a length of 12.0 m are utilized for this study’s
problem. In Fig. 2(c, d), lmax is defined as 2.0m for blocks,
which have highly curved regions. Fig. 2(e), lmax is set to
3.0m for the block. For all models throughout this paper,
lmin and αmin are set to 0.5. m and 0.35. radian (about
20. degrees), respectively. In these parameter settings, bin
templates with a length of 2.0 m and a width of 1.25 m
are generated for the blocks in Fig. 2(c, d). In Fig. 2(e), a
length of 3.0m and a width of 2.5m the bin templates are
generated for the block.

3.2.2. Initial covering of flattened blocks
this step, bin templates are placed on each flatteneock,
and a regular grid consisting of the bin templates will be
obtained (see Fig. 4(c)). In this grid structure, bin tem-
plates residing on the inner portion the Flattened block
always have four neighbor bin templates (see rectangles
in green). First, the orientation of the flattened block in
Fig. 4(a) is changed so that its boundary is as much as
parallel to X,Y axes (Fig. 4(b)), as bin templates are also

Figure 3. Equally-spaced horizontal and vertical cuts shown with pink and green dashed lines in (b) divide the input bin in (a) and bin
templates (c) are produced.

COMPUTER-AIDED DESIGN & APPLICATIONS 15

Figure 4. The flattened block in (a) is oriented according to X- and Y- coordinate axes to make the boundary as parallel as possible to
these axes (b). The flattened block is covered with bin templates; boundary and inner items aremarked in red and green (c), respectively.
The combined items are generated by merging boundary items with their neighboring items (d).

oriented according to the X,Y axes (see Fig. 4(b)). The
oriented flattened block is then covered using bin tem-
plates, as depicted in Fig. 4(c). Bin templates are placed
on the flattened block without overlapping each other,
and a 2D regular grid consisting of these bin templates
with uniform grid spacing in the X or Y direction is
obtained. Starting from the left-st vertex (initial vertex)
of the flattened block, bin templates are placed from left
to right (i.e., in the positive X direction) until the right
edge of the placed bin template passes the right edge of
the flattened block’s bounding box. Thus, a single row
of the flattened block is covered with the bin templates.
Uppower rows of the flattened block are similarly covered
by moving the initial vertex by the width W of the bin
template in the positive/negative Y direction. Covering
the flattened block with the bin templates (in the posi-
tive/negativeY direction) stopswhen there is no intersec-
tion between the placed bin templates and the flattened
block. Finally, bin templates with no intersection with the
flattened block are removed; those that intersect with the
flattened blk boundary are marked as boundary items,
and those without intersection with the boundary are
marked as inner items. Figure 4(c) shows the results oe
flattened block coveringmethod; the boundary and inner
bin templates are depicted with red and green rectangles,
respectively.

3.2.3. Generation of combined items
Boundary items generate bin waste, since they are
located on the flattened block boundary. Combined
items—triangular or quad convex regions—will be
replaced with boundary items to reduce waste on the
flattened block boundaries. For each boundary item, an
overlapping region between the item and the flattened
block is first computed. An enclosing region of the over-
lapping region is then found, which is aminimumenclos-
ing triangular or quad convex region [22] of the over-
lapping region; this is called a trimmed item. Combined
items will be generated by merging trimmed items with
their neighboring items. Figure 5(a) depicts a trimmed
item (in yellow) with its neighboring items (in blue). Sup-
pose A and B are two neighboring items (see Fig. 5(b)),
and these are merged to obtain a single combined item,
C (Fig. 5(d)). The resulting combined item C is a mini-
mum enclosing triangular or quad convex polygon that
encompasses A and B. LetD be a polygoan be either con-
vex or concave, and encompasses A and B without any
waste (Fig. 5(c)). The wasteW occurring after mergingA
and B to obtain the combined item C is computed as fol-
lows: W = ϕ(D)-ϕ(C), where ϕ(D) and ϕ(C) represent
the area of D and C, respectively (Fig. 5(e)).

Let τB and τI . denotes the set of trimmed and inner
items, respectively. List T stores these items. Here, τuB is

Figure 5. Trimmed items are obtained by trimming the boundary items in red (a). Two neighboring items (b), one of which should be
a trimmed item, are merged to obtain a combined item (d). The waste (e) after merging is computed by subtracting the combined item
from the polygon encompassing the neighboring items (c).

16 E. GUNPINAR

Figure 6. Combined items (in colored boundaries) of mega blocks residing in the front (a), middle (b), and back (c) portion of the ship
hull model in Fig. 2(a).

