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ABSTRACT
Wepresent a GPU algorithm for computing the Voronoi cells for a set of spheres in R3. The algorithm
is based on sampling rays from each sphere and finding the lower envelope of intersections of the
rayswith the sphere bisectors on theGPU. The presence of Voronoi vertices and edges is determined
based on where neighboring rays intersect different bisectors. For accurate geometry, we present a
numerical iteration approach to calculate the Voronoi vertices’ locations within a user-defined toler-
ance. The algorithm robustly handles input in non-general position and large input sets of thousands
of spheres.
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1. Introduction

TheVoronoi diagram is a fundamental construct in com-
putational geometry for partitioning space into regions
that are closest to a set of points or surfaces, useful in
a wide range of application domains. Many algorithms
have been proposed for constructing Voronoi diagrams
of lower order objects (points, line segments, and poly-
gons) in R3. However, Voronoi diagrams of higher order
objects such as spheres in R3 have not been explored as
extensively, even though they have many applications.
For example, to analyze pathways throughmolecular tun-
nels in proteins with their atoms represented by Van der
Waals spheres, Voronoi diagrams of spheres are often
used [11]. However, due to the lack of robust algorithms,
many applications simplify the problem by assuming that
all atoms have the same radius [11], or approximating
larger atoms by collections of spheres with the radius of
the smallest atom [3], so that existing codes for Voronoi
diagrams of points can be used. Kim et al. [10] have suc-
cessfully computed Voronoi diagrams of spheres in R3,
but their method is limited to input in general position.

In this paper, we present a GPU algorithm to compute
Voronoi cells of spheres in R3. Our main contributions
include:

• A novel approach to compute Voronoi cells of spheres
that exploits the parallelism of the GPU by shooting
intersection rays at the bisector surfaces. We sample
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rays from each input sphere and find the lower enve-
lope as points on Voronoi faces.

• Separation of the construction of the topology of the
Voronoi cells from the calculation of the geometry.
The topology is calculated directly from the face sam-
ple points.

• Accurate calculation of Voronoi vertices’ geometry by
using the samples to initialize Newton-Raphson itera-
tion that can guarantee the accuracy of the vertices to
be within a user-defined tolerance.

• Calculation of Voronoi cells of thousands of input
spheres representing actual proteinmolecules (Fig. 1).
Our algorithm is robust even for spheres not in gen-
eral position, handling Voronoi vertices with degree
greater than four.

2. Related work

The connection between Voronoi diagrams and lower
envelopes is well known [4]. For example, the computa-
tion of the Voronoi diagram of a set of points (sites) in
R2 corresponds to the projection of the lower envelope of
45-degree cones whose apexes are located on the sites in
the xy-plane.More generally, theVoronoi diagramof a set
of curves in R2 corresponds to the projection of the lower
envelope of generalized cone surfaces that correspond to
distance functions. This insight has led to several algo-
rithms that construct the Voronoi diagram of objects in
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R2 by computing the lower envelope of their generalized
cones (or distance functions) [2, 8, 13].

The connection between Voronoi diagrams and lower
envelopes has inspired the use of GPU algorithms for
Voronoi diagram computation, such as in the seminal
work by Hoff et al. [9], in which the authors rendered
a 3D polygonal mesh approximating the distance func-
tion, and used the z-buffer depth comparison to com-
pute the lower envelope of these meshes and hence the
Voronoi diagram. This approach has been far more suc-
cessful for computing Voronoi diagrams in R2 than in R3

up to now, however, because in R3 the Euclidean space
lower envelope requires projections from surfaces in R4

onto R3.
Hanniel et al. computed the Voronoi cells of a set

of CSG primitives (including spheres) using a three-
dimensional lower envelope algorithm [6]. The imple-
mentation encountered robustness and efficiency issues
beyond a relatively small number of input objects, how-
ever. One of the reasons is that a bivariate lower envelope
algorithm inherently incurs degenerate cases; the ver-
tices of the minimization diagram (the arrangement of
curves that is the projection of the lower envelope) are an
intersection of three curves meeting at the same point.

