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ABSTRACT
In a previous research work, we introduced the concept of automatic mesh pre-optimization, also
referred to as a priori mesh adaptation. Indeed, the basic idea underlying mesh pre-optimization is
providing finite element analysis with meshes that have been adapted before analysis itself. It con-
sists in automatically derivingmesh sizing functions fromgeometric features of the analysis domain.
This allows providing the analyst with meshes that feature a certain degree of adaptation around
sensitive zones or sensitive shapes (high curvature zones, narrow regions, sources of stress concen-
tration, etc.) before any analysis, which also means before any a posteriori mesh adaptation. So far,
mesh pre-optimization could not be considered as a quantitative adaptation since it does not explic-
itly target accuracy objectives, contrary to a posteriori mesh adaptation methods. This paper brings
about new concepts in mesh pre-optimization that tend to make pre-optimization not only quali-
tative. It shows that, for 2D features, quantitative accuracy objectives in finite element analysis can
reasonably be met, without using a posteriori adaptation. The approach proposed is applied in the
context of plane stress analysis and it shows that user specified accuracyobjectives can automatically
be achieved at stress concentration locations. This improvement of mesh pre-optimization should
not be regarded as an alternative to a posteriori adaptation but as an efficientway to obtain accurate
preliminary FEA results, which is particularly interesting when evaluating design scenarios.
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1. Introduction

Despite the development of many alternative analysis
methods such as Element FreeGalerkinMethods [4], Iso-
geometric analysis [12] and XFEM methods [3], Finite
element analysis (FEA) [20] remains the most efficient
and versatile tool for solving a majority of engineering
problems. One of its most interesting features is that it
is now very well integrated inside CAD/CAM packages,
which makes it a key tool that is used by engineers at
nearly every stage along the product development pro-
cess. It also makes that it is used by more diverse actors
along this process, from very skilled analysts to early
stages designers and manufacturing people. In this con-
text, an important effort has been put towards reducing
time, efforts and skill required to produce analyses from
CAD models. Meanwhile, a significant effort has also
been put towards better controlling FEA accuracy. In this
direction, the development of a posteriori FEA error esti-
mation methods [11, 15, 22] is a cornerstone since it
allows quantifying the order of magnitude and spatial
distribution of FEA error and using this information to
automatically adapt FEA meshes so that the distribution
of FEA error remains under a user specified threshold
[22]. This adaptation process, referred to as a posteriori
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mesh adaptation, has become a common and useful tool
that is now integrated inside most CAD/CAM and anal-
ysis packages. When using a posteriori mesh adaptation,
an initial coarse mesh is gradually adapted through sev-
eral analysis and error estimation loops. At the end, the
initial mesh is locally refined and de-refined so that the
user specified level of accuracy is reached everywhere.
This process is very powerful but its major drawback is
that, since it is driven by error estimation, mesh refine-
ment occurs in zones that do not need to be refined,
such as around singularities and boundary conditions.
Also, it appears that providing the a posteriori mesh
adaptation loop with initial meshes that already feature
appropriate element size and element quality distribu-
tions has a very significant and positive impact on the
final result. This improves the accuracy of final results
and decreases the number of adaptation loops. Providing
the FEA with meshes that already feature mesh adapta-
tion in some specific zones, before any analysis, is referred
to as a priori mesh adaptation or mesh pre-optimization
(where pre stands for before analysis). If compared to
a posteriori mesh adaptation, a lot less research effort
has been put towards a priori mesh adaptation. Indeed,
even if a few approaches have been proposed in the
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literature [7, 13, 14, 16–19], it remains a very open field
of investigation. This is mainly due to the fact that a pri-
ori mesh adaptation is extremely ambitious and complex
in a general context. It involves automatically identify-
ing features that are likely to affect FEA accuracy (for
example geometric features that are source of stress con-
centration) and automatically applying appropriate mesh
adaptation strategies around these features. This typically

Figure 1. Influence of boundary conditions on stress
concentration.

involves using feature identification techniques com-
bined with knowledge synthesis, which are both complex
to implement and highly sensitive to the analysis context.
For example, in mechanical analysis, stress concentra-
tion not only depends on geometry but also on boundary
conditions. As illustrated in Fig. 1, the same hole in the
same part may be (Fig. 1a) or may not be (Fig. 1b) the
source of stress concentration, depending on the way it is
loaded.