Table 1. g, n, A andW denote Flattened block name shown in Fig. 6, total number of the generated combined items, total area of the
generated combined items inm2, total waste area inm2 after merge respectively. lmax is the maximum length constraint inm.

g B C D E F G H J K L M N P

lmax 3 2 2 4 4 3 3 3 3 3 4 4 2
n 34 14 18 4 5 9 8 7 11 11 16 10 11
A 510.7 86.0 186.7 217.0 267.0 206.1 289.8 198.1 250.3 279.8 332.6 194.4 68.3
W 2.2 2.6 1.0 0.003 0.001 0.4 0.96 0.58 1.96 2.97 0.51 3.65 2.0

the infeasible trimmed item set, where items do not satisfy
the minimum edge length and angle criteria introduced
in Section 3.1.Other items are stored in a feasible trimmed
item set denoted by τ fB. The item merging rules are as
follows:

• To avoid merging, items in τ fB only merge with items
in τB. and do not merge with items in τI .

• Items in τuB . are allowed tomerge with both items in τI
and τB to eliminate infeasible trimmed items.

The listO stores all possible merging item pairs, and if
the computed waste is greater than a user defined param-
eter ξ , the merging item pair is not added to the list O.
Merging operations inO are grouped into two categories,
namelyO1 andO2. Here,O1 stores themerging itempairs
where a feasible combined item (i.e., satisfying the mini-
mum length and angle criteria) is obtained after merging
items, one of which is an infeasible item; O2 contains the
rest of the merging item pairs in O. In addition, O1 and
O2 are sorted by waste occurring after the merge opera-
tion in an increasing order. Merging item pairs in O1 are
appended to O first, and then those of O2 are appended.
In this way, items in τuB can be merged rapidly. The first
item pair in O is merged first, and then the list O is rear-
ranged similarly to the method described above. Items
are merged until no item pair in O is merged and com-
bined items are finally obtained. Figure 4(d) and Fig. 6
show that the combined items generated using the pro-
posed approach. ξ is set to 0.5 in this study and can be

adjusted to other values. Setting it to higher values allows
the generation of large-size combined items, but waste
will probably increase. Readers should refer to Table 1
for the further results of the combined item generation
process.

4. The split-and-pack approach

The combined items produced in the previous step
will be packed into bins while minimizing bin waste.
Note that inner bin templates do not produce any bin
waste as they are obtained by dividing bins into equal
widths and lengths of regions without a gap between
them. Figure 7 depicts the generated combined items
(Fig. 7(a)) and inner items (Fig. 7(b)). The black polygon
Fig. 7(b) encloses inner items, and a single bin is suffi-
cient when 12 inner items are packed into it, as shown
in Fig. 7(c).

4.1. Method overview

Initially, we have a set of combined items ψ and a finite
number of equal-sized bins. A combined item is a quad
or a triangle represented by its corner vertices. A bin ρ
is a polygon initially having four corner vertices in 2D
with length L and width W, and the number of cor-
ner vertices changes while packing combined items into
the bin. Combined items in ψ are placed on ρ sep-
arately, and the cost for each placement is computed
using the cost function introduced in Section 4.5. The

COMPUTER-AIDED DESIGN & APPLICATIONS 17

Figure 7. Combined items (a) and inner items enclosed by a black polygon (b). Inner items can fit perfectly into the bins without
producing any bin waste (c).

item with a minimum cost value is placed first. The
shape of ρ is modified by subtracting ρ from the placed
combined item.

Candidate points where combined items are placed
and their corresponding candidate regions, which are
convex triangle or quad regions; are found using ρ. As
combined items can be larger than candidate regions,
some portions of these items can exceed the candidate
regions. In this case, the intersection between the com-
bined items and the candidate region is found, and the
intersected portion is packed into ρ. The exceeded por-
tion is then split into quad or triangular items, each of
which will be separately packed into ρ in the next steps. If
ρ does not have enough space to insert combined items,
a new (unused) bin is utilized (set ρ. as an unused bin)
for the further combined item placements. Packing of
combined items is performed until all combined items
are placed. Figure 8 shows a flow chart for the proposed
approach. Readers should refer to the pseudo-code below
for further details on the Split-And-Pack approach.

SplitAndPack(ψ , ρ) /* Inputs; ψ . : A set of combined
items, ρ: Bin. Output; ς : Packed item list*/

(1) Set ρ as an unused (new) bin.
(2) Find all candidate points and their corresponding

candidate regions in ρ.
(3) Place all combined items ψ . on each candidate

region separately and compute cost value for each
placement.

(4) Select the combined item ι having minimum cost.

(5) Find the intersected polygon ϕ between ιand the
selected candidate region. Place ϕ on ρ.

(6) If ι exceeds the candidate region, then
• Add ϕ to ς .
• Find exceeded portion ι′ by subtracting ιfrom the

candidate region.
• Set ι as ι′.
• Split ι′ into quad or triangular items, each of

which will be separately placed on candidate
regions in the next steps.

(7) Elseρ
• Add ι to ς .
• Mark ι as placed.

