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ABSTRACT
This paper presents a method to decompose three dimensional complex parts into readily avail-
able stock material to take advantage of advanced joining to build up a rigid assembly. The method
generates many alternative assemblies by decomposing the solid geometry iteratively with cutting
planes. Each assembly is then evaluated based on cost. The process continues until the developed
search algorithm converges on a near optimal solution. Application of thismethodwill reducemate-
rial waste, thus reducing per part processing time, energy consumption, and associated production
costs. Example parts for a variety of metals show how the computational tool finds near optimal
solutions for complex three dimensional solids.
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1. Introduction

During the design process, it is often advantageous
to consolidate multiple features into a single part to
reduce assembly costs. However, feature consolidation
can lead to complex parts that are expensive orwasteful to
machine from a single piece of stock material (Fig 1. left
andmiddle). This is especially true formetal parts, where
thematerial cost can bemore than 50% of the production
cost [1]. The best solution may be to build up complex
parts from an assembly of simpler parts (Fig. 1 right).
This approach is valuable as long as the assembly main-
tains similar mechanical properties and if the combined
material and machining savings outweigh the additional
assembly costs.

While other assembly operations, like bolting and gas
welding, introduce stress concentrations and weaken the
overall structure (as compared to machining from a sin-
gle block), linear friction welding (LFW) and rotary fric-
tion welding (RFW) can join metals without melting
them, such that the weld joint has mechanical proper-
ties just less than or surpassing the parentmaterial [2][4].
If advanced joining methods, like LFW and RFW are
applied correctly to the right parts, the combined mate-
rial and machining savings can outweigh the additional
assembly costs while maintaining similar mechanical
performance.

Determining the best way to decompose a complex
part into several subparts and evaluate the cost of produc-
tion is time consuming for a designer. A human designer
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would determine the best way to decompose the geom-
etry using intuition and experience. The designer would
then alter the geometry in CAD and store all the impor-
tant geometric information. Lastly, one would request a
quote for each production process or use a cost estima-
tion tool. Based on the results, the designer would likely
iterate over the process several times. While it may not
take the designer long to determine the option shown in
Fig. 1, this is not necessarily the optimal assembly option
and it does not show the different possible stock materi-
als or production processes. For a comprehensive search,
this iterative design loop could take weeks to develop
and evaluate a variety of design options, and the out-
come would depend on the expertise and knowledge of
the designer.

The method presented in this paper automatically
generates alternative decompositions and compares their

Figure 1. (left) Complex part, (middle) traditional stock material,
(right) assembly option.
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Figure 2. (left) Part geometry for three separate assembly options, (middle) stock material for each of those assemblies, (right)
percentage of waste material.

relative costs. The resulting assemblies are assumed to
be constructed from readily available stock material and
joined together with LFW or RFW. For simplicity, this
stock material is considered to be round and rectangu-
lar bar stock of every size. This method provides the
best assembly quickly, with little effort from the design
engineer. In addition, it considers many more alterna-
tives than the designer could reasonably consider and has
the potential to be integrated with a highly detailed cost
model.

An example of this method is shown in Fig. 2. The
top left corner shows the complex original part geometry.
The top middle shows the stock material that the part is
machined from. The top right shows the percentage of
material waste (68%). If the complex part is decomposed
into the three parts shown in the second row, in which
each part is created from rectangular bar stock and then
assembled and machined, the resulting material waste is
less (45%). Lastly, if decomposed a second time into the
part geometry in the bottom row, the resulting material
waste is much less (18%). However, the further a com-
plex part is decomposed, the more assembly operations
are required. Keeping this in mind, which assembly is the
least expensive to manufacture? The answer depends on
the costs of the material, machining, and assembly oper-
ations. All of these cost components are used within the
presented search to find the least expensive assembly to
manufacture.

2. State of the art

There are a variety of approaches in the literature that
focus on decomposing parts to improve design or man-
ufacturability. While our method bears some similarity
to literature in process planning, additivemanufacturing,

and hybrid manufacturing, the application and goals are
distinctly different. To our knowledge, this is the first
attempt to automate decomposition of parts into assem-
blies to take advantage of advanced joining methods, like
LFW. Since this is a unique problem not yet tackled in lit-
erature, this section discusses some of the innovation and
background of similar work.

2.1. Process planning research

Process planning motivates the bulk of research on part
decomposition and formed the starting point for the
decomposition method presented in this paper. In 1991,
Tang and Woo [18] developed the Alternating Sum of
Volumes (ASV) approach, which uses convex hulls to
decompose machined features. The machined features
could then be represented by a list of convex hulls with
alternating signs. This method, however, does not guar-
antee convergence [19]. Kim [6] identified the cause of
non-convergence and corrected it in the Alternating Sum
of Volumes and Partitioning (ASVP). Both methods are
limited to fairly simple geometry, which makes them
unsuitable for complex parts.