The fact that, at this point, all approaches to a priori
mesh adaptation are qualitative is another major con-
cern. Indeed, contrary to a posteriori adaptation, a priori
mesh adaptation basically targets obtaining better FEA
results than when using coarse meshes, without explic-
itly quantifying FEA accuracy objectives.We have shown
in a previous paper [5] that a quantification of a priori
adaptation can be foreseen, which means that a priori
adaptation can reasonably meet a user specified degree
of accuracy in FEA results. This first study was limited
to a priori mesh adaptation around through holes in
the context of plane stress analysis with linear triangu-
lar elements but the results obtained are very promising.
Fig. 2 shows an example of results obtained on a sam-
ple case. Fig. 2a presents the sample case considered
while Fig. 2b shows the triangular mesh obtained after
a priori mesh adaptation (in this case the FEA accuracy
objective δtarget is 10%). Fig. 2c shows the distribution
of von Mises stress derived from this mesh and Fig. 2d
finally illustrates a distribution of the “actual” FEA error

Figure 2. A priori mesh adaptation around holes and results derived (a) Geometry (b) Adaptedmesh (c) VonMises stress distribution (d)
“Actual” error distribution (in %).
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obtained with this mesh. This so called “actual” FEA
error is obtained from a reference von Mises stress dis-
tribution σ̃VM (x, y) that is computed using an extremely
refined quadratic mesh. Thus, σ̃VM(x, y) is assimilated to
the exact solution and the “actual” FEA error δ(x, y) is
calculated (in %) for a given FEA von Mises stress result
σVM(x, y) as:

δ(x, y) =
∣∣∣∣σVM(x, y) − σ̃VM(x, y)

σ̃VM(x, y)

∣∣∣∣ (1)

The objective of this a priori mesh adaptation is that
δ(x, y) ≤ δtarget at all stress concentration locations,
which is quite well achieved as illustrated in Fig. 2d.
Indeed, δ(x, y) values at stress concentration points
around the 5 holes are between 8.8% and 10.9% for
δtarget = 10%. Fig. 2d also shows that, out of these stress
concentrations zones, δ(x, y) exceeds δtargetat some loca-
tions. However this is not a problem in practice since
it always happens at locations where von Mises stress is
very low.

These preliminary results show that a priori mesh
adaptation around through holes, in the context of plane
stress analysis, can actually be quantitative and not only
qualitative. In this paper, we present an extension of this
first approach to other types of features. The main objec-
tive of this paper is showing that the methodology pre-
sented in [5] also applies to notches and shoulders. This
allows implementing a priori mesh adaptation for plane
elasticity problems in a more general context, for which
different types of features are mixed all together. This
paper is organized as follows. In section 2, we start intro-
ducing core principles on which our approach towards
quantitative mesh pre-optimization is based. In section 3
we present validation examples on cases with single fea-
tures followed by cases mixing different types of features.

The paper ends with a conclusion about perspectives of
future work.

2. Towards quantifyingmesh pre-optimization

2.1. Types of features considered

In this paper, as introduced above, we focus on control-
ling the FEA error around three types of features for
planar elasticity FEA simulations (plane stress is consid-
ered here but similar results can be obtained for plane
strain simulations). Note that plane problems are only
considered here to lighten FEAmodels used in the inves-
tigation. Consequently, results obtained cannot be used
as is in caseswhere 3D effects are not negligible. The three
types of features considered (through holes, notches and
shoulders) are source of stress concentration as illustrated
in Fig. 3. It is worth mentioning that, in this work, the
direction of loading andmore generally boundary condi-
tions (see Fig. 1) are not taken into account, whichmeans
that each feature considered will be the source of mesh
adaptation in all cases. It is also important to underline
that in this work, it is assumed that the type, location
and parameters of all geometric features considered are
known. The focus of this paper is indeed on a priori mesh
adaptation itself and not on feature identification meth-
ods that are necessary tomake the whole a priori adaptive
process completely automatic.