(8) Update ρ by subtracting ρ from ϕ.If has insufficient
space to place the combined items in ψ , then
• Set ρ as a new (unused) bin.

(9) Repeat lines 2 to 10 until all combined items are
placed on ρ.

4.2. Packing position (Pp) finder

Pp finder computes packing positions and packing
regions of the bin ρ. A candidate point is a point on
which combined items are placed. A candidate region is
a corresponding convex quad or triangularegion for a
candidate point into which combined items are packed,
and it is generated from ρ; ρ is a polygon consisting of a
sequence of points from P1 to Pt in a counter-clockwise
order (with edges connecting the consecutive vertices).
That is, 〈P1,P2, . . . ,Pt〉, where Pj represents a point in 2D

Figure 8. Flow chart for the proposed approach.

18 E. GUNPINAR

Figure 9. For each candidate point (see black points in (a)) in a bin, candidate regions are generated. Concave vertices of the bin are
eliminated one by one. In each elimination, the resulting polygonwith a greater area is selected (b-f). Finally, a candidate region is found
for the candidate point (f). Three candidate regions with their corresponding candidate points (boundaries are shown with dark green,
purple, and blue boundaries) are obtained (g).

Figure 10. Pruning of bins: (a)w1 < lmin, (b)w1 < αmin andw2 < lmin, (c)w3 < lminandw4 = 0.5, (d) v2 < αmin andw5 = 0.5.

and t denotes the number of vertices in ρ where j ∈ [1, t].
Every combined item has a main point (see Fig. 13(a))
which is defined as the closest vertex to the left-bottom
vertex of a combined item’s bounding box and coincides
with the Candidate point when placed on the candidate
region.

A candidate point has the following characteristics:

• Let vnj be a vector from a vertex (Pj) in ρ to its next ver-
tex, and let vpj denotes a vector from Pj to the previous
vertex of Pj. If the cross product vnj × v

p
j is positive,

the vertex is called a convex vertex. Otherwise, it is
a concave vertex. A candidate point is a convex ver-
tex. Convex and concave vertices of are depicted with
black/pink and green dots, respectively, in Fig. 9(a).

• When combined items are placed on convex vertices
in ρ, there is either no or a less amount of intersection
area between the combined item and ρ (see the upper
image of Fig. 9(a)). We do not accept such vertices
(see pink points in Fig. 9(a)) as candidate points. The
other remaining convex vertices are candidate points
(in black).

We take a greedy approach to generate a candidate
rρegion for each candidate point of the bin ρ, as shown
in Fig. 9(b-f). The concave vertices of ρ are eliminated

one by one. In each elimination step, the resulting poly-
gon with a greater area is selected. Decomposition of the
given polygon (ρ) is performed until a convex polygon
is obtained. If the obtained convex polygon is not a tri-
angle or a quad (e.g., a pentagon, hexagon), it has to be
further decomposed into triangular or quad polygons.
Section 4.3 outlines a method for this decomposition.
Figure 9(f) shows three candidate regions with their cor-
responding candidate points (boundaries in dark green,
purple, and blue) generated from the bin in Fig. 9(a),
where the obtained candidate regions cover the bin com-
pletely. Note that it also possible to enumerate all can-
didate regions of a candidate point without pruning the
smaller area branches (polygons). However, such a com-
plete enumeration will result in increased computational
time.

Figure 10 shows a bin (in gray) and some of its por-
tion is pruned. After placing a combined item (in yellow)
on the bin, bin portions that do not satisfy the minimum
length and angle constraints are pruned. Figures 10 (a)
and (c) show a bin containing an edge whose length (w1
andw2) is smaller than lmin, and therefore, it is pruned. If
the bin contains an angle (v1 and v2) smaller than αmin, it
is also pruned, as shown in Fig. 10(b) and (d). Candidate
points of the bin after the pruning operation are depicted
with pink dots.

COMPUTER-AIDED DESIGN & APPLICATIONS 19

Figure 11. (a) Four separate regions are formed after placement of a combined item (in orange) on a Candidate region (in blue): packed
(in yellow) and remaining portions (in orange) of the combined item, and the remaining portion of the combined item (in green). (b,
c) Several polygon types (cases 1-10) are formed after subtracting the combined item from a candidate region with a quad (b) and a
triangular shape (c).