Anton et al. [1] showed how an alternate approach,
relying on the empty circumsphere property of Voronoi
vertices, can be made robust by using exact evaluation of
the empty sphere predicate, showing also that the input
must have six timesmore precision than that required for
the empty sphere predicate exact computation.

To our knowledge, algorithms for computing Voronoi
diagrams of spheres that show the best results for large
data sets in practice are based on the edge tracing
algorithm of Kim et al. [10]; however, this algorithm
assumes non-degenerate input that is in general posi-
tion, with all Voronoi vertices having degree four, and no
disconnected Voronoi edges.

This paper is inspired by Hanniel et al. [7], which used
the lower envelope of distance functions to compute the
Hausdorff distance on the GPU by sampling points on
the first surface and performing numerical iterations to

compute the minimal distance from each sample to the
other surface.

3. Algorithm description

Definition 1: Given a set of spheres S0, S1, . . . , Sn in R3,
the Voronoi cell of sphere Si is the set of all points closer
to Si than to Sj(∀j �= i). The Voronoi diagram is the union
of the Voronoi cells of all (n+ 1) spheres.

Definition 2: The locus of points that are equidistant
from Si and Sj (j �= i) is called bisector Bi,j.

In general, bisectors in R3 are surfaces, either a plane
when the two spheres are the same size, or a hyper-
bolic surface when the two spheres are different sizes
[6]. We assume that no input sphere is completely con-
tained inside another, but our same framework handles
intersecting spheres correctly. Voronoi faces are portions
of such bisector surfaces between two spheres that have
equal (minimal) distance from the two spheres. Please
refer to Elber and Kim [5] for a detailed formulation of
the bisectors.

For a single Voronoi cell, its Voronoi edges are formed
where two of its Voronoi faces intersect and, in gen-
eral, are segments of curves [10]. In general, three of the
bisector surfaces contribute to each of the cell’s Voronoi
vertices, and this involves four spheres for each vertex.

In this paper, instead of analytically calculating
Voronoi faces, we propose a sample-based approach to
obtain sample points on Voronoi faces, by taking the
lower envelope of the bisectors with respect to the dis-
tance function to the “base sphere” in each Voronoi cell.
We shoot sample rays from this sphere in radial direc-
tions (Section 3.1), calculate the intersection of each ray
with the implicit bisector surface functions (Section 3.2),
and retain only the intersection with the minimum dis-
tance as our face sample point (Section 3.3).

We calculate the Voronoi vertices of each cell by using
a marching-grid approach to locate the neighborhoods
of the vertices. We virtually “color code” each Voronoi

Figure 1. Example results: (a) A single Voronoi cell pictured, where the green Voronoi vertex is equidistant from the 5 spheres; the full
Voronoi diagram we computed for (b) “Random Set A” [12]; (c) Protein ID 1crn-PQR consisting of 642 atoms (202 Cs, 55 Ns, 64 Os, 6 Ss,
and 315 Hs) [14]; (d) Protein ID 1bh8-PQR consisting of 2161 atoms (680 Cs, 181 Ns, 203 Os, 10 Ss, and 1087 Hs) [14].
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face sample point by giving it the same color as the bisec-
tor to which it belongs (Section 5). A Voronoi vertex
occurs where there are three or four different colors out
of four neighboring sample points, which means there is
an intersection of three or more bisectors.

The stages of the algorithm to construct a Voronoi
cell are:

1. Sample rays from the base sphere Si.
2. Calculate the bisector surfaces functions between Si

and Sj (j = 0, 1, . . . , i− 1, i+ 1, . . . , n).
3. Compute the intersection of each ray with all the

bisectors and take the lower envelope of all the inter-
sections to obtain the sample points on the Voronoi
faces.

4. Find all grid cells of neighboring sample points
that contain Voronoi vertices and use the Newton-
Raphson method to calculate the vertex location.

We now describe the steps in detail.