2.2. Investigation on references cases

As presented with details in [5], the first basic principle
underlying our mesh pre-optimization approach is find-
ing, for each type of feature considered, a quantitative
relationship betweenmesh sizing and FEA error for a ref-
erence case. The reference case considered for each type
of feature is illustrated in Fig. 4.

Figure 3. Three types of features (a) Through holes (b) Notches (c) Shoulders.
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Figure 4. Three reference cases (a) Through hole (b) Notch (c) Shoulder.

On each of these reference cases, a first finite ele-
ment analysis is performed using an extremely refined
mesh with quadratic triangles. The FEA solution derived
from these meshes is referred to, in this work, as a ref-
erence solution. In this paper, considering the dimen-
sions used, all reference solutions are computed using
meshes with 0.025mm quadratic triangles. Also, FEA
models used for all these analyses only considers half
the plate due to symmetry, as shown in Fig. 5. Von
Mises stress solutions (as shown in Fig. 5) derived from
these quadratic meshes are considered as close enough
to the exact solutions and they are noted σ̃VM(x, y). For
each reference case, at the stress concentration loca-
tion (xc, yc) we have σ̃VM(xc, yc) = σ̃

ref
VM . Then, sets of

finite element analyses are performed, on these refer-
ence cases, using meshes with constant size E(x, y) = E

and linear triangular elements. For each value of E a
new FEA stress distribution σVM(x, y) is obtained and
its value at the stress concentration location is EδZZ(x, y)
σVM(xc, yc) = σ

ref
VM .

From σ̃VM(x, y) and σVM(x, y) distributions, we can
compute the distribution of the (so-called) “actual” error
δ(x, y) as introduced in the previous section (see Fig. 6a
b and c). A different distribution δ(x, y) is obtained for
each element size used. δ(x, y) around each feature of
reference cases is illustrated in Fig. 6 for E = 0.15mm
and it is compared with the error as estimated using
the Zhu-Zienkiewicz [21] classical estimator δZZ(x, y). In
this comparison, the same color scale is used (between 0
and 12%). Of course these two error distributions can-
not be compared quantitatively since they are based on
completely different principles. Moreover, is constant per

Figure 5. FEA models and reference von Mises stress distributions σ̃VM(x, y) for reference cases (a) Through hole (b) Notch (c) Shoulder.
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Figure 6. δ(x, y) (a) (b) (c) and δZZ(x, y) (d) (e) (f ) for E = 0.15mm.

element, which is not the case for δ(x, y). However, the
interesting aspect of this comparison is that these two
error distributions are similar and that, for both dis-
tributions, the maximum error zone is not located at
concentration points but in very low stress zones.

Once computed “actual” error distributions for differ-
ent values of element size E, we assessed the relationship
between E and the actual error at stress concentration,
noted δref = δ(xc, yc). Quite surprisingly, we found that
δref = F(E) is linear for the three types of features (see
Fig. 7), which is extremely interesting and, as shown in

the next paragraphs, which opens the door to quantifying
a priori mesh adaptation.

Note that Eis taken between E = 0.05mm and E =
0.3mm. Indeed, for E > 0.3mm FEA results are not rep-
resentative because element size is too close to the radius
of reference features (R = 1mm). For E < 0.05mm,
results are not representative either because E comes too
close to element size used for the reference quadratic
solution (E = 0.025mm in this work).

We also showed in [5] that element arrangement and
element quality has a very important impact on linearity

Figure 7. Linearity between δref and E for the three reference cases (a) Through hole (b) Notch (c) Shoulder.
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between δref and E. Indeed, it appears that for good ele-
ment arrangements and good element quality (elements
with a shape that is as close as possible to an equilat-
eral triangle) linearity between δref andEis nearly perfect.
Another interesting aspect of our investigation on refer-
ence cases is that we found that the evolution of δ along
x axis (as defined in [5]) from the stress concentration
point also varies linearly with von Mises stress second
derivative ∂2σ̃VM

∂x2 .
Moreover, after investigating reference cases (with

R = 1mm) we found that they can be extrapolated to
other radii using a simple proportional law. It appears
indeed that, for two cases with the same fraction E

R , δat
concentration point is very close if there are no side
effects. Side effects are well known and can indeed be
observed if a hole radius for example is not small enough
if compared to the plate width.