4.3. Split operator

The split operator splits a combined item into sub-items
if it exceeds the candidate region. Figure 11(a) shows a
combined item that exceeds the candidate region after
placement. The exceeded portion of the combined item
is termed as exceeding item. An exceeding item can have
a shape other than a quad or triangle. Figures 11 (b) and
(c) list the possible exceeding item shapes. If the can-
didate region is a quad, the exceeding item can be six
types of different polygons, as follows: a triangle, quad,
pentagon, hexagon, heptagon or octagon (see cases 1–6
in Fig. 11(b)). If the candidate region is triangular, the
exceeding item can have triangular, pentagonal, hexago-
nal, or heptagonal shapes (see cases 7–10 in Fig. 11(c)).
If an exceeding item has a shape other than a triangle
or quad, it has to be decomposed into a convex quad
or triangular items before the packing process. Each
decomposed item is packed separately during packing.
To decompose a non-triangular or non-quad exceed-
ing item with concave geometry into triangular or quad
items, edges containing concave vertices are extended,
and convex polygons containing the edges are obtained
(see Fig. 12(a)). These polygons are candidate items (see

polygons C1 − C4 in Fig. 11(a)) of the exceeding item,
each of which is placed on the candidate region while
checking its placement cost.

4.4. Orientationmodifier

We take the orientation of the combined items as they
are formed in the combined items’ generation step. The
main point of a combined item should coincide with the
candidate point of a candidate region when combined
items are packed. Several orientations of a combined item
are produced by utilizing rotation and mirror orienta-
tion modifiers (OMs). Rotation OM rotates a combined
item around its main point in the positive Z axis by θ .
until obtaining a full rotation. In this study, θ is set to
π/2 radians, and four different combined item orien-
tations with their main points are obtained, as shown
in Fig. 13(a). Note that setting θ to smaller values will
increase the number of generated orientations; therefore,
better packing of combined items (i.e., minimizing bin
waste) can probably be obtained. Mirror OM changes the
orientation of the combined items by mirroring them in
the X-axis. Figure 13(b) depicts the combined items with
their main points obtained after applying themirror OM.

Figure 12. (a) Generation of Candidate items (C1 − C4) from a concave Exceeding item (b) Images to help understanding the Y(.) term
of the cost function.

20 E. GUNPINAR

Figure 13. (a) Given a combined item (in yellow) with its main point, three more orientations of the combined item are generated by
rotating it around its main point by π/2 radians. (b) Orientation of four combined items (a) are modified by mirroring them in the X-axis
and four more orientations are obtained.

Themain point of the combined item is updated for both
OMs and is the closest vertex to the left-bottom vertex of
the combined item’s bounding box.

4.5. Placement decisionmaker (Pd-maker)

Placement of combined items on candidate regions are
performed based on a cost function. Priority is given
to the combined item and candidate region pair with
minimum placement cost. The cost function F(ι,B, ρ) =
X(ι,B, ρ)+ β ∗ Y(ι,B) consists of two terms and the β
parameter, which adjusts the weight of the second term.
The term X(ι,B, ρ) is computed based on the resulting
bin ρ ′ after packing a combined item, ι, into a candi-
date region, B, of a bin ρ where B ⊂ ρ. The resulting
bin ρ′ = ρ − ιI is obtained by subtracting the intersec-
tion ιI = ι ∩ B between and B from ρ. Here, ρ ′ can be
represented as a counter-clockwise ordered vertices and
edges described by ρ′ = 〈v1, e1, v2, e2, . . . , vu, eu〉., where
u is an integer. The last edge eu is the edge connecting
the last vertex vuand the first vertex v1. Thedge lengths
for the edges in ρ′ are denoted by L′ = 〈l1, l2, . . . , lu〉,
and the angles between the edges connected at the ver-
tices are 〈α1,α2, . . . ,αu〉. The term X(ι,B, ρ) is com-
puted as follows: X(ι,B, ρ) = ∑u

j=1(g(lj)+ h(αj)). If the
length lj for the jth edge (j = 1, 2, . . . , u) is smaller than
the minimum edge length constraint lmin, the result-
ing bin is penalized by setting g(lj) to lj/lmin. Other-
wise, g(lj) is zero. Similarly, if the angle αj at the jth
vertex is smaller than the minimum angle constraint
αmin, the resulting bin is penalized by setting h(αj) to
αj/αmin. Otherwise, h(αj) is zero. Note that a cost value is
computed for each combined item-candidate region pair
so that the pair with minimum placement cost can be
selected.

The left and middle images of Fig. 12(b) illustrate two
combined items (in orange) placed on the same candi-
date region (in blue). If the distance qA is greater than
lmin, placement of both combined items on the candidate
region will have the same value for the term X(ι,B, ρ).
The term Y(ι,B) will give placement priority to one

of these two combined items.o compute the value for
the term Y(ι,B), decomposition positions and probable
decomposition positions have to be first found (see black
and blue crosses, respectively, in Fig. 12(b) and called R
points) from where the combined item has to be decom-
posed or probably decomposed. These points divide
edges into several pieces (see green, red, and blue lines
on the top edge). Let the edge eg be an edge containing a
single R point vg . Then, eg1 and eg2 e the edgeswhere eg =
eg1 ∪eg2 , and vg is the intersected point of eg1 and eg2.
Y(ι,B) is computed as follows: Y(ι,B) = ∑