3.1. Sampling rays from base spheres

For simplicity of calculation, we assume each base sphere
in turn is a unit sphere with radius 1 located at the origin.
If not, we translate and scale the coordinate system so that
the base sphere fulfills this requirement. The algorithm
to sample normal rays from the sphere surface uses a
parametric representation of the ray. Denoting O as the
vector of the ray origin on the sphere surface, n as the
unit normal of the ray, and t as the scalar distance along
the ray from the origin, the representation of the ray r(t)
in parameter t is given in Eq. 1. With respect to the base
sphere, O is on the surface of the base sphere, n is in the
radial direction from the base sphere, and t represents the
distance from the ray origin to the intersection of the ray
with the bisector surface (Fig. 2(a)).

r(t) = r(x(t), y(t), z(t)) = O + t · n (1)

For sampling, we parameterize the six faces of the axis-
aligned bounding cube of the base sphere. Each face of
the bounding cube is taken as a uniformly subdivided
parameterized domain expressed in variables u and v
(Fig. 2(b)).

Each of the six u-v domains corresponds to 1/6 of the
base sphere. For each sample on each u-v domain, there
is a ray shooting from the surface of the base sphere. Fig.
2(b) shows an example of sampling based on the top face
z − 1 = 0,−1 ≤ x ≤ 1,−1 ≤ y ≤ 1. The u-v domain for
the top face has u and v ranges as −1 ≤ u ≤ 1,−1 ≤
v ≤ 1. Each (u, v) sample corresponds to a ray (u, v, 1)
with the origin on the sphere surface, normalized as unit

(a) (b)

Figure 2. (a) Illustration of ray intersectionwith bisector surfaces.
(b) Mapping sphere to six u-v parametric surfaces on the bound-
ing cube; uniform parametric sampling of top surface shown.

vector 1√
(u2+v2+12)

· (u, v, 1). The sample ray origin and

unit normal on the base sphere are both 1√
(u2+v2+12)

·
(u, v, 1).

3.2. Calculating the bisector functions

The bisector surfaces between two spheres are the simul-
taneous solutions of two distance equations (Eq. 2),
where P(x,y,z) is any Euclidean point on the bisector sur-
face, (Cx1,Cy1,Cz1), (Cx2,Cy2,Cz2) are the centers of the
two spheres, and R1, R2 are the radii of the two spheres:

√
(x − Cx1)

2 + (y − Cy1)
2 + (z − Cz1)

2 − R1

=
√

(x − Cx2)
2 + (y − Cy2)

2 + (z − Cz2)
2 − R2.

(2)

Eliminating the radius in Eq. 2 results in an implicit
quadratic surface equation:

Ax2 + By2 + Cz2 + Dxy + Exz + Fyz

+ Gx + Hy + Iz + J = 0 (3)

where A = 4R2 −4Dx
2, B = 4R2 −4Dy

2, C = 4R2

− 4Dz
2, D = −8DxDy, E = −8DyDz, F = −8DzDx,

G = −8R2Cx1 – 4KDx, H = −8R2Cy1 – 4KDy, I =
−8R2Cz1 − 4KDz, and J = 4R2(Cx1

2 +Cy1
2 +Cz1

2)
−K2, where R = R1 –R2, the difference in the radii;
Dx = Cx1−Cx2, Dy = Cy1 – Cy2, Dz = Cz1−Cz2, the
distance between the centers; and K = (Cx2

2 −Cx1
2)+

(Cy2
2 −Cy1

2)+ (Cz2
2 – Cz1

2) – R2.
If the two spheres are different sizes, the bisector is

a hyperbolic surface; otherwise it is a plane. If the two
spheres are of the same size, the coefficients A, B, C, D, E,
and F are zero and Eq. 3 simplifies to the linear equation:

Gx + Hy + Iz + J = 0 (4)

whereG = 2(Cx1 −Cx2),H = 2(Cy1 −Cy2), I = 2(Cz1 −
Cz2), and J = Cx2

2 −Cx1
2 +Cy2

2 −Cy1
2 +Cz2

2 −Cz1
2.
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3.3. Finding intersections and lower envelope

The Euclidean distance function r of a point (x, y, z) from
a sphere surface is (x − x0)2 + (y − y0)2 + (z − z0)2 =
(r + r0)2, where (x0, y0, z0) is the center of the sphere
with radius r0, and r is the distance of the point (x, y, z)
from the spherical surface. When solving for the inter-
section of the ray and the bisector surface, we substitute
the ray representation (Eq. 1) in terms of t into the bisec-
tor implicit function (Eq. 3); which can be simplified as a
quadratic equation in parameter t when the bisector is a
hyperbolic surface (Eq. 5), or a linear equation when the
bisector surface is a plane (Eq. 6).