2.3. A new approach to automatic mesh
pre-optimization

2.3.1. Automatic mesh pre-optimization around the
three types of features

These three observations (linearity between δref and
E, linearity between δ(x) and ∂2σ̃VM

∂x2 and linearity with
radius) can then be extrapolated to derive sizing func-
tions around these three types of features that allow tar-
geting quantitative FEA accuracy at concentration points
for any radius. However, mesh sizing functions con-
strained by requirements related to element quality. In
general, setting up good a priori mesh sizing functions
relies on making a compromise between element size
and element shape. The ideal triangular shape for obtain-
ing the most accurate FEA results is generally equilateral
but this comes in contradiction with mesh size variation.
Different approaches can be used to make the best com-
promise between size and shape. One efficient and easy
way to handle this problem is applying a threshold on
the size map gradient ‖ �∇E(x, y)‖, which is the solution

used in this work. We investigated different solutions
to take all these constraints into account, among which
using non-linear sizing functions based on ∂2σ̃VM

∂x2 mixed
with a threshold on ‖ �∇E(x, y)‖ (see [5] for more details).
After many tests, we finally came to the conclusion that
accurate results can be achieved using a more simple
approach, based on linear sizing functions mixed with
influence zones. We introduced the concept of influence
zones in a previous work about qualitative mesh pre-
optimization [7]. This basically consists in assuming that
themajor influence of a given stress concentration feature
Aion FEA results is confined inside a zone surrounding
this feature. From this assumption, mesh sizing functions
are built over simulation domains based on the following
principles:

• Outside all influence zones, the mesh sizing function
is constant: E(x, y) = Eg

• Inside an influence zone Ai, E(x, y) linearly increases
with distance d to the feature associated with the influ-
ence zone. This variation is noted Ei(d).

• Since Ei(d) is linear while ∂2σ̃VM
∂x2 is not, an averaging

coefficient is applied.
• At locations where several influence zones overlap, a

compromise must be made between these influence
zones.

• E(x, y) must be continuous and smooth enough to
avoid bad element quality.

In this work, the influence zone of a given featureAi with
radius Ri is defined as the set of points that are closer
to the feature than an influence distance (or scope) �i.
This makes that influence zones associated with the three
types of stress concentration features considered (holes,
notches and shoulders) are defined as illustrated in Fig. 8.

Inside the influence zone of a given feature Ai (with
radius Ri), Ei(d) the mesh sizing function at distance
d toAi is defined based on the accuracy target δtarget,
on Ri, and on linear variations obtained in Fig. 7.

Figure 8. Influence zones for the three types of features.
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For reasons introduced above, keeping the gradient
‖ �∇E(x, y)‖ under a threshold allows ensuring that the
transition between lower element size and higher ele-
ment size is smooth enough so that it has a limited effect
on element quality. After many experiments, we came to
imposing ‖ �∇E(x, y)‖ = 1

4 inside of all influence zones,
which imposes the slope of Ei(d) since it is linear. It is also
worth noting that.in this work, the accuracy targetδtarget
is the same for all features in a part, which means that
if δtarget = 10% for example, we target that the “actual”
FEA error δ(x, y)(see equation 1) should not exceed 10%
at any stress concentration locations in the part.

Thus, Ei(d) is practically defined as:

Ei(d) = 1
4
.d + α.Ri.δtarget for d ≤ �i

Ei(d) = Eg for d ≥ �i (2)

with �i = 4.(Eg − α.Ri.δtarget) Thus, the two principles
on which the variation of mesh size around a given fea-
ture Ai is based are

• Mesh size is Ei(0) = α.Ri.δtarget on the feature
• Mesh size increases linearly with a 1

4 slope to reach
Ei(d) = Egat distanced = �i.

Since Ei(0) and �i vary with Ri, they are different for
each feature. Parameter α is calculated from the linear
relations obtained for each type of feature in Fig. 7. A
close look at Fig. 7 shows that parameterα is slightly dif-
ferent for each type of feature. Consequently, we could

have considered a different α for each type of feature.
However, since αvalues are close enough, we consid-
ered the same value α = 0.875 for the three types of
features. Of course, this choice is based on considering
the worst case. Outside influence zones of features, mesh
size is constant and equal to Eg . The computation of Eg
is automatic and it is taken as the mean value of ele-
ment size specification at distance Ri from each feature.
Thus, for a part with N features Ai, Eg is automatically
calculated as:

Eg = 1
N
.

N∑
i=1

(
1
4
.Ri + α.Ri.δtarget

)
(3)

2.3.2. Automatic mesh pre-optimization for 2D parts
in general

Given a 2D part and an accuracy target δtarget, mesh pre-
optimization is fully automated:

• Step1: Features Ai and associated radii Ri(i = 1 . . .N)
are first automatically identified on the geometric
model, which is quite simple since we consider 2D
parts.

• Step 2: Mesh size outside influence zones Eg is calcu-
lated from equation 3

• Step 3: Scope of influence zones�i andmesh size vari-
ation Ei(d) inside each influence zone are calculated
from equation 2. At any location where two (or more)
influence zones overlap, the minimum size provided
by overlapping mesh size specifications is considered.

Figure 9. δ(x, y) (a) (b) (c) and δZZ(x, y) (d) (e) (f ) for δtarget = 10%.
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• Step 4: The size map is stored across the whole part
using a background grid (see reference [5])

• Step 5:Automaticmesh generation is performed based
on the size map

3. Pre-optimization validation tests

3.1. Implementation

The proposed method is implemented in a Linux based
CAD-FEA research platform developed by our team [6,
8, 9]. This platform integrates 3D modeling, analysis and
topology optimization capabilities. It is based on C++
code, on Open CascadeTM libraries [2] and on the use

of Code_AsterTM [1] as FEA solver. In this paper we
use GmshTM [10] for visualizing meshes, size maps, FEA
results and error distributions.

3.2. Results for the three reference cases

The a priori mesh adaptation strategy described in
the previous section is first applied on the three ref-
erence cases. Fig. 9 first illustrates distributions of the
“actual” and estimated errors δ(x, y) and δZZ(x, y) for
δtarget = 10%.

Here again, it clearly appears that the “actual” FEA
error δ(x, y) is around δtargetat stress concentration
locations and that both errors are maximum in zones

Figure 10. Results on reference cases for δtarget = 5%, 10% and 20%.

Table 1. Synthesis of results after pre-optimization at stress concentration points for reference cases.

δ(xc , yc) δ(xc , yc) δ(xc , yc) δ(xc , yc)
σ̃VM (xc , yc) δtarget = 3% δtarget = 5% δtarget = 10% δtarget = 20%

Hole (R= 1mm) 3,05 Pa 1,6% 4,3% 8,5% 15,4%
Notch (R= 1mm, H= 2mm) 4,08 Pa 2,5% 3,9% 7,6% 14,7%
Shoulder (R= 1mm) 2,49 Pa 3,2% 5,4% 10,5% 18,8%
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where von Mises stress is very low. Then, Fig. 10 shows
meshes obtained after a priori mesh adaptation for three
accuracy objectives (5%, 10% and 20%) and Tab. 1 sum-
marizes results for the “actual” FEA error at stress con-
centration points δ(xc, yc) for these three objectives. It
appears that the accuracy targetδtarget is met in general
even if δ(xc, yc) is slightly over the objective for the shoul-
der in three cases. This shows that, using the approach
as presented in section 2.3, pre-optimization is not only
qualitative and that quantitative accuracy targets can rea-
sonably be met at stress concentration locations.

3.3. Results for single features

3.3.1. A first set of results with single features
Our a priