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ABSTRACT

The integration of topology optimization (TO) methods with Computer-Aided design (CAD) arouses
a growing interest for mechanical and structural design purposes. However, generating 3D opti-
mized CAD models from raw TO results still remains a tedious task that requires significant expe-
rience and user input. This paper presents a fully automated process to generate 3D optimized CAD
models from TO results that tend towards beam-like structures. Raw TO results are first derived into
an optimized shape as a smooth triangulation. This triangulation is then derived as a curve skeleton,
which is finally normalized to generate a CAD model composed with an assembly of standard struc-
tural straight beams. 3D beam structures obtained with this automatic process are validated through
comparisons between FEA results obtained using mixed-dimensional FEA models and solid 3D tetra-
hedral FEA models. Efficiency of this automatic CAD model construction approach is demonstrated
through applying it on several beam-like TO results. The TO method used in this work is the SIMP
method but principles used could be extended to evolutionary (ESO/BESO) and other types of TO
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approaches.

1. Introduction

The development of topology optimization (TO) meth-
ods [2, 5,19, 20, 31] has been a very important subject of
research and industrial interest for the last 25 years. These
methods consist in automatically optimizing the distri-
bution of material along analysis iterations. Applying TO
basically automates what is done by engineers when they
modify a given version of a geometry with respect to
analysis results. The development of most TO methods
was first intended for 2D optimization problems, which
has then gradually been extended to 3D problems, which
then made possible its integration with CAD. The fact
that the TO process is now well mastered for 3D geometry
and that it is fully automated, starting from CAD models,
opens the path for extremely interesting developments
in mechanical design and other fields. Indeed automat-
ically optimizing 3D mechanical components and struc-
tures can now be foreseen, which can even be extended
towards creating components from scratch since the TO
process can be applied from extremely rough initial dis-
tributions of material. In this latter context, as illustrated
in Fig. 1, the TO process actually tends to automate the
creation of geometry. Indeed, rough geometry shown in
Fig. 1a, along with loads and boundary conditions (BCs)
is automatically derived into optimized geometry shown
in Fig. 1b though an integration of TO with CAD as

described in some of our previous papers [14, 16]. Note
that in Fig. 1b non-design material is shown in red, while
the optimized design material is grey. Non-design mate-
rial refers to material that should not be modified or
removed by the optimization process since it is related
to other components. Non-design material usually corre-
sponds to geometry on which loads and BCs are applied.

This example illustrates that fully integrating TO with
CAD is obviously very interesting and could even be the
first step of a new era in the way we design and manu-
facture products with CAD/CAM technology. Moreover,
recent developments related to additive manufacturing
(AM) make that the type of geometry generated from
3D TO can directly be manufactured, which was not the
case with conventional manufacturing processes. How-
ever, AM is expensive and time consuming, which makes
that filling the gap between 3D TO results and conven-
tional manufacturing processes still remains a major and
very important challenge.

Commercial codes and systems are developed towards
this objective (ex.. TOSCA by Dassault Systemes,
OptiStruct and solidThinking by Altair Engineering
Inc.). However, the research work behind these prod-
ucts is not available in the literature. Moreover, it appears
that, in these commercial TO solutions, even if interest-
ing tools exist to facilitate building parts and structures
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(a)

(b)

Figure 1. Automatic creation of geometry with TO: (a) Initial rough geometry with loads and BCs (b) optimized geometry derived.

from TO results, the gap between TO and CAD is still
huge. The approach presented in this paper significantly
contributes to filling this gap for TO results that tend
towards beam-like structures such as the one shown in
Fig. 1b since it is fully automated, which is not the case
for commercial TO tools available. Indeed, depending on
parameters used in TO, optimized geometry generated
from TO can be very different as illustrated Fig. 1.

In the case shown in the figure, the TO method used
is the SIMP method [5, 16] and the parameter that is
modified is SIMP volume fraction f, which represents
the fraction of the initial design material (in %) that is
allowed for generating the optimized geometry (see more
details in section 3). If f is low (2.5% in Fig. 1(a) and 1.5%
in Fig. 2(a)) the optimized geometry tends to beam-like
structures, while higher f values generate more massive
shapes (20% in Fig. 2(b)). It is obvious that, from these
two types of TO results, an engineer would generate very
different types of designs. In the first case he would derive
the optimized shape as an assembly of structural beams
while in the second case he would derive the result as a
molded and/or machined solid part.