In 1994, Tseng and Joshi [20] took a different approach
at volume decomposition that used a part’s faces to
split the negative (machined) space into small machin-
able volumes. These small volumes are then merged
back together to form larger machinable features. This
approach is limited in its ability to decompose all fea-
tures (e.g., pocket with islands). Sakurai [15] developed a
similar idea based on decomposition with convex edges,
wheremaximal volumes aremerged intomachinable fea-
tures. This approach expanded the possible volumes to
include curved surfaces [16]. Since this can result inmany
feature interpretations, Woo and Sakurai [21] proposed
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a “divide and conquer” approach in 2001 to optimize
the machining feature selection. More recently, Fu et al.,
[3] developed a convex decomposition algorithm that
uses concave edges to identify cutting planes. These cut-
ting planes are then used to decompose the machined
volume into feasible machining operations. The order
of these operations is determined by heuristics. Other
recent work has focused primarily on optimizationmeth-
ods to find the best order for machining features, which
are defined at the onset of the search [7][8][17].

Many of the issues (e.g., combinatorial search space,
complex features, and order of operations) faced in these
process planning decomposition methods are similar to
the issues faced in our approach, with two significant
differences. First, we are decomposing the positive solid
rather than the negative (machined) volume. Second,
since our method is concerned with how to divide and
rejoin subparts rather than machining, partial decom-
positions are feasible solutions. Consider the example in
Fig. 2. The top, middle, and bottom rows are all feasi-
ble solutions. Depending on the material and assembly
operations, it is likely one of the three decompositions in
Fig. 2 ismuchnearer to optimal than a full decomposition
(0% waste). Process planning, on the other hand, must
fully decompose the negative geometry into machinable
volumes to get a complete solution.

2.2. Other relevant research

This section discusses state of the art decomposi-
tion methods in closely related fields. These fields
include additive manufacturing, hybrid manufacturing,
and topology optimization.

Luo et al., [9] presented a decomposition algorithm
based on additive manufacturing criteria (e.g. print vol-
ume, connector feasibility, aesthetics). Our search space
for advanced joining is very similar and both methods
implement a beam search. The primary difference and
novelty of our work lies in the application of such meth-
ods to advanced joining and basing the objective function
on production cost.

The hybrid manufacturing method presented by Ker-
brat et al., [5] aims to decompose a part into additive
and machined subparts. Their method splits the part
wherever machining complexity is high. While machin-
ing complexitymay indeed find good solutions and play a
role in production cost, it is only an indicator for additive
manufacturing. Our method is instead based on produc-
tion cost, and is an open-ended hybrid manufacturing
approach that could conceivably be expanded to consider
many manufacturing processes and constraints.

Lastly, Saitou and Yetis developed a process to
determine optimal assemblies for topology optimized

structural products [14]. Saitou’s continued work in the
field has focused on topology optimization and assem-
bly synthesis for 2D structural parts [13][22]. As work on
this topic continues to advance to include 3D geometry, a
merger between considerations in production cost from
our model and structural integrity could provide even a
more comprehensive design approach.

3. Approach

The method presented in this paper decomposes com-
plex parts into assemblies with the goal of lowering
overall production cost. To begin, the decomposition
approach generates many unique assembly options by
iterative applying cutting planes (Section 3.1). Next, an
exhaustive list of manufacturing plans is created for each
assembly option (Section 3.2). Then the cost of each of
these assembly options is estimated (Section 3.3). Since
there are many decomposition options and each option
has a unique cost, a beam search optimization algorithm
was applied (Section 3.4). The following sections describe
each of these operations in further detail.

3.1. Decompose geometry

In this method, parts are decomposed by applying one
cutting plane at a time, such that the resulting subparts
can be assembled using advanced joining. To guarantee
every part of an assembly can be accessed, the origi-
nal part is decomposed with infinite flat planes. Cutting
planes are applied one at a time, cutting the original part
into alternative sets of subparts (Fig. 3 right 3 columns).
Additional cutting planes are applied iteratively, adding
one new plane in each iteration. This iterative approach
allows each cutting planes to be mapped directly to an
accessible assembly operation. In effect, each volume
decomposition operation is the inverse of assembly oper-
ation(s). For example, plane C in Fig. 3 resulted in three
subparts. For assembly, this maps to two joining opera-
tions, one for each of the legs.