eg∈EG Z(eg),
where EG consists of set of edges, each of which contains
an R point, and Z(eg) = (v(eg1)+ v(eg2)+ 1)− v(eg).
Furthermore, v(x) is the number of cuts required for the
edge x based on the maximum length constraint lmax
and is calculated as follows: v(x) = c(L(x)/lmax), where
L(x). is the length of edge x and c(y) rounds y downward.
For the sake of simplicity, we only explain computa-
tions on an edge containing a single R point. If there is
more than one R point on an edge, as shown with black
crosses in the right image of Fig. 12(b), computations will
also be done similarly. Y(ι,B) favors the generation of
combined items (occurring after placement on candidate
regions), where a minimum number of decompositions
are required to obtain hull items (see Section 3.1). We
set β to 0.2 in this paper, which gives higher priority
to the X(ι,B, ρ) term. Finally, note that if an exceeding
item, whose candidate items do not satisfy the quality
criteria, appears after placing a combined item on a can-
didate region, a higher cost is assigned to the placement
of that combined item, and it will not be packed in the
current step.

5. Results and discussion

Figure 14 shows the results of the proposed packing
method for the combined items depicted in Fig. 6.
Regions with colorful boundaries and shaded with gray
are the combined items placed on bins (shownwith black
boundaries) with size of 12m×2.5m. Areas in white
between the combined items are the unused portions of

COMPUTER-AIDED DESIGN & APPLICATIONS 21

Figure 14. Packing of combined items depicted in Fig. 6 using the Split-and-Pack approach.

Figure 15. Detailed results of the proposed technique for the packing shown in Fig. 13.

the bins and can be called waste. Since combined items
generated from the flattened blocks residing on the mid-
dle portions of the ship hull are close to rectangular,
packed items are also rectangular, as seen in the upper
image of Fig. 14. When packing results of the front and
back portions for the ship hull are analyzed, triangular
items can be seen, particularly in the final stages, because
initial combined items (before packing) are not close to
rectangular for the front and back hull portions.

Figure 15 shows the detailed results for the placeme of
combined items on bins except for the placement on the
final bins. Horizontal axes denote the bin numbers. Ver-
tical axes denote the number of placed combined items,
average area of placed combined items, average cost, and
waste per bin. The number of placed combined items
is less at the initial placement and increases at the final
stages. This is due to the formation of small-size can-
didate items after the split process. The average area of
placed combined items per bin also decreases for the
same reason. At the initial stages, the cost of placement
and waste of bins are close to zero, which increases as
placement steps proceed. Average amounts of waste per

bin are about 0.45, 2.06, and 1.38m2 for themiddle, front,
and back ship hull portions, respectively, where the area
of a bin is 30 m2. It has been observed that the waste
amount of bins is large for the final stages of the front and
back ship hull portions. This is because of the generated
combined items in the final stages, which are not close to
rectangular quads or are skinny triangles. Such combined
items do not fit the candidate regions properly (i.e., while
satisfying the minimum length and angle constraints).
To place them on candidate regions properly, rotation
OM (described in Section 4.4) should be applied with a
smaller rotation angle (i.e., smaller θ values), particularly
for the last placement steps.

5.1. Computational time

A PC with an Intel Core i7 4820 3.7 GHz processor and 8
GBmemory is used for the experiments in this study, and
the implementation is single-threaded. Table 2 shows the
computational time taken for the proposed algorithms
in this work. The processing time for the initial cov-
ering of flattened blocks was less than 1 second. The

22 E. GUNPINAR

Table 2. Processing time in seconds for the proposed algorithms
of this study.

Hull Portions
Initial Covering of
Flattened Blocks

Generation of
Combined Items

Packing of
Combined Items

Middle 0.172 8.088 15.03
Front 0.47 10.731 87.636
Back 0.126 3.915 99.198

generation of combined items took less than 11 seconds
for all hull portions, which depended on the maximum
length constraint (i.e., lmax). For smaller values of lmax,
many bins were generated, and therefore many merging
operations for neighboring bin templates can be listed.
The computational time for the Split-and-Pack approach
was about 15 seconds for the middle hull portion where
the generated combined items were closer to be a rect-
angular, whereas the times taken for the ship hull front
and back portions were about 88 and 99 seconds, respec-
tively. Since the combined items of these hull portions are
generally not rectangular, more candidate items could be
generated from the combined items than in the middle
hull portion. The overall processing time for all hull por-
tions was less than 2 minutes, and it can be said that the
proposed approach of this study has low computational
cost.