In this work, we specifically consider TO results that
tend towards beam-like structures and the objective is
automating the construction of 3D structures from TO
results. As described in the next section, the TO method

(@)

used is a 3D implementation of the SIMP method devel-
oped by our team [14, 16], which is inspired from work
by Bendsoe and Sigmund [5, 26]. It is important to note
that the principles on which the proposed automatic con-
struction approach is based can be successfully applied
to other TO schemes such as ESO/BESO [20] or level-set
based methods [31].

The objective of this work is fully integrating TO with
CAD for beam-like structures. Ideally, the process should
start from a rough initial CAD model along with bound-
ary conditions (BCs) and optimization objectives (typi-
cally a volume fraction here since the SIMP method is
used), and automatically end with a CAD model of the
optimized structure that fulfills these objectives, all of this
without any other user interaction.

The paper is organized as follows. In the next section
(section 2) previous work towards generating CAD mod-
els from 3D TO results is synthesized. After briefly
presenting the TO method used and how 3D solid
CAD models can be derived from it in section 3,
section 4 details the proposed approach towards auto-
matically generating beam-like structures from these 3D
TO results. section 5 explains how these beam-like struc-
tures are validated through finite element analysis (FEA).
Several examples are shown to demonstrate the interest,
effectiveness and limitations of our approach. The paper

(b)

Figure 2. Two types of TO results: (a) A beam-like structure (b) A massive solid shape.



ends with a conclusion about potential further research
towards better integrating TO with CAD.

2. Related work

Whatever the TO method used, raw TO results cannot
be used as is for reconstructing optimized CAD mod-
els. Indeed level-set based methods represent optimized
geometry implicitly as a level-set, homogenization based
methods as a material and void spatial distribution, SIMP
based methods as a relative density field and ESO/BESO
methods as a 3D mesh. Thus, integrating TO with CAD,
which means deriving CAD models from raw TO results,
requires intensive and complex post-processing of these
raw results. A few approaches have been proposed in the
literature in this direction. Basically, three main strategies
have been investigated for post-processing TO results
into CAD geometry.

The first strategy towards reconstructing CAD geom-
etry from raw TO results is based on computing iso-
value sets (iso relative density for SIMP based methods
for example), which leads to discrete representations of
geometry such as triangulated surfaces and discretized
curves. These discretized representations of geometry
can be, in a second step, derived into CAD curves and
surfaces. For example, Youn et al [32] extracted CAD
curves from 2D TO results based on iso-relative density
discretized curves. A similar approach has been applied
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to 3D TO results by Hsu et al. [19]. In this work, cross
sections of the optimized geometry are computed as
3D iso-relative density discretized curves that are then
derived into 3D B-Spline curves. Sweeping through sets
of B-Spline cross sections finally allows generating a
3D solid CAD model from 3D TO results. In a simi-
lar approach, Tang et al. [28] mixed cross section and
surfaces computation to derive 3D TO results into CAD
geometry. Koguchi et al. [21] based their CAD recon-
struction approach on first using the marching cubes
method to obtain an enclosed iso-relative density discrete
surface that is then derived into a close set of biquartic
surface splines. The second strategy towards reconstruct-
ing CAD geometry from raw TO results is based on
trying to fit pre-defined shapes, referred to as primitives,
to sub-sets of TO results. The approach starts with identi-
fying subsets of the optimized result and comparing and
best-fitting these subsets with pre-defined shapes (prim-
itives). Once parameters of these pre-defined primitives
are calculated, the optimized CAD model is represented
as a Boolean combination of primitives. For example, Lin
and Chao [23] used this strategy to parameterize 2D TO
results based on using seven predefined 2D primitives.
In their work, shape optimization is used to fit actual
shapes and dimensions of the optimized result to that of
these predefined primitives. Larsen and Jensen [22] cre-
ated smooth parametric 3D CAD models from TO results
based on fitting and sweeping predefined 2D contours to
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the optimized 3D shape. This last work well illustrates
the main drawbacks of this type of strategy since apply-
ing it in 3D is limited to specific optimized shapes and
requires significant user input, which is inconsistent with
the objective of fully automating the reconstruction of
CAD models from TO results. A third strategy towards
reconstructing CAD geometry from raw TO results is
based on interpreting TO results using methods inspired
by black and white and grayscale image processing algo-
rithms. Indeed, once a TO result is represented as sets of
cells filled of void or solid material or filled with a varying
quantity (relative density for SIMP based results) extract-
ing boundaries of optimized results can be considered
as quite similar to image segmentation problems. Chire-
hdast et al. [10] used black and white image segmentation
techniques to convert 2D TO results into B-Spline curves.
Bremicker etal [7] used similar image segmentation tech-
niques to derive 2D truss structures from black and white
type of results in 2D. An interesting aspect of their work
is that, after extracting boundaries of optimized results,
2D skeletons are computed from these boundaries using
the medial axis transform (MAT). These skeletons are
then used as a base for computing 2D bar trusses. This
approach is limited to 2D optimization and requires sig-
nificant user interaction but it is worth mentioning that
extending this idea to 3D TO results represents one of the
core concepts on which the work presented in this paper
is based.

A synthesis of all these methods leads to the conclu-
sion that fully automating reconstruction of CAD models
from TO results is a complex challenge that will require
significant research efforts in the future. The approach
presented along the next sections allows automating this
reconstruction in the case of beam-like TO results, as
synthesized in Fig. 3.

3. Topology optimization and 3D geometry
construction

3.1. The SIMP method

As introduced in the introduction, among several other
methods, the SIMP method is used as TO method in
this work. SIMP stands for Solid Isotropic Material with
Penalization, which is one of the most widely used TO
methods. As illustrated in Fig. 4a, our implementation
of the SIMP method starts with an initial rough CAD
model on which design (colored gray in Fig. 4a) and
non-design (colored red in Fig. 4a) sub-domains are
specified along with loads and BCs. Overall dimensions
are 25m x 6m X 5m, bridge basis is constrained with
null displacement and a constant pressure P = 10kPa is
applied vertically (Young’s modulus is 69 GPa, Poisson’s

ratio is 0,33). This CAD model is automatically meshed
(see Fig. 4b), with linear tetrahedrons (with constant
size dy = 275mm), through a specific adaptation of the
advancing front method. As described with details in
[14], this adaptation of the advancing front method
allows tagging tetrahedrons as part of design and non-
design sub-domains and guarantees conformity of the
mesh at the interface between sub-domains.

From this starting point, the SIMP TO process is an
iterative process in which a relative density field p(x, y, z).
is updated at each iteration with respect to FEA results
(using Code_Aster™ [1]). This relative density varies
from 0 (no material) to 1 (“full” or actual material)
and it is derived into the distribution of a virtual elas-
tic modulus E(x, y, z), according to the penalisation law
E(x, 9,2) = E.p(x,9,2)P (E is the actual material’s elas-
tic modulus and p an integer penalization coefficient that
is usually chosen between p = 1 and p = 3). In the fol-
lowing equations mathematical quantities noted using
a [ are affected by the relative density field p(x, y, z).
The SIMP process iteratively searches for a distribution
p(x, y, z) that minimizes global compliance C (and by the
way maximizes stiffness). If the finite element discretiza-
tion is [K].{U} = {F}, global compliance C is defined
as:

C = {(U}Y'{F} = {0} [K1{0}
where {U} is the global displacement vector, [K] the
global stiffness matrix, {F} is the global vector

The local stiffness matrix of element e due to the
impact of the relative density p.inside the element:

[I~<e] = (,Oe)p-[Ke]

Thus, if the mesh is composed with N tetrahedrons, the
global stiffness matrix is

(3.1)

(3.2)

N N

[Kl1=)"[K] =) (p).IKe]
e=1

e=1

(3.3)
And global compliance C can be written as:

N
6=Wﬁﬁu@=ﬂW(Z}mﬂ&O&@

e=1

N
= (p)" (U} [K.]{T} (34)
e=1
Practically, this global compliance is computed using the
total strain energy W as C = 2.W.
The SIMP optimization problem is classically formu-
lated as:

N
minimize C = Z (0e)? {UY.[K,].{U}

e=1
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Figure 4. SIMP optimization: (a) model with BCs (b) mesh of design and non-design material (c) relative density obtained at convergence

(d) optimized shape derived.

with 1 =f[f<].{f]} ={Fland0<p <1
Va

Thus, the volume fraction f is maintained constant
along SIMP iterations. It is defined as the fraction
between design material Vas affected by p(x,y,z) and
volume of the initial design sub-domain V. It is con-
sidered that convergence is achieved when the relative
difference in global compliance between two successive
iterations is less than a given threshold. As described
with details in many references [16, 26], checkerboard
and mesh sensitivity effects are avoided using filters

on the sensitivity g—pce and/or on the relative density
distributionp (x, y, z).Fig. 4c illustrates the relative distri-
bution p(x,y,z) obtained at the end of SIMP iteration
for the model and BCs shown in Fig. 4a. This distri-
bution is obtained using f = 4% and filtering relative
densityp(x, y, z) at each SIMP iteration. From this rela-
tive density distribution, the optimized shape shown in
Fig. 4d is obtained by simply discarding tetrahedrons for
which p(x, y, z) exceeds a threshold py, (o = 0.2 in this
case).