a · t2 + b · t + c = 0 (5)

d · t + e = 0 (6)

While solving Eq. 5, depending on the value of the dis-
criminant (b2 − 4ac), there will be zero, one, or two
solutions to the equation, corresponding to the respec-
tive cases where the ray does not intersect the bisector,
intersects it once, or intersects it twice. In addition, the
solution to the hyperbolic bisector equation has two pos-
sible sheets, and depending on the relative radius of the
second sphere to the base sphere, only one of the sheets
should be retained. As shown in Fig. 3, when the smaller
sphere (the red sphere on the left) is the base sphere,
the closer of the intersections corresponds to the cor-
rect bisector surface and therefore, the closer solution
of Eq. 5 is used. Conversely, when the larger sphere is
the base sphere (shown in green), the farther solution
is used.

L2

x

y

C1 (-d, 0)

C2 (d, 0)

Si

Sj

L1

Bi,j

Hyperbolic 
Surface

L1

L2

Figure 3. Culling the incorrect sheet of the two hyperboloid
sheets.

When the ray does not intersect the bisector surface,
we use a distance value of infinity to unify the lower enve-
lope calculation. For each ray, the lowest distance to all
the bisectors is stored, to output the final sample point on
the Voronoi face the ray intersects. For infinite Voronoi
cells, some of the final sample points will be at infinity

(these can be thought of as intersections with a bisec-
tor surface between the base sphere and infinity, allowing
us to process them like any other bisector for calculating
Voronoi vertices).

In the case of intersecting spheres, the bisector surface
will pass through the interior of both spheres (Fig. 4).
(Intersecting spheres are actually quite common in the
case of molecular input where atoms’ influence spheres
often overlap within a single protein, for example.) For
simplicity of implementation, we thus calculated all dis-
tances along sample rays from the origin of the base
sphere rather than its surface, so that the lower enve-
lope calculations need only consider positive distances to
bisectors.

Figure 4. Bisector surface for two intersecting spheres.

4. Calculating Voronoi cells

We use a marching-grid approach to locate the neigh-
borhood of Voronoi vertices by checking each group of
four neighboring face sample points, which we call a
“grid cell” on the bounding cube. In the u-v parametric
domain, for each such grid cell, we color-code each of its
four corner points based on the corresponding bisector.
Within a grid cell, if the four corners have three or more
colors, then they correspond to three or more bisectors
and thus to a corresponding number of Voronoi faces.
Hence, at least one Voronoi vertexmust be located within
the cell (e.g. where those Voronoi faces intersect).

Fig. 5(a) and Fig. 5(b) show the correspondence
between sample points on Voronoi faces in geometric
space and the samples on the bounding cube of the
base sphere in the u-v domain. The Voronoi cell of the
base sphere (the large sphere in the middle) is shown
on the left; it has four surrounding unbounded Voronoi
faces (red, blue, green, and yellow). Infinite rays are rep-
resented by the gray portion in the color map of the
bounding cube (Fig. 5(b)). Fig. 5(c) shows one of the u-
v domains of the bounding cube of the base sphere. The
grid cells indicated contain three colors.

Similar to the Voronoi vertices, Voronoi edges occur
where there are at least two different colors out of the
four neighboring sample points, which means there is
an intersection of two bisectors. The connectivity of the
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Figure 5. (a) Sample points on Voronoi faces for white base sphere; (b) Corresponding color map of u-v domains on bounding cube; (c)
Sample point grid on one face of the bounding cube with 3-color grid cells indicated.

grid cells and the pattern of shared colors of the sam-
ple points determine the vertex-edge topology of the
Voronoi cell.