5.2. Parameter tuning

Figure 16 shows the bin waste amount and number of
placed combined items of the middle ship hull portions
for different β (adjusting the weight of the Y(·) term
in the cost function) settings. According to these exper-
iments, bin waste was 5.48 when β = 0.0, 17.4 when
β = 0.2, and 21.19 when β = 0.4. A lower amount of bin
waste is obtained for the β = 0 setting, which assigns the
X(·) term full weight. Recall that the X(·) term favors
the generation of bin shapes satisfying the quality crite-
ria (i.e., minimum length constraint), and therefore, the
waste amount of bins is minimized. It was also observed
that the number of placed combined items decreased
when β increased, as follows: 393 for β = 0.0, 371 for
β = 0.2 and 317 for β = 0.4. When a smaller weight
was given to the Y(·) term, the Split-and-Pack algorithm

minimized the bin waste with less consideration of the
number of cuts on the combined items resulting in the
generation of more combined items.

5.3. Results using different combined item sets

Different combined item sets were generated by setting
the allowable waste ξ during the generation of combined
items. Note that setting ξ to greater values allows the
generation of a smaller number of combined items with
greater size and waste. Table 3 shows the waste amount
at the end of the combined items’ generation and pack-
ing steps. It was observed that although setting ξ to 0.5
generated combined items with greater waste than that
of the ξ = 0.1 setting for the ship hull back portion,
smaller waste occurred after the combined items’ pack-
ing. Thus, there was less overall waste for the ξ = 0.5
setting than when ξ was 0.1. Since large combined items
were produced in the ξ = 0.5 setting, they had much
more splitting flexibility (i.e., they could be split many
times) than smaller items; thus, less waste occurred com-
pared to that of the ξ = 0.1 setting.We observed a similar
overall waste amount for the ship hull front portion.

5.4. Results when using items and combined items

Let us take 18 items of 2 × 2mwidth and length, 30items
of 1 × 1.6 m, 15items of 2.5 × 3 m and 21items of
1.2 × 1.5m. These items are combined and the follow-
ing combined items are obtained: 6combined items of
2 × 6 m, 10combined items of 1.6 × 3 m, 5combined
items of 2.5 × 9 m and 7combined items of 1.5 × 3.6m.
Experiments were conducted to compare the results
when using the non combined item set, like that of the

Table 3. WBC , WBS, and WB denote waste during the combined
items’ generation step, the packing step and the total waste for
the shiphull backportion, respectively, for theuser-definedallow-
ablewaste ξ .WFC ,WFS, andWF denotewaste for the shiphull front
portion during these steps.

ξ WBC WBS WB WFC WFS WF

0.1 3.9 75.7 79.6 3.3 60.0 60.3
0.5 11.2 56.8 68 6.0 57.8 63.8

Figure 16. Waste and number of placed combined items for the middle ship hull portions when (a) β = 0.0 and (b) β = 0.4.

COMPUTER-AIDED DESIGN & APPLICATIONS 23

Figure 17. Results obtained using non-combined items without applying the split concept (a, c) and combined items with the split
concept applied (b, d).

2Dbp approaches and the combined item set. Split con-
cept in Section 4.3 is applied for the combined item
set, whereas it is not applied for the non-combined item
set. Figures 17(a) and (b) show the packing results. The
amount of bin waste for the non combined item set pack-
ing was observed to be 36.9m2 while it was 3.23m2 for
packing the combined item set. Thus, utilizing the com-
bined item set with the split concept can reduce bin
waste.

5.5. Post processing of combined items

Since packed combined items can have edge lengths
greater than the maximum length constraint (i.e., lmax),
they have to be further decomposed into hull items sat-
isfying the quality criteria in Section 3.1. Horizontal and
vertical cuts, introduced in Section 3.2.1, can split these
combined items into hull items.

6. Conclusions and future studies

This paper proposes a new set of algorithms to pack a
large 3D structure into bins while minimizing bin waste.
The main approach involved initial covering of the flat-
tened block using bin templates, generating combined
items by joining neighboring items of the block, and
packing these combined items in bins by splitting them
if required. The experiments showed that the proposed
approach is effective in terms of minimizing bin waste,
as combined items can be split from wherever required
without producing items that violate the defined quality
criteria. The proposed algorithm can be enhanced in sev-
eral ways. For example, guillotine cuts [2, 17] (i.e., a set of
edge-to-edge cuts parallel to the edges of bins) can also
be used during packing. Moreover, utilizing a different
set of combined items could further minimize bin waste.
Therefore,mesh segmentationmethods can be integrated
into the proposed approach to generate a better set of
combined items enabling minimal waste. Quad meshing
[6] and quad partitioning [14–16] techniques can be uti-
lized to obtain a better set of flattened blocks from which
combined items are generated.

Acknowledgements

The author would like to thank Hiromasa Suzuki, Masaki
Moriguchi and Hikmet Kocabas for valuable discussions. This
work was supported by The Scientific and Technological
ResearchCouncil of Turkey (TUBITAKBIDEB – Project Num-
ber: 114C067).