3.2. Generating a 3D optimized shape from SIMP
results

This way of deriving an optimized shape from raw SIMP
results is extremely simple. However, its drawbacks are
that non-manifold material continuity is obtained is
some cases (material connection though a single tetra-
hedron node or through a single tetrahedron edge) as
shown in Fig. 5(a) and that surface boundaries of the opti-
mized shape are represented as a very noisy triangulation
(see Fig. 5b). Reference [14] explains with details that
non-manifold patterns can easily be removed by reacti-
vating tetrahedrons around non-manifold connections.
Processing noisy boundaries is much more challenging
since, even if many triangulation smoothing methods
are available [9, 11, 24, 29, 30] in the literature, none
are really efficient for the type of noisy shapes that we
have to process in the context of this work. Indeed most
of triangular mesh smoothing methods are designed for
removing noise that is present on smooth shapes, due to
various sources such as scanning noise or other sources
of noise.
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Non-manifold connexion
on a mesh node

Non-manifold connexion
on a mesh segment
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(b)

Figure 5. Problems related to extracting optimized shapes from TO results: (a) non-manifold connexions (b) extremely irregular

boundaries.

In our case as illustrated in Fig. 5b triangulations
issued from TO results are in fact extremely irregular, due
to the removal of tetrahedrons, which is very different
from being noisy. A synthesis of triangular mesh smooth-
ing methods show that some methods only try smoothing
noisy triangular surfaces [11, 29, 30] while other [9, 24]
also try preserving specific geometric features such as
sharp edges.

We have applied many triangular mesh smoothing
algorithms on our TO optimized shapes and faced many
problems, mainly due to the fact that, as introduced
above, these algorithms are not designed for efficiently
processing the type of irregular triangulations generated
from TO results. At this point of our research, we could
not find any satisfying method or combination of meth-
ods that is able to handle all types of TO results while
meeting all our requirements. Indeed the objective is not
only smoothing optimized boundaries but also:

e generating 3D parts that meet the volume fraction
objective f

e generating continuous optimized material

e generating untangled and good quality triangulations

e preserving features like sharp corners and sharp edges

Indeed, if the smoothing process is too aggressive,
it may first affect the optimized part volume and the
optimized shape as such, which in fact tends to destroy
some of the optimization benefits. This especially occurs
when using Laplacian based smoothing algorithms. For
example, several iterations of Laplacian-based smoothing
as presented in [11] is very efficient in processing tan-
gled and very irregular triangulations but, as well docu-
mented in the literature, this tends to significantly shrink
the optimized material. In addition, since smoothed

triangulations are then used for building 3D CAD models
and FEA models they should feature neither tangled tri-
angles nor triangle with bad quality for FEA calculations.
Mesh tangling namely occurs when applying feature-
preserving algorithms such as Chen and Cheng’s [9] on
this type of very irregular triangulations. At this point of
our research, the best combination found for successfully
processing TO results that tend to beam-like structures,
which is the context of this paper, is using a combina-
tion of Taubin [29] and Laplacian-based smoothing [11].
Taubin smoothing indeed overcomes a major drawback
of Laplacian based smoothing methods referred to as
shrinking as illustrated in Fig. 6a. In Fig. 6a 30 iterations
of Laplacian type smoothing, as described in reference
[11], have been applied on the irregular mesh shown in
Fig. 5b.

In Taubin’s approach, smoothing is performed as a
low-pass filter that decreases curvature variations with-
out shrinking. This is practically obtained by repeatedly
applying two consecutive Gaussian smoothing steps, one
with a positive scale factor A that induces shrinking and a
second with a negative scale factor p that induces inflat-
ing (see reference [29] for details). As introduced above,
in our approach these Taubin smoothing iterations are
followed by a couple of Laplacian-type smoothing iter-
ations for obtaining a smoother boundary. This makes
that, as illustrated in Fig. 6b a smooth boundary can
be obtained without shrinking. Moreover, as shown in
the enlarged view in Fig. 6b, resulting triangulation fea-
ture excellent element quality, which is mandatory for
performing 3D FEA afterwards from it.