5. Calculating Voronoi vertices

For a three-color grid cell, finding the Voronoi vertex is
equivalent to solving the three bisector surface equations
simultaneously. We use the Newton-Raphson method to
find locations of the actual vertices, unless one of the
bisectors is the infinity bisector, in which case we already
know the vertex is located at infinity. By checking all the
grid cells, those grid cells with three or more colors are
easily located. To calculate a Voronoi vertex P(x, y, z),
we solve for the three unknowns x, y and z. The implicit
functions for the corresponding three bisector surfaces
are denoted as f1(x, y, z), f2(x, y, z), and f3(x, y, z). The
solution for the system of 3 non-linear equations in 3
unknowns is given by:

f1(x, y, z) = 0

f2(x, y, z) = 0 (7)

f3(x, y, z) = 0.

The following vector expression is used to simplify Eq. 7,
whereFdenotes the vector representing functions fi(P) as
in Eq. 8, and 0 denotes the zero vector. The solution for
the system of implicit functions for the bisector surfaces
fi(x, y, z) can be written using a single vector expression
as F(p(x, y, z)) = 0, where

F(P(x, y, z)) =
⎡
⎣
f1(x, y, z)
f2(x, y, z)
f3(x, y, z)

⎤
⎦ . (8)

If P = P0 represents the first guess for the solution, suc-
cessive approximations to the solution are obtained using
numerical iteration. From the current kth iteration, iter-
ating from an approximate solution Pk and substituting it

in, we obtain point Pk+1 for the (k + 1)th iteration:

Pk+1 = Pk − J−1(Pk) · F(Pk) (k = 0, 1, . . .). (9)

At each iteration, in the general case, an improved esti-
mate of the solution is produced (since the bisector sur-
faces are always planes or hyperboloids), until the new
estimate is close enough to the actual solution. A conver-
gence criterion for the solution of this system is defined
to be:

max |fi(Pk)| < ε (10)

for the user-defined tolerance ε.
The 3 × 3 Jacobian of the system (Eq.9) is:

J(Pk) = ∂F(x, y, z)
∂P(x, y, z)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

When the Jacobian matrix J(Pk) is singular, it is not
invertible. This occurs when the three bisector equations
are not linearly independent, which will occur, for exam-
ple, where the three bisectors intersect at one common
edge instead of at a vertex (Fig. 6). A singularity can also
occur when the three bisectors actually have no intersec-
tion (Fig. 7). A third sort of singularity occurs if the start
point for the iteration happens to fall at a local minimum.
We distinguish the third case from the other two by sub-
dividing the grid cell; we expect all of the sub-cells with
the same colors of bisectors as the parent to also have sin-
gular Jacobian in the first two cases. In the third case,
we should have a non-singular Jacobian in the sub-cell
with the same color bisectors as the parent and can now
successfully use iteration to solve for the location of the
Voronoi vertex.

For the start point for the Newton-Raphson method,
we intersect a ray that is the average of the four corner
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Figure 6. Special case of Jacobian singularity for atoms in a
hexagonal configuration, the bisectors all intersect along an edge.

points of the grid cell with the corresponding bisec-
tor surfaces. Occasionally this leads to converging to a
solution at the intersection of an incorrect sheet of a
hyperbolic surface (Fig. 10(a)). We identify such cases by
confirming that the solution is truly equidistant to the
spheres defining the corresponding bisectors, and if not,
reinitialize the start point with the ray intersection with
a different bisector. In practice we found that the itera-
tion converges within 10 steps except in cases such as
shown in Fig. 8, where the iteration oscillates between
two intersections of the bisector surfaces close together.
When we identify such non-convergence, we subdivide
the grid cell.

5.1. Subdivision

We uniformly subdivide the original grid cell into four
sub grid cells. By taking the midpoints of the edges of
the original grid cell, we have five new rays. The origi-
nal parent grid cell is decomposed into four new child
cells. Taking the lower envelope of each new ray’s inter-
sections with bisectors gives us five new sample points.
We identify if any of the sub-cells have the same three col-
ors as their parent. If so, we take the average of the rays
of such cells as a new start point for the iteration. Other-
wise, when all of the four children share only one or two
colors with the parent, there is no vertex to output.

Figure 8. Case of a non-converging grid cell with two intersec-
tions. The two Voronoi vertices (white) are at the intersection of
the same four bisectors (blue, green, red, and yellow).