Funding

This work was supported by The Scientific and Technologi-
cal Research Council of Turkey [TUBITAK BIDEB – Project
Number: 114C067].

ORCID

Erkan Gunpinar http://orcid.org/0000-0002-0266-5546

References

[1] Bansal,N.; Khan,A.: ImprovedApproximationAlgorithm
for Two-Dimensional Bin Packing, Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 2014.

[2] Bansal, N.; Lodi, A.; Sviridenko, M.: A tale of two dimen-
sional bin packing, Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science, 2002,
657–666.

[3] Beasley, J.: An exact two-dimensional non-guillotine cut-
ting tree search procedure, Oper. Res., 33, 1985, 49–64.
https://doi.org/10.1287/opre.33.1.49

[4] Berkey, J.; Wong, P.: Two dimensional finite bin packing
algorithms, Journal of Operational Research Society, (2),
1987, 423–429.

[5] Beyaz, M.; Dokeroglu, T.; Cosar, A.: Hybrid Heuristic
Algorithms for the Multiobjective Load Balancing of 2D
Bin Packing Problems, Information Sciences and Systems
Conference, 2015, 209–220. https://doi.org/10.1007/978-
3-319-22635-4_19

[6] Bommes, D.; Levy, B.: Pietroni, N.; Puppo, E.; Silva, C.;
Tarini, M.; Zorin, D.; State of the art in quad meshing,
Eurographics STARS, 2012.

[7] Camachoa, E. L.; Marina, H. T.; Rossb, P., Ochoa, G.: A
unified hyper-heuristic framework for solving bin pack-
ing problems, Expert Systems with Applications, 41(15),
2014, 6876–6889. http://doi.org/10.1016/j.eswa.2014.04.
043

[8] Chung, F.-R.-K.; Garey, M.-R.: Johnson, D.-S.; On pack-
ing two-dimensional bins, Journal on Algebraic and Dis-
crete Methods, 3(1), 1981, 66–76. https://doi.org/10.1137/
0603007

http://orcid.org/0000-0002-0266-5546
https://doi.org/10.1287/opre.33.1.49
https://doi.org/10.1007/978-3-319-22635-4_19
https://doi.org/10.1007/978-3-319-22635-4_19
http://doi.org/10.1016/j.eswa.2014.04.043
http://doi.org/10.1016/j.eswa.2014.04.043
https://doi.org/10.1137/0603007
https://doi.org/10.1137/0603007

24 E. GUNPINAR

[9] Csirik, J.; Woeginger, G.: On-line packing and cover-
ing problems, in: Lecture notes in computer science,
Springer, 144, 1998, 147177. https://doi.org/10.1007/bfb
0029568

[10] Dash, S.; Kalagnanam, J.-R.; Reddy, C.-K.: Method for
production design and operations scheduling for plate
design in the steel industry, US Patent US20060100727
(B2), 2006.

[11] Frenk, J.-B.-G.; Galambos, G.: Hybrid next-fit algorithm
for the two-dimensional rectangle bin-packing prob-
lem, Computing, 39(3), 1987, 201–217. https://doi.org/10.
1007/BF02309555

[12] Gilmore, P.-C.; Gomory, R.-E.: Multistage cutting prob-
lems of two and more dimensions, Oper. Res., 13, 1965,
94–119. https://doi.org/10.1287/opre.13.1.94

[13] Griffith, S.: Decomposition of 3d geometry into devel-
opable surface patches and 2d cut patterns, US Patent
20130297058 (A1).

[14] Gunpinar, E.; Suzuki, H.; Ohtake, Y.; Moriguchi, M.:
Generation of bi-monotone patches from quadrilateral
mesh for reverse engineering, Computer-Aided Design,
45(2), 2013, 440–450. https://doi.org/10.1016/j.cad.2012.
10.027

[15] Gunpinar, E.; Moriguchi, M.; Suzuki, H.; Ohtake, Y.:
Feature-aware partitions from motorcycle graph,
Computer-Aided Design, 47, 2014, 85–95. https://doi.org/
10.1016/j.cad.2013.09.003

[16] Gunpinar, E.; Moriguchi, M.; Suzuki, H.; Ohtake, Y.:
Motorcycle graph enumeration from quadrilateral
meshes for reverse engineering, Computer-Aided Design,
55, 2014, 64–80. https://doi.org/10.1016/j.cad.2014.05.
007

[17] Hadjiconstantinou, E.; Christofides, N.: 2-D cutting prob-
lems using guillotine cuts, Eur. J. Oper. Res., 83, 1995,
21–38. https://doi.org/10.1016/0377-2217(93)E0277-5

[18] Hana, W.; Bennell, J.-A.; Zhao, X.; Song, X.: Construc-
tion heuristics for two-dimensional irregular shape bin
packing with guillotine constraints, European Journal of

Operational Research, 230(3), 2013, 495–504. https://doi.
org/10.1016/j.ejor.2013.04.048

[19] Honga, S.; Zhanga, D.; Laub, H. C.; Zenga, X.Sic, Y.
W.: A hybrid heuristic algorithm for the 2D variable-
sized bin packing problem, European Journal of Opera-
tional Research, 238(1), 2014, 95–103. http://dx.doi.org/
10.1016/j.ejor.2014.03.049

[20] Lai, C.; Cui, Y.; Yao, Y.: A constructive heuristic for the
two-dimensional bin packing based on value correction,
International Journal of Computer Applications in Tech-
nology, 55(1), 2017. http://doi.org/10.1504/IJCAT.2017.
082263

[21] Lodi, A.; Martello, S.; Vigo, D.: Recent advances on
two-dimensional bin packing problems, Discrete Applied
Mathematics, 123(13), 2002, 379–396. https://doi.org/10.
1016/S0166-218X(01)00347-X

[22] Lowa, K. L.; Ilie, A.: Computing a view frustum to max-
imize an object’s image area, Journal of Graphics Tools,
8(1), 2003, 3–15.

[23] Martinez Sykora, A.; Alvarez-Valdes, R.; Bennell, J.; Ruiz,
R.; Tamarit, J. M.: Matheuristics for the irregular bin
packing problem with free rotations, European Journal
of Operational Research, 258(2), 2016, 440–455. http://dx.
doi.org/10.1016/j.ejor.2016.09.043

[24] Technology, T.-N.: MeshFlatten standalone application
1.0, Nanjing, Jiangsu, China (http://www.resurf3d.com)
(2007).

[25] Trivella, A.; Pisinger, D.: The load-balanced multi-
dimensional bin-packing problem, Computers & Opera-
tions Research, 74, 2016, 152–164. http://doi.org/10.1016/
j.cor.2016.04.020

[26] Zhao, X.; Shen, H.: Online algorithms for 2D bin pack-
ingwith advice,Neurocomputing, 189, 2016, 25–32. http://
doi.org/10.1016/j.neucom.2015.11.035

[27] Zheng, D.: Study on the layout optimization of platform
based on simulated annealing algorithm, Journal of Soft-
ware, 8(7), 2013, 1793–1800. https://doi.org/10.4304/jsw.
8.7.1793-1800

https://doi.org/10.1007/bfb0029568
https://doi.org/10.1007/bfb0029568
https://doi.org/10.1007/BF02309555
https://doi.org/10.1007/BF02309555
https://doi.org/10.1287/opre.13.1.94
https://doi.org/10.1016/j.cad.2012.10.027
https://doi.org/10.1016/j.cad.2012.10.027
https://doi.org/10.1016/j.cad.2013.09.003
https://doi.org/10.1016/j.cad.2013.09.003
https://doi.org/10.1016/j.cad.2014.05.007
https://doi.org/10.1016/j.cad.2014.05.007
https://doi.org/10.1016/0377-2217(93)E0277-5
https://doi.org/10.1016/j.ejor.2013.04.048
https://doi.org/10.1016/j.ejor.2013.04.048
http://dx.doi.org/10.1016/j.ejor.2014.03.049
http://dx.doi.org/10.1016/j.ejor.2014.03.049
http://doi.org/10.1504/IJCAT.2017.082263
http://doi.org/10.1504/IJCAT.2017.082263
https://doi.org/10.1016/S0166-218X(01)00347-X
https://doi.org/10.1016/S0166-218X(01)00347-X
http://dx.doi.org/10.1016/j.ejor.2016.09.043
http://dx.doi.org/10.1016/j.ejor.2016.09.043
http://www.resurf3d.com
http://doi.org/10.1016/j.cor.2016.04.020
http://doi.org/10.1016/j.cor.2016.04.020
http://doi.org/10.1016/j.neucom.2015.11.035
http://doi.org/10.1016/j.neucom.2015.11.035
https://doi.org/10.4304/jsw.8.7.1793-1800
https://doi.org/10.4304/jsw.8.7.1793-1800

	1. Introduction
	2. Related literature
	3. An application and generation of combined items
	3.1. A shipbuilding problem
	3.2. Combined items' generation
	3.2.1. Bin template formation
	3.2.2. Initial covering of flattened blocks
	3.2.3. Generation of combined items

	4. The split-and-pack approach
	4.1. Method overview
	4.2. Packing position (Pp) finder
	4.3. Split operator
	4.4. Orientation modifier
	4.5. Placement decision maker (Pd-maker)

	5. Results and discussion
	5.1. Computational time
	5.2. Parameter tuning
	5.3. Results using different combined item sets
	5.4. Results when using items and combined items
	5.5. Post processing of combined items

	6. Conclusions and future studies
	Acknowledgements
	Funding
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