Meeting the volume fraction objective is obtained
through using appropriate values for both the relative
density threshold used pg (og = 0.2 in this case) and
smoothing parameters such as number of Taubin and
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(b)

Figure 6. problems related to shrinking: (a) Shrinking induced by Laplacian-type smoothing (b) Result obtained with a combination of

Taubin and Laplacian-type smoothing.

Laplacian-type smoothing iterations and A, i values for
Taubin smoothing. In the result shown in Fig. 6b, the
actual volume fraction reached after smoothing (using
10 Taubin iterations [29] with A = 0.33, . = —0.2 and 4
Laplacian-type iterations [11]) is fsp = 4.1% (the objec-
tive is f = 4%).

It is worth mentioning that, as also concluded in
reference [19], using lower py, values is a good strat-
egy for generating smooth optimized shapes that meet
volume fraction objectives while avoiding generating

discontinuous distributions of optimized material. This is
especially true for low volume fraction objectives, which
is the context of this work since it is targeted towards
beam-like optimization results. Indeed, for low volume
fraction objectives, higher py, values easily result in losses
in material continuity and, by the way, in inappropriate
optimized shapes. Overall, the strategy presented in
this paper ensures generating continuous 3D structures
that closely meet volume fraction objectives while also
generating untangled and good quality triangulations.

Figure 7. 3D FEA results on the optimized part: (a) oy stress distribution (b) Von-Mises stress distribution (c) Deformed shape (with 1000
factor applied) and resultant displacement distribution (d) Total strain energy per element distribution.
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However, this approach does not also allow preserving
sharp edges and corners, which would be particularly
useful in the case of TO results tending towards massive
3D shapes like the one shown in b.

3.3. FEAresults obtained on the optimized solid
shape

The last step in processing these 3D TO results is generat-
ing a 3D FEA model from it. This FEA model is generated
by filling the optimized solid part obtained with linear
tetrahedrons and by applying on it loads and BCs as spec-
ified in the TO process itself. The automatic generation
of tetrahedrons inside the volume is performed using
our CAD/FEA research platform [15]. It is based on an
advancing front mesh generation algorithm [14], which is
initiated from the smoothed triangulation obtained from
the previous steps described above. Once the model filled
with tetrahedrons, loads and BCs applied, the FEA model
is solved using Code_Aster™ [1]. Note that, as in the
case of TO iterations, the FEA formulation used is purely
linear. Fig. 7 shows stress, displacement and strain energy
distributions issued from the optimized shape illustrated
in Fig. 6b.

Note that, for further comparison, total compliance
of the optimized part, calculated as twice the total strain
energy Wsp,is C3p = 2.W3p = 257]. These results show
that the optimized structure is too stiff and could be
further optimized. Indeed, maximum displacement is
0.5 mm (at the middle of bridge deck) and maximum rep-
resentative Von-Mises Stress is around 1.4 Mpa (along
upper horizontal beams). However, it must be reminded
that this optimized structure has been created through a
fully automatic process and that a lighter structure could
easily be obtained using different input data (a thinner
non-design domain and a lower value for the volume
fraction objective).

In general, optimized parts and structures provided
by TO would be extremely difficult, if not impossible, to
manufacture as is at a reasonable cost, which means using
common manufacturing processes. Since 3D structures
are usually assembled using standard straight beams, the
next step in our automatic model construction process
from 3D TO results is transforming 3D optimized parts
into sets of straight standard beams.

4. From 3D topology optimization results to
beam structures

4.1. Automatic creation of a curve skeleton

In the approach presented in this paper, starting from
3D beam-like TO results like the one shown in Fig. 6b,