When there is a new color identified during the subdi-
vision, there is a new Voronoi face that was missed in the
original sampling. If the new color lies on an edge of the
old grid cell, we also subdivide the neighboring grid cell
sharing the edge.

By using subdivision in our algorithm, we can increase
the local sample density when the numerical iteration
fails to converge or leads to a singular Jacobian in finding
the Voronoi vertex.

5.2. Four-color special cases

Subdivision is also required to distinguish the special
cases where all four corners of the grid cell are differ-
ent colors. There are two possibilities: 1) the four cor-
responding bisector surfaces intersect at one vertex (Fig.
9(a); or 2) there is more than one Voronoi vertex in the
neighborhood and we increase the sampling density for
this grid cell to identify the other Voronoi vertices (Fig.

Figure 7. Special case of Jacobian singularity when bisectors do not actually intersect (Input consists of 3 intersecting colored spheres
and a white base sphere; a cross section is also shown).
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Figure 9. Special cases with four colors within one grid.

9(b-d)). To identify the vertex the four bisectors inter-
sect at, we check if choosing any three of the four corner
points as input for Newton’s method gives us the same
calculated vertex location.

If there is more than one vertex within this grid cell,
we increase the samples in this grid cell by subdividing
the original grid cell (Section 5.1). The next level of sub-
divisionmay reveal either two vertices within the grid cell
(Fig. 9(b)), three vertices within the grid cell (Fig. 9(c)),
or four vertices within the grid cell (Fig. 9(d)). For Fig.
9(c) and Fig. 9(d), there is a fifth color inside the grid cell
but it has yet to be found without increasing the sampling
density of the grid cell.

5.3. Replacement of vertices on incorrect sheets

We use implicit functions of corresponding bisectors in
the Newton-Raphsonmethod. From Fig. 3, we know that
points on incorrect sheets of the hyperboloids (as well
as points on the actual bisector surfaces) can make the
implicit functions equal to zero. Although we only pre-
serve the correct bisectors in the ray shooting process,
the Newton-Raphson method may converge to vertices
that are at an intersection involving one ormore incorrect
sheets of the hyperboloids. Fig. 10(a) shows the problem
in a 2D case, where the iteration start point is farther from
the real Voronoi vertex than from the indicated point that
is at an intersection with an incorrect sheet, and therefore
Newton-Raphson converges to this incorrect point. This

situation typically ariseswhen two spheres have close (but
not identical) radii, which leads to the correct and incor-
rect sheets of the hyperboloid surfaces being very close to
each other.

To determine if the point to which the iteration con-
verges is a correct Voronoi vertex, we check its distance
to the corresponding spheres. If the point is equidistant
from the spheres, it is a Voronoi vertex. Otherwise, we
use additional rounds of Newton-Raphson iteration with
different start points, determined as follows. From the
base sphere, we shoot a new ray through the previous
start point. The intersection of the new ray and the bisec-
tors between the base sphere and the other spheres are
the new iteration start points (Fig. 10(b)). After Newton-
Raphson iteration with these new start points, we check
the equidistant property of their new converged points.
(In practice, one of them always leads to the correct
intersection, within tolerance.)

5.4. Sorting of the Voronoi vertices

For each vertex, there are four or more spheres from
which it is equidistant, including the base sphere (in gen-
eral position, it is exactly four). When combining the
individual Voronoi cells into the Voronoi diagram, we
need to find each vertex in the cells of all of its contribut-
ing spheres. To determine if we have done so, we sort
the vertices by the lexicographic order of the indices of
the contributing spheres. We consider vertices identified

C3

C1 (Base Sphere) 

C2

Real Bisector
Incorrect Sheet of 
Hyperboloid

Sampling Rays

Iteration Start Point

Iteration End Point
(Incorrect Intersection)

Voronoi Vertex

Incorrect Intersections

C3

C1 (Base Sphere) 

C2

Real Bisector
Incorrect Sheet of 
Hyperboloid

New Ray

Original Iteration
Start Point

Voronoi Vertex

New Iteration 
Start Points

(a) (b)

Figure 10. (a) Converging to an incorrect intersection with an unnecessary sheet of the bisectors. (b) Finding new start points for
Newton-Raphson method.
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in different Voronoi cells to be the same Voronoi ver-
tex if they have the same contributing spheres and their
locations are within the user-defined tolerance.