The first task in decomposing a part is to select the
possible cutting planes (Fig. 3 left). The ideal cutting
planes reduce the waste material as much as possible.
Some geometric features that indicatewastedmaterial are
protrusions and large holes. Such features, as well as less
obvious options, can be found by selecting all the faces
with adjacent concave edges. Using concave edges per-
forms well inmost cases, but Relevant Flats [11] is amore
general approach. In thismethod, a cutting plane is added
to every flat that will cut through the solid when that
face is extended indefinitely. For the part in Fig. 3, this
approach resulted in nineteen unique cutting planes. Rel-
evant Flats was chosen because it is the fastest of the five
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Figure 3. (left) All possible cutting planes, (right 3 columns) planes A, B, and C with resulting assembly option pictured below.

cutting plane identification methods presented in [11],
however, for more complex parts Area Decomposition
[11] and user feedback may be preferable.

In general, large faces that correspond to important
part geometry produce better results than very small
faces. For this reason, a cut off tolerance is applied as an
area proportional to the total surface area of the origi-
nal part. For the example on the left of Fig. 3, removing
the small area faces from both sides of the part reduces
the possible, unique cutting planes from nineteen to fif-
teen. While Relevant Flats is not comprehensive, it does
provide a number of good cutting planes with little effort.

To identify these flats outside of a CAD platform, tri-
angulated surfaces must be used. In this case, the input
file is a .STL and face adjacency is added. To build up a flat
surface, adjacent faces with the same normal are selected.
This effectively turns the entire model into a collection of
flat surfaces. The method then removes all surfaces that
have an area less than the cut off tolerance.

Decomposing the part with cutting planes generates
assembly options, such as the one shown in Fig. 4. The
bidirectional arrows show references between parent and
children subparts. If the subpart contains no children in
the assembly, then it requires stock material. The boxed
subparts are those that require stock material, while the
unboxed subparts are intermediary steps. Each subpart
contains geometric information including the tessellated
solid, volume, and surface area for the subpart. The uni-
directional arrows show assembly operations, where the
arrow points toward the “base” subpart. The “base” sub-
part of each joining operation is the one with the larger
area on the cutting plane, while the subpart(s) on the
other side of the cutting plane are considered “joined”
subpart(s).

Figure 4. Assembly option generated by applying cutting plane
C after cutting plane A from Fig. 3.

3.2. Generatemanufacturing plans

To find the lowest cost manufacturing plan for an assem-
bly option, every combination of stock materials and
assembly operations is considered. Each set of “base” sub-
part, “joined” subpart, and joining operation is called a
link. To allow a fast exhaustive search of all the available
combinations, each link is assumed to be independent.
This assumption is valid in most cases, since parts will
need to be reset in the machines, but it does ignore some
possible reductions in setup time.

Fig. 5 shows the six link options considered for a
joining operation with two subparts that require stock
material (Fig. 4 join 1). If a subpart is an intermediate step
(subassembly), then there are fewer link options since
it does not require new stock material. For example, in
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Figure 5. Exhaustive link options for a joining operation with two subparts requiring stock material.

Fig. 4 the resulting subassembly from join 1 is the “base”
for join 2, so there are only three possible link options
for join 2. The same goes for join 3. In the case where
there is a join attaching two subassemblies, there are only
two link options. Altogether, this means that 12 combi-
nations of stock materials and joining operations (6 + 3
+ 3) are considered for the simple example in Fig. 4. The
lowest cost manufacturing plan will be the one with the
lowest cost link for each joining operation (Eqn. 3.1 in
Section 3.3).

3.3. Estimate cost

Production cost was chosen as the objective function
because it is the primary driver in industry decisions and
because most other factors (including energy usage and
carbon emissions) can be monetized. However, the cost
estimation model presented in this paper is just a frame-
work for more detailed cost models, and therefore it only
includes the three major assembly cost factors; material,
machining, and joining cost. There are other high level
factors that could be included, such as the cost of heat
treatment, inspection, and material movement, but in
general those costs are less than the three major factors.
While these additional costs were not included presently,
they could be included in the future. In addition, the
cost estimation model in this method does not need to
reflect the total cost of production costs, but rather the
relative production costs to inform decisions between
assembly options. For instance, heat treatment, boring,
surfacing, and other post rough machining operations
may be assumed to be the same for all assembly options,
and therefore have no influence on the decision between
options. Likewise,machining setup andunload cost is not
included since machining is assumed to be after all the
assembly operations. Focusing on cost differences allows
the cost models to be simpler and require less geometric
information.