3D structures made of beams are automatically derived
through a process that is principally based on shape
skeletonization techniques [3, 6, 8, 12, 17, 25, 27]. A sur-
vey and thorough classification of these skeletonization
methods in general can be found in reference [27]. Skele-
tons can basically be defined as thin centered structures
that approximate topology and geometry of 3D volumes
or 2D surfaces. In 3D, they represent concise represen-
tations of geometry that can be used, in parallel with
classical B-REP and discrete representations, for analyz-
ing, manipulating and processing 3D geometry. One of
the interests of skeletonization in the context of this work
is that it allows retrieving meaningful information from
3D TO results (topology, number of branches, symmetry,
local thickness, local section, etc.). Generating skeletons
for 2D shapes is now quite well mastered, which is not
the case in 3D. Despite the fact that many methods have
recently arouse for generating and processing 3D skele-
tons, it remains a challenging task, mainly due to poten-
tial variety and complexity of 3D shapes in general. In
fact, many 3D skeletonization methods are focused on
specific applications, such as body movement process-
ing or capturing for example, and cannot be used in a
very general context. Indeed, generating skeletons from
3D shapes has been an intensive subject of research inves-
tigation for the last 15 years, mainly due to the interest
aroused for computer graphics, computer-based anima-
tion and video games applications. The skeleton of a 3D
shape can either be a surface skeleton, such as those
obtained with medial axis transform (MAT) [17, 25, 27]
or a curve skeleton [3, 8, 12, 27]. Surface skeletons of 3D
shapes are generally defined as medial skeletons, based
on the locus of centers of maximally inscribed balls, on
Maxwell sets or on grassfire analogy [27], which repre-
sent solid theoretical basis for the definition these medial
structures. For curve skeletons, which can vaguely be
defined as 1D structures that are locally centered in a
3D shape, there is not such a strong theoretical basis
for defining these structures in a general context. How-
ever, in specific contexts of shapes that may reasonably be
assimilated as assemblies of tubular shapes, the definition
of curve skeletons is more natural and clear. For such
shapes, which is the case in this work since it is focused
on beam-like TO results, as listed in reference [27], many
interesting approaches (medial surface based methods,
distance fields based methods, topology driven meth-
ods, contraction methods, etc.) have been proposed and
successfully implemented. Among these methods, the
skeletonization algorithm used in this work is taken from
references [3, 8] and inspired by the fact that Laplacian-
based smoothing naturally leads to mesh contraction as
illustrated in Fig. 6. Indeed, if many Laplacian-based
smoothing iterations are applied, resulting shapes locally
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M

Figure 8. Skeletonization of the 3D optimized solid shape: (a) 3D solid shape after smoothing (b) curve skeleton derived (c) distribution
of cross section radius along skeleton branches (d) skeleton after normalization (e) distribution of beam cross section radii (f) 3D CAD
model of the optimized beam structure obtained at the end of the process.

tend towards very thin volumes. In this case, an implicit
Laplacian smoothing process is constrained in a way
that 3D shapes are gradually contracted or thinned while
preserving geometry along contraction. After these con-
strained implicit Laplacian iterations, a skeleton graph
is constructed using a farthest-point sampling process,
which is finally simplified via topology thinning (see ref-
erences [3, 8] for details). Thus, following these steps, a
curve skeleton can be automatically generated from 3D
TO results after smoothing. Fig. 8b illustrates the result
of curve skeletonization when applied to the optimized
solid shape after smoothing as shown in Fig. 8a.

4.2. Normalization of the curve skeleton and cross
section calculations

As mentioned above, one of the interests of computing
skeletons from 3D shapes is that it allows assessing local

thickness and local section. In this case, it allows com-
puting distribution of the mean local radius (see Fig. 8¢).
This radius is calculated along each skeleton branch as
the mean local distance between the skeleton and the
optimized 3D boundary at this location. The distribu-
tion is later used to compute cross section properties of
the 3D beam structure generated at the end of the pro-
cess. Before that, the curve skeleton is normalized as sets
of straight lines as illustrated in Fig. 8d. This normal-
ization settles the basis for building the optimized beam
structure. Indeed, these straight lines represent neutral
fibers of beams of the constructed 3D structure. At this
point of our research and as a first approximate, these
beams are associated with circular cross sections only
and the cross section radius of each branch is consid-
ered as constant. For each branch, cross section radius is
calculated as the mean value of mean local radius along
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skeleton branches before normalization (as illustrated in
see Fig. 8c). Fig. 8e shows the distribution of beam cross
section radii for each branch of the normalized skeleton
and Fig. 8f illustrates the 3D beam structure derived.

Beam radii vary from 0.214 m to 0.369 m and a close
look at Fig. 8(e) also shows that, even if the initial opti-
mization problem is fully symmetric (both initial geom-
etry and BCs are symmetric in Fig. 4a) the constructed
3D beam structure is not exactly symmetric. Indeed, the
beam structure itself even if close to symmetric is not
exactly symmetric, which is also not the case for beam
cross section radii. For example, the two horizontal beam
cross section radii are 0.214 m and 0.245 m. This is not
surprising since the 3D optimized shape is not either
symmetric because the mesh used for TO itself is not
symmetric. Thus, obtaining a symmetric final 3D beam
structure would either require constraining the TO pro-
cess to generate a symmetric result or post-processing
the 3D structure to make it symmetric for both geometry
and beam cross sections. Nevertheless, this outcome has
a great potential since the structure generated can easily
be post-processed, modified, and even further optimized
through an optimization of beam cross sections.