5.5. Incompletelymatched vertices

In the sorting process, we may discover that a Voronoi
vertex is not found in the cells of all of its contribut-
ing spheres. This occurs when the sampling is not dense
enough to detect those vertices from all the base spheres
(typically due to a Voronoi face with small area that none
of the sampling rays hit). For such incompletely matched
vertices, we perform a second targeted search from each
of the corresponding base spheres where we have not
found the specific vertex.

To do so, we shoot a new ray from the center of the
base sphere in the direction of the undiscovered vertex,
whose exact location we now know. We then use the
corresponding u-v coordinate on the parametric bound-
ing cube to determine the existing grid cell that the ray
intersects. Centered around this u-v coordinate point, we
construct a much smaller grid cell that is a user-defined
fraction of the size of the original grid cell (Fig. 11). If this
new grid cell’s corners are three or more colors match-
ing those of the other contributing spheres, then the same
Voronoi vertex has now been found for this base sphere
and we can add this appearance to the sorting list. Oth-
erwise, we recursively create even smaller grid cells using
the same size reduction ratio, until we find the 3-color
grid cell or we reach a maximum depth of recursion.

Original
Grid Cell

New 
Grid Cell

Vertex on u-v
Parametric surface

Figure 11. Construction of the new grid cell.

After processing all incompletely matched vertices, we
sort the list again, and treat vertices found for all the con-
tributing spheres as Voronoi vertices. For any point that
still cannot be found for all of its contributing spheres, we
test if it is truly a Voronoi vertex as follows.We can always
find the sphere centered at this point and cotangent to all
its contributing spheres. If this tangent sphere intersects
or contains any other input sphere except its contribut-
ing spheres, the point is not a real Voronoi vertex and we
remove it from the sorting list. (These spurious Voronoi

vertices arise due to sampling errors.) For the full Voronoi
diagram, we output each distinct Voronoi vertex once.

6. Design of GPU framework

The computation of intersections and lower envelopes as
well as the calculation of Voronoi vertices are more time
consuming when the input data size increases, which
informs the direction of parallelism. Our algorithm is
well suited to GPU programming because it has high-
density sampling, making for arithmetically intensive
operations that can be parallelized, and at each sample the
calculation is relatively independent. The calculation of
intersections with bisectors and the minimum distances
depends only on the ray and the bisector, independent
of neighbor rays or other bisectors. The problem is then
reduced to a set of identical and independent distance
equations to be solved for high-density sample points.
Similarly, the numerical iteration is performed identically
and independently for each of the Voronoi vertices.

Fig. 12 diagrams the framework of our algorithm.
Serial operations done on the CPU are: reading input
spheres, sorting Voronoi vertices, processing incom-
pletely matched vertices, and plotting sample points and
vertices in OpenGL. Most of the implementation is done
on the GPU. There are seven kernel operations on the
GPU in total:

1. Transform Base Spheres.
2. Sample Rays.
3. Calculate Bisectors.
4. Lower Envelope.
5. Calculate Vertices.
6. Replace Vertices on Incorrect Sheets.
7. Transform Back.

Transform Base Sphere: This kernel function transforms
spheres according to the corresponding base sphere; each
base sphere has its own object space where it is located at
the origin. Let each base sphere be taken care of by one
thread.

Sample Rays: This kernel function samples the rays for
all spheres. Let each ray be taken care of by one thread.
Denote n as the number of input spheres, and S2 as the
number of samples per u-v domain. For each Voronoi
cell, there are 6S2 rays. For the whole Voronoi diagram,
there are (6S2 · n) rays and such that there are (6S2 · n)
threads on the GPU (see Section 3.1).

Calculate Bisectors: This kernel function calculates all
the bisector surface functions between each base sphere
and all other spheres. For each base sphere, there are
(n− 1) valid bisectors. There are n× (n− 1) bisectors in
total (see Section 3.2). Let each base sphere be taken care
of by one thread.
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Figure 12. GPU framework.