The production cost assigned to an assembly is equal
to the minimummanufacturing plan cost, which is equal
to the sum of the minimum cost links for each joining
operation (Eqn. 3.1). The cost of each link is the sum of
the costs of its base subpart, joined subpart, and assem-
bly operation (Eqn. 3.2). The cost of each subpart is the
cost of its material plus machining (Eqn. 3.3), but if the
subpart is an intermediate step (subassembly) then it has
a cost of zero. Although themachining cost is included in
the cost of each link, the machining operation is not per-
formed till after the part is assembled. This helps choose
the minimum cost link independent of the other links. It
does not affect overall cost, since setup/unload time is not
included in the machining cost.

CostAssembly = MinCostManufacturing Plan

=
Number of Joins∑

i=1
Min(CostLink i) (3.1)

CostLink = CostBase Subpart + CostJoined Subpart

+ CostAssembly Operation (3.2)

CostSubpart = CostMaterial + CostMachining (3.3)

The method currently assumes that the stock material
available is either circular or rectangular bar stock of any
size, and that the stock material will be joined along a
flat plane (e.g., a cutting plane). Because of these assump-
tions, the smallest bar stock volume can be determined
using 2D geometric algorithms (minimum bounding cir-
cle and minimum bounding rectangle) and the depth.
The depth is the length between the cutting plane and
furthest vertex of that subpart. The top row in Fig. 6
shows the depth, area, and rectangular stock volume,
while the bottom row shows the same information for
the circular stock volume. The material cost is simply the
price of material (USD/mass) times the mass of the part
(Eqn. 3.4) .
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Figure 6. Subpart geometric information for rectangular and circular bar stock.

CostMaterial = PriceMaterial ∗ VolumeStock ∗ DensityMaterial
(3.4)

The cost ofmachining is the cost rate to run amachine for
a factory (RMachine) multiplied by the time the machine
is being used (tMachining) (Eqn. 3.5). The cost rate aims
includes the capital cost of the machine, operation costs,
plant overhead, fixtures, tooling, and labor. The time
of machining could also include other factors such as
setup time, quantity, and non-operation time, but for
simplicity, the time of machining is calculated here as the
removed volume over the material removal rate (MRR)
(Eqn. 3.6). The total volume being removed is the dif-
ference between the stock material and the final volume
(Eqn. 3.7), and the MRR is assumed to be a given value
for rough machining. Finish machining and drilling are
not included because they are assumed to have little to no
impact between competing assemblies.

CostMachining = RMachine ∗ tMachining (3.5)

tMachining = VolumeRemoved/MRR (3.6)

VolumeRemoved = VolumeStock − VolumeFinal (3.7)

The cost of each assembly operation is highly depen-
dent on the type of assembly processes that the user has
decided to include. Gas welding, for example, is depen-
dent on the material and the perimeter of the weld,
whereas RFW is dependent on the mass and the area of
the weld. Other assembly operations may require addi-
tional fasteners (e.g., bolts or rivets) or features on the
parts (e.g., flanges or threads). Therefore, the cost of each
assembly operations should be determined by its own
unique cost model.

This paper focuses on LFW and RFW, which are both
cost dependent on the area of the weld. The case studies
presented in Section 4 use the simple assembly operation
costmodel shown in Eqn. (3.8), whereRAssembly is the cost
rate per area and FixedAssembly Cost is a fixed minimum
assembly cost. The area used in Eqn. (3.8) is the contact
area on the cutting plane where the two subparts come
together. The fixed cost is included to avoid assembly
operations that join very small features, such as fillets.

CostAssembly Operation = RAssembly ∗ Area

+ FixedAssembly Cost (3.8)

This equation does not include the capital cost of the
machine or the tooling involved, those costs are often
the barrier to entry for friction welding, but they do
not greatly affect the cost difference between alterna-
tives. Capital costs should be considered when compar-
ing the savings of using friction welding to the current
cost of production. This is a business level comparison
and beyond the scope of this paper.

3.4. Optimization

3.4.1. Search space
Understanding the assembly option search space is cru-
cial for determining an effective optimization algorithm.
In general, the search space is non-monotonic, depen-
dent on order of operations, and very large. This section
discusses these characteristics in further detail. All of
the findings in Section 3.4.1 are new contributions to
defining this search space.

The search space is non-monotonic because the cost of
each further decomposed assembly is not guaranteed to
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Figure 7. Part illustrating monotonicity.

Figure 8. Graph showing an example of themonotonicity of cost
terms.

be less expensive than its parent. It is only less expensive
if the savings in material cost and machining outweigh
the increase in assembly costs. Furthermore, even if an
assembly is more expensive than its parent, there is no

guarantee that the assembly’s children will also be more
expensive. This can be seen when considering the faces
on the inside of each of the legs of the part in Fig. 7. If
one inside face on either side is chosen as a cutting plane,
it will not reduce the overall bounding box until the other
face is also chosen as a cutting plane.

In fact, the only monotonicity that can be guaranteed
is that the cost of material and machining are strictly
monotonically decreasing. For the vastmajority of opera-
tions, the cost of assembly operations is weaklymonoton-
ically increasing. However, this is not guaranteed because
the area of the weld may decrease as the subparts are
further decomposed to closer net shapes. An example of
the total cost, as shown by the black line in Fig. 8, may
increase and decrease several times as a function of the
number of cutting planes.

Additionally, the order that the cutting planes are
applied is important for two reasons. First, two cutting
planes applied in different order can result in geometri-
cally different assemblies (Fig. 9 top row). This occurs
whenever two cutting planes intersect inside the solid
(Fig. 9 top left), but it can also occur when a cutting
plane creates more than two subparts or when cutting
on one plane makes the other invalid (Fig. 9 bottom
row). Note how in the bottom right of Fig. 9, plane A
will no longer cut the right subpart into smaller pieces
or reduce the wasted volume of the left subpart. Second,
since the resulting assembly order is different, the fix-
tures and machines required are different between even
two geometrically equal assemblies. Since the order of

Figure 9. (top row) Ordering planes A and B differently results in different subparts (comparemiddle to right), (bottom row)when either
plane A or C is chosen, the other becomes invalid.
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cutting planes changes the assembly plan and overall
production costs, order must be captured in the search
space.

The theoretical maximum number of possible assem-
bly options is based on the number of cutting planes
(“s”). After one cutting plane cut is applied, there is
the possibility for “s - 1” additional cutting planes and
so on, making the maximum depth “s.” Fig. 10 shows
the search space for a model with only three possi-
ble cutting planes (s = 3). Each circle represents a
unique assembly option, resulting in a maximum of six-
teen unique assembly options. Summing up the num-
ber of options, results in the geometric series shown in
Eqn. (3.9). Now consider the complex part in Fig. 3,
which has fifteen unique cutting planes after eliminat-
ing the small faces (s = 15). Eqn. (3.9) results in over
3.5 trillion (3.5×1012) assembly options. However, the
actual maximum number of possible assembly options is
much less than the theoretical maximum because certain
planes make other planes invalid (Fig. 9). Nevertheless,
an AI search is required because an exhaustive search
is impractical when considering the size of the search
space.

Maximum Possible Assemblies = s!(1 +
s∑

k=1

1
k!

) (3.9)

Figure 10. Search space for a model with three possible cut-
ting planes. Each circle represents a unique assembly option.
The number inside shows the number of possible cutting planes
remaining.

3.4.2. Optimization algorithm
There were four primary factors in determining the best
optimization algorithm to implement. First, the search
space is organized as a decision tree (e.g., Fig. 10). Second,
the design space is inherently non-monotonic. Third,
every option in the design space is a potential solution.
Fourth, the design space is very large, so large that it is
not realistic to search every option.

A variety of optimization algorithms were considered,
but ultimately beam search [12] was chosen as the best
algorithm for these primary factors. Exhaustive search is
impractical because of the size of search space. Greedy
search is quick, but does not explore many options.
A* could be reasonable if a fairly restrictive admissible
heuristic could be found, however, such a heuristic has
so far eluded the researchers. A genetic algorithms could
be modified to include the order of cutting planes, but it
would greatly complicate the search structure and assem-
bly option representations. Lastly, beam search is easy to
implement, adjust, and in the future, parallelize. Though
it does not guarantee that an optimal solution will be
found, no other method could make this guarantee in a
practical timespan. Beam search is a powerful approach
that intelligently limits time and memory while consid-
ering a broad range of decompositions, and it tends to
converge on good results quickly.

Beam search works like a breadth first (iterative)
search, except that it only keeps the best performing
candidates from each iteration. All other candidates are
deleted. The beam width is a user-defined input parame-
ter that adjusts the number of top candidates that are kept.
In this way, it limits the design space and memory usage.
Generally, a large beamwidth is used for beam search, but
for the two case studies shown in Section 4, a beamwidth
of ten (b = 10) was implemented. Larger beam widths,
up to one hundred, were also tested, but produced the
same near optimal assembly as a width of ten.

During the search, every identified cutting plane is
considered at each iteration, assuming it is still feasible
and has not already been used. For example, in Fig. 11
solution B, two subparts are formed. During the sec-
ond iteration (2 cutting planes), every valid cutting plane
except for the one used already will be applied to solu-
tion B to generate new options. In most cases, those
cutting planes will only be valid (cut through the sub-
part) for one of the two subparts. This repeats at each
iteration,with the assembly option considering every cut-
ting plane it is not already using. Although beam search
is not exhaustively searching all possible combinations of
cutting planes, it is searching many options and does not
eliminate a cutting plane because of poor performance
early in the search.

The beam search algorithm, applied in this research,
is show in Fig. 12. The input is the original part geome-
try, which acts as the first assembly option for the while
loop. The output of this loop is a sorted list of decom-
positions and their assembly plans. The first and second
foreach loops decompose every subpart of every current
assembly with the DecomposeVolume function. This
function performs volume decomposition for every valid
cutting plane on that subpart, saving a set of children
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Figure 11. Example of a part being decomposed by iteratively applying cutting planes.

Figure 12. Psuedo code for the applied beam search algorithm.

subparts (ChildSet) for each cutting plane. The third
foreach loop creates a new assembly (ψ′) based on each
ChildSet, estimates its cost, and saves the results if it

has the potential to be better than the minimum cost
assembly created thus far.

The maximum possible improvement in cost from the
current state determines an assembly’s potential savings
(Eqn. 3.10). Themaximum improvement tomaterial cost
is equal to the cost of the waste material. The maxi-
mum improvement to machining is that no machining is
required. Since an additional decomposition will require
a minimum of one assembly operation, the fixed cost is
subtracted from the potential. This potential creates an
admissible heuristic that creates a lower bound on the
number of iterations, instead of using an artificial depth
limit.

Potential = CostWaste + CostMachining + FixedAssembly Cost
(3.10)

After all the current assemblies have been decomposed,
the candidates are ranked and trimmed to the top ten
(b = 10). These top ranked assemblies are sent through
the loop again to decompose them with another cutting
plane. The outer while loop continues to run, until there
is no further improvement, which occurs when no new
assemblies are added to the newAssemblies list in that
iteration.

4. Results

Two case studies were run through themethod presented
in this paper to demonstrate its value. In the first case
study, a more complex part is used to show the value
of this method on real world parts. The second case
study considers four materials to show how the method
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performs for different parameters. For both the case stud-
ies, the only stock materials considered are rectangular
and circular bar stock of arbitrary size. Also, the only
assembly operations considered are linear friction weld-
ing (LFW) and rotary friction welding (RFW), assuming
Eqn. (3.8) for both.

The decomposition function, manufacturing plan
generation, cost estimation, and beam search algorithm,
all presented in Section 3, were developed as a standalone
executable in C#. It is independent of any CAD software,
and instead, the basic geometry functions (e.g., cut solid,
minimumbounding rectangle) are implemented in a new
geometry library. The tests were run using a computer
with a 3.4GHz processor and 12 GB of RAM.

Tab. 1 shows the input values used in this case study.
The price andMRR for the variousmaterials are based on
industry values. These values will be different for differ-
ent machines, cutting tools, and part sizes. As such, these
values are meant to be used to show a comparison of dif-
ferent costs formaterials, not an exact cost for a particular
situation. It was assumed that the same machine can be
used for the fourmaterials and that the assembly costs are
not based on the material. Therefore, the assembly and
machine rates, along with the fixed cost of an assembly
operation, were the same for all four materials. The rate
of themachine and assembly costs are rough estimations,
chosen so that they were an appropriate percentage of the
overall production cost.

4.1. Case Study 1

The first case study part (Fig. 13) is a complex part
intended to show the value of this method on real
world parts. Its bounding dimensions are approximately

Table 1. Values for input variables used in case studies.

Material
Aluminum

6061
Stainless Steel

304 Ti6Al4V
Inconel
718

Density [g/cm3] 2.70 8.0 4.43 8.19
Price [USD/kg] 4 6 18 60
MRR [cm3/min] 800 16 5 2
Rmachine[USD/hr] 100 100 100 100
RAssembly [USD/cm2] 5 5 5 5
FAssembly [USD] 25 25 25 25

93 cm×23 cm×15 cm. If machined from rectangular bar
stock of that size, there is only 18% material utilization
(82% ofmaterial is machined away). A common titanium
(Ti6Al4V) is chosen as the material (see Tab. 1 for input
values).

A cut off tolerance (0.125% x surface area) was used
to identify large flat surfaces for cutting planes using
the Relevant Flats method. This method identified 28
cutting planes, resulting in over 8 octillion (8×1029) pos-
sible assembly options (Eqn. 3.9). An exhaustive search of
this space is infeasible without additional restrictions, but
even with cost (Eqn. 3.10) and plane interactions (Fig. 9)
eliminating much of that space, an exhaustive search
is prohibitively time consuming. So to begin assembly
synthesis, the model is loaded into the beam search
algorithm (Fig. 12).

Fig. 14 shows the cost comparison of the original
“hog out” (machined from single piece of rectangular
bar stock) production cost versus the assemblies that
were created during decomposition. The dots represent
the top ten assemblies that were decomposed further at
each depth. The best solution is at a depth of three, but
the beam search extends well past this solution. This
is because the current approach continues decomposi-
tion as long as there is potential improvement (Eqn.
3.10). While this does seem extraneous, it does guaran-
tee that the beam search is not stopped prematurely. Past
depth 4, the assemblies are very similar because they have

Figure 14. Case Study 1 comparisonof “hogout” production cost
to the assembly options.

Figure 13. Structural support beam.
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a similar lineage. Overall, 5,830 assembly options were
created and evaluated in 78 minutes.

Fig. 15 shows the best assembly option for Case
Study 1. The boxed subparts are the stock material, while
unboxed subparts are intermediary steps. Each assem-
bly operation is shown as a single arrow, pointing from
the “joined” subpart to the “base” subpart. In this exam-
ple, LFW was chosen for three assembly operations and

RFW was chosen for the other. The final operation is a
machining operation.

Fig. 16 shows the production cost comparison of the
original “hog out” versus the best assemblies for three
depths. The best assembly solution is at depth 3, and it
resulted in a 50% cost reduction and a 65% waste reduc-
tion. All three depth solutions show that the savings in
material and machining cost more than make up for the

Figure 15. Case Study 1 best assembly option for Ti6Al4 V.

Figure 16. Case Study 1 production cost comparison of “hog out” and the best assemblies from depth 1, 3, and 7.
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added assembly cost. Nevertheless, too many assembly
operations eventually drive up the cost because there is
less material and machining to save at each successive
depth. Finding this balance in assembly vs. machining is
one reason the automated method is so powerful.

4.2. Case Study 2

The second case study part (Fig. 17) is a smaller compo-
nent intended to show the effect of material to the best
assembly option. Its bounding dimensions are approxi-
mately 25 cm×36 cm×30 cm. If it is machined from rect-
angular bar stock of that size, there is only 32% material
utilization. A common aluminum (6061), stainless steel
(304), titanium (Ti6Al4V), and Inconel (718) were cho-
sen for their variation in material cost and machinability
(see Tab. 1 for input values).

A cut off tolerance (0.125% x surface area) was used
to identify large flat surfaces for cutting planes using the
Relevant Flats method. This method identified 15 cut-
ting planes, resulting in 3.5 trillion maximum possible
assembly options (Eqn. 3.9). An exhaustive search was
attempted with both cost potential and plane interac-
tions eliminating many options. For 8 cutting planes, an
exhaustive search took 14 minutes, but with each added
plane there is an exponential increase in time. For 15
cutting planes, it was estimated to take 60 days to fin-
ish the exhaustive search. The rest of the results for this
case study are from loading the part into the beam search
algorithm (Fig. 12).

Fig. 18 shows the cost comparison of the original
“hog out” (machined from single piece of rectangular
bar stock) production cost versus the minimum assem-
bly cost at each depth. The best decomposition for each
material is circled in Fig. 18. Notice the vast difference in
assembly options for the differentmaterials. Aluminum is
a relatively inexpensive and machinable material, so the
best solution is to machine it from a single block of stock
material. Inconel and Titanium, on the other hand, are
both expensive and difficult to machine thus resulting in
multiple cutting planes. Stainless Steel fell in the middle.

Figure 17. Square support bracket.

Figure 18. Case Study 2 comparisonof “hogout” production cost
to the assembly options considered for Ti6Al4V.

Fig. 19 shows the best assembly options for the Inconel
and Titanium. The boxed subparts are the stock mate-
rial, while unboxed subparts are intermediary steps. Each
joining operation is shown as a unidirectional arrow,
pointing from the “joined” subpart to the “base” sub-
part. In this example, LFWwas chosen for every assembly
operation. The final operation is a machining operation.
Stainless Steel had a simple solution, where the two legs
were joined onto the main body with LFW. This solution
resulted in a 20% reduction in production cost and 67%
reduction in waste material. Inconel, on the other hand,
resulted in a 67% reduction in production cost and 92%
reduction in waste material. Unfortunately, LFW is not
as matured for Inconel as for other metals, but this result
shows the need. Titanium resulted in a 49% reduction
in production cost and 91% reduction in material waste.
Aluminum did not benefit from advanced joining. These
results show that decomposing complex parts into assem-
blies can significantly reduce the cost of production and
material waste for a variety of metals.

It is important to note, that while the results fromCase
Study 2 show that the best solutions occur at depth 4
and depth 5 for Inconel and Titanium respectively, the
solutions at shallower depths may be preferable to the
designer for other factors (e.g., processing time, machine
availability, and technology maturity). In making the
software tool automated, the designer can look at all the
output solutions and quickly identify which solution is
most feasible and cost effective.

5. Limitations and future work

This section discusses the current state of research and
the limitations of the approach presented in this paper.
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Figure 19. Case Study 2 best assembly options for the different materials.

The limitations can be split up into four primary cate-
gories; geometry, material, optimization, and manufac-
turing.

In regards to the geometry, there are two limitations
to the cutting plane identification applied in this paper.
First, the cutting planes are restricted to flat infinite
planes to guarantee assembly operations will be possi-
ble. It may, however, be advantageous to consider curved
or partial cutting planes. Second, while the cutting plane
identification does find many good planes, it does not
catch all the reasonable possibilities. This can especially
be seen when considering fillets and curved features,
which the current method ignores. Future work aims
to include identification of ideal cutting planes on these
complex curved shapes.

The method presented in this research does not con-
sider loading conditions for two reasons. First, the mate-
rial properties for friction welded joints have mechan-
ical properties similar to their parent materials [2][4],
so there is little effect on part performance with just
a few welds. Second, including a FE analysis as a sec-
ondary constraint to cost is impractical for this already

expansive search process. Nevertheless, since friction
welding allows joining of dissimilar materials, such as
aluminum to titanium [10], including some information
about loading could be valuable.

The major limitation to the optimization algorithm
presented in this paper is that it can get trapped in
locally optimal solutions. There are two ways in which
the current method attempts to guard against this. First,
it applies a reasonably sized beamwidth for this problem.
This helps to explore a variety of options, but does not
prevent the search from getting trapped in locally opti-
mal solutions. For example, during the second iteration,
the beam width could eliminate all child solutions from
parents other than the local optimal parent, if the local
optimal parent’s children are best. Second, the potential
cost savings (Eqn. 3.10) are used as the exit criteria rather
than a depth limit. This prevents the search from ended
at a premature depth. The primary issues effecting the
optimization are the time and memory it takes to cre-
ate and evaluate each feasible option. Beam search is an
adjustable compromise of time, memory, and accuracy.
While we believe it was the best optimization algorithm
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to begin with, we encourage future work on alternate
algorithms.

On the manufacturing front, there are four simplifica-
tions in this work. First, only rectangular and circular bar
stock are considered. In reality, there are many alterna-
tives. A minor adjustment is to include other shapes like
tube and L-channel extrusions. Perhaps a more thorough
approachwould be to includewater jetting, additiveman-
ufacturing, forging, casting, and other forming processes.
These additional forming processes can be included
by sending the cost model additional information and
implementing a separate optimization search on the cost
model. Second, only linear and rotary friction welding
were included as assembly options. Additivemanufactur-
ing, friction stir welding, and traditional assembly oper-
ations may be advantageous to add. Third, the current
methoddoes not include tolerances to account for joining
or machining. Fourth, a more detailed cost model could
be implemented to provide more accurate results. These
simplifications have been considered, and as such, the
current method was developed to accommodate future
work.

6. Conclusion

This research lays the ground work for future exploration
of assembly options with advanced joining based on pro-
duction cost. First, a newmethod to decompose complex
parts into assemblies using advanced joining is presented.
The decomposition approach (Section 3.1) andmanufac-
turing plan generation (Section 3.2) are the first of their
kind to consider advanced joining with LFW and RFW.
Second, the search space is explored and defined (Section
3.4.1). This contribution is significant, since it dictates
which optimization methods are reasonable. Lastly, an
optimization method based on beam search is presented
for this search space. While the beam search algorithm
(Section 3.4.2) is not novel and has been applied in sim-
ilar decomposition searches [9], this paper is the first
to consider the size and characteristics of this particular
assembly option space. Altogether, this method automat-
ically generates alternative decompositions and compares
their relative costs with little effort from the design engi-
neer. In addition, it considers many more alternatives
than the designer could reasonably consider and has the
potential to be integrated with a highly detailed cost
model.

Lastly, the two case studies show this method applied
to two complex parts. The first case study shows an
example of the beam search algorithm results and the
production cost components in detail. The second case
study, which considered four different metals, shows that
this method is more beneficial for expensive materials,

but could also be used to economically reduce waste for
less expensive materials. Both case studies clearly show
the advantage of beam search, when compared to an
exhaustive search. This advantage is expected to expo-
nentially increase as the parts becomemore complex and
the objective function evaluations are improved.
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