A first validation of the 3D beam structure created
at the end of the process is calculating volume fraction
obtained with this structure, referred to as fpeam- foeam =
3.9%, which is based on adding beam volumes and divid-
ing the result obtained by design material volume before
TO. This shows that volume of the 3D beam structure cre-
ated is very close to the volume fraction objective (f =
4%) and to volume fraction obtained from the 3D opti-
mized shape (fpeqm = 4.1%). In next section, 3D beam
structures generated through the process presented just
above are further validated using a comparison between
FEA simulations performed on 3D optimized shapes

(like in Fig. 7), on the one hand, and on normalized 3D
beam structures derived (like in Fig. 8e), on the other
hand.

5. FEA validation of 3D beam structures created
5.1. Mixed-dimensional FEA model

FEA on 3D beam structures created through the auto-
matic process presented in section 4 is based on building
mixed-dimensional FEA models. Indeed, as illustrated
in Fig. 8e, 3D beam structures obtained are composed
with a mix of 3D solid geometry (for non-design mate-
rial) and sets of straight beams with circular cross section
properties (for design material). In the FEA validation
of 3D structures created, these straight beams are mod-
eled using classical Euler-Bernouilli beam elements [4]
while non-design solid geometry is meshed with linear
tetrahedrons, which makes the whole FEA model mixed-
dimensional (a mix of solid and beam finite elements as
shown in Fig. 9). The major problem with such mixed-
dimensional FEA models is connecting beam elements
with tetrahedral elements since there is an inconsistency
between degrees of freedom (DOF) of these elements
(classical tetrahedral elements used in linear elasticity
usually feature 3 displacements while 3D beam elements
feature 3 displacements and 3 rotations for bending and
torsion). In a previous work [13], we have proposed a very
simple and efficient solution to overcome these incon-
stancies between DOF. As shown in Fig. 9b, this solution
is based on using mini-beams, which are very stiff beam
elements that are automatically generated at the interface
between a beam element and a tetrahedral mesh.

These mini-beams locally introduce a rigid connec-
tion between a beam element and a tetrahedral mesh.

";_g‘s:x?

/
|II

()

Figure 9. (a) mixed-dimensional FEA model (b) beam elements and mini beams (c) source of mini-beams distribution at a connexion (d)

closer view of this connexion with mini-beams.
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Figure 10. (a) resultant displacement distribution for the optimized solid shape (b) resultant displacement distribution for the created
beam structure.
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Figure 11. Cantilever (a) initial model with BCs (b) optimized solid shape (c) curve skeleton before normalization (d) distribution of cross
section radii after normalization (e) (f) resultant displacement distribution for the optimized solid shape and beam structure created.
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As shown in Fig. 9b and d, shape of connection sur-
faces derives from how mini-beams are distributed. As
illustrated in Fig. 9c and d, in this work, the shape of
connection surfaces is consistent with that of connection
surfaces in the optimized solid shape. Fig. 10 illustrates
a comparison between the resultant displacement dis-
tribution resulting from this mixed-dimensional model
(Fig. 10b) and that of the optimized solid shape (Fig. 10a).
Note that differences between distributions shown in
Fig. 10a and Fig. 7c comes from color scales used, which
are not the same. Indeed, for a better comparison between
the two displacement distributions shown in Fig. 10, the
same color scale is used, as well as the same amplifica-
tion factor for deformed shapes (1000 times). Maximum
displacement for the created beam structure is 0.526 mm
while that of the optimized solid shape is 0.462 mm and
quantitative difference between these two distributions
is quite slight. This slight difference is confirmed by
calculating total compliance Cpegy, for this beam struc-
ture. Total compliance is calculated as twice the total
strain energy Wpyeam, which is derived from FEA results
obtained with the mixed-dimensional model. Cpeypy =
2.Wpeam = 288], which is slightly higher than that of the
optimized solid Csp = 2.W3p = 257].

These results show that the 3D structure created, fol-
lowing the approach presented in this paper, is almost as
stiff as the optimized solid shape. This is very interesting
since, as introduced above, this 3D structure can easily
be edited and modified for improving its performance,
which is not the case for the optimized solid shape.

5.2. Examples

The approach presented in this paper is applied to two
other TO cases that tend towards beam-like structures.
The first example is a classical cantilever case and the sec-
ond is a L bracket. For both cases Young’s modulus is 69
GPa, Poisson’s ratio is 0.33 and the objective volume for
SIMP iterations fraction is f = 3%.

5.2.1. Cantilever structure

Dimensions of the initial model are 51 mm x 51 mm x
102 mm. It is loaded with a downward vertical force
(ION in the Y direction) and null displacements in all
directions are imposed at the back (see Fig. 11a). The
optimized solid shape, curve skeleton derived before nor-
malization and result of normalization are respectively
provided in Fig. 11b,c and d. It can be seen that cross
section radii vary from 1.3 mm to 3.7 mm. Resultant dis-
placement distributions for the optimized solid shape
and the beam structure created are finally illustrated in
Fig. 11e and f using the same color scale and same ampli-
fication factor (1000 times) for comparison. Here again,

Table 1. Synthesis of results

Bridge Cantilever L bracket
SIMP optimization
Element size 275 mm 1.6 mm 40 mm
Nb tetrahedrons 179167 382148 345441
Objective volume fraction f 4% 3% 3%
Nb iterations for convergence 23 21 30
Final compliance C 436 7.9107°) 0.21)
Solid shape
Relative density threshold py, 0.2 0.25 0.22
Volume fraction f3p 4.08% 3.2% 2.9%
Compliance C3p 257) 35107°) 0.08J
Maximum displacement §3p 4610 "mm 361073 mm 49102 mm
Ratio f3p/f 102% 107% 96%
Beam structure
Volume fraction fyeqm 3.9% 3.1% 2.8%
Compliance Cpeam 288) 41107 0.11)J
Maximum displacement 8pegm, 53107 " mm 49103 mm 941072 mm
Ratio fyeqm /f 97% 103% 93%
Ratio G3p/Cpeam 89% 71% 72%
Ratio 83p/Sbeam 87% 73% 52%

the 3D structure created is more flexible than the opti-
mized 3D model but the difference is acceptable (max-
imum displacement is 4.9 1073 mm versus 3.6 107> mm
for solid result). A synthesis of results obtained for the 3
examples presented in this paper is provided in Tab 1.

5.2.2. L bracket

In this case, dimensions of the initial model are
2m x 2m x 1 m.Italsoisloaded with a downward verti-
cal force (2000 N in the Y direction applied as a constant
pressure) and null displacements are imposed at its upper
side (see Fig. 12a). The optimized solid shape, curve
skeleton derived before normalization and result of nor-
malization are respectively provided in Fig. 12b, ¢ and d.
It can be seen that cross section radii vary from 30 mm
to 53.2 mm. Resultant displacement distributions for the
optimized solid shape and the beam structure created are
finally illustrated in Fig. 12e and f using the same color
scale and same amplification factor (1000 times) for com-
parison. In this third example, the 3D structure created is
quite more flexible than the optimized 3D model (max-
imum displacement is 9.4 1072 mm versus 4.9 10~2 mm
for solid result). This is notably due to the fact that, even
if the optimized solid result is symmetric, both skeletons
(before and after normalization) are significantly non-
symmetric. This makes that one side of the L bracket
created is stiffer than the other, that structure’s stiffness is
unbalanced and that resultant displacement distribution
is not symmetric.

6. Conclusion and future work

Examples presented in the previous section show that
the approach proposed can automatically generate 3D
beam structures made of standard beams from TO results
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Figure 12. L bracket (a) initial model with BCs (b) optimized solid shape (c) curve skeleton before normalization (d) distribution of
cross section radii after normalization (e) (f) resultant displacement distribution for the optimized solid shape and beam structure

created.

that tend towards beam-like structures. Results show that
these beam structures are slightly more flexible than opti-
mized solid shapes from which they are generated. How-
ever, several post-processing procedures can be foreseen
to improve quality and stiffness of beam structures cre-
ated. Constraining beam structures to symmetry, when
the input TO problem is symmetric and extending the
approach to various other types of beam cross sections
are two obvious and short-term improvements. Explor-
ing alternative techniques for the generation of curve
skeletons and applying the approach to other types of
TO methods are two other short-term research per-
spectives of our team. Fig. 13 illustrates two types of
problems encountered with the method used for auto-
matically generating curve skeletons from optimization
results. In Fig. 13b inconsistency is related to a poorly

(b)

e

s

,f’__l\& )

ic)

Figure 13. Problems with curve skeletons (a) side view of can-
tilever curve skeleton and nodes used for generating it (b) zoom
on badly centered curve skeleton at location (c) zoom on the
location of a junction that could be improved.
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centered branch of the curve skeleton at this location
while in Fig. 13b, the problem comes from the location
of a junction point, which is not optimal for deriving the
3D structure afterwards.
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