Lower Envelope: This kernel function includes the cal-
culation of finding intersection as described in Section
3.3 and then takes theminimum distance on each thread.
Each ray finds intersections with other bisector functions
on its thread.

Calculate Vertices: This kernel function finds the grid
cells containing the Voronoi vertices and then calculates
the vertices as described in Section 5. Let each grid cell of
the parametric surface be taken care of by one thread.

ReplaceVertices on Incorrect Sheets: This kernel func-
tion identifies the vertices on the incorrect sheets, and
rectifies them by additional rounds of iteration in their
corresponding grid cells with different start points (see
Section 5.3). Let each vertex calculated from the previous
step be taken care of by one thread.

TransformBack: This kernel function transforms back
the points on Voronoi faces and Voronoi vertices to the
regular Euclidean space according to the current base
sphere. Let each grid cell be taken care of by one thread.

There is overhead associated with the GPU, such as
allocating and deleting memory, and communication

Figure 13. Sampling rate vs. the number of vertices calculated.

between the CPU and the GPU. In our implementation,
there are allocation and deletion of rays and bisectors,
sample points, and vertices on the GPU, copying of input
spheres from the CPU to the GPU, and copying of sample
points and Voronoi vertices from the GPU to the CPU.

7. Results

Our algorithm to compute the Voronoi cells was run on
a PC with an Intel(R) Core(TM) 2 Quad CPU Q9400
@2.66GHz with 4.0 GB RAM and an NVIDIA Quadro
6000 graphics card. In our tests, we use a relative percent-
age as our tolerance ε for convergence (Eq. 10), specifi-
cally, 0.001%of the length of the diagonal of the bounding
cube of all spheres for each input.

Our algorithm is robust in handling special cases of
Voronoi vertices that arise with spheres not in general
position, such as arise with symmetrical input, as in the
cell in Fig. 1(a) with a degree-4 vertex. In addition to
such synthetic test cases (e.g. Fig. 1(a) and 1(b)), we
tested our implementation with several examples of each
of two types of protein structures from the protein data
bank [14]: PDB format and PQR format. In PDB for-
mat, atom spheres usually have different radii even for the
same element, whereas the PQR format includes hydro-
gen atoms that all have the same radii. The hydrogen
atoms greatly increase the presence of local symmetrical
patterns, which can lead to non-general position Voronoi
vertices.

Fig. 13 compares the number of Voronoi vertices for
the first Voronoi cell found by our implementation when
varying the sampling density for four different input pro-
teins in PQR format. For smaller protein molecules, a
30 or 40 sampling rate may be sufficient to discover its
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Table 1. Total computation time under different sampling rates. Running
time in seconds.

1al1-PQR 1crn-PDB 1crn-PQR 1bh8-PQR 1JD0-PDB
Sampling (217 atoms) (327 atoms) (642 atoms) (2161 atoms) (4195 atoms)

30*30 1.30 2.02 3.85 23.3 50.2
60*60 1.92 3.06 5.83 35.4 81.4
80*80 2.29 3.85 7.05 41.2 93.6
100*100 2.45 4.21 7.82 45.9 102

Voronoi vertices, but for proteins consisting of a large
number of atoms, the threshold is usually higher.

To test our ability to effectively build Voronoi dia-
grams for inputs of hundreds or thousands of spheres
and handle Voronoi vertices not in general position,
we selected protein “1JD0” under PDB format, protein
“1al1” and “1bh8” under PQR format, and protein “1crn”
under both formats. Table 1 shows the total running time
for computing theVoronoi cells for these proteins as sam-
pling density increases. Running times increase roughly
linearly with the number of input spheres (atoms), and
sublinearly with the number of sample rays, which are
processed in parallel on the GPU.

8. Conclusion

Wehave presented a new approach to calculatingVoronoi
cells of spheres that combines a sample-based, lower-
envelope approach with numerical iteration. The numer-
ical iteration allows us to calculate the geometry of the
vertices to amuch greater accuracy than the ray sampling
density. The lower-envelope calculations for sample rays
are able to exploit the parallelism of the GPU, and are
robust for non-general position input.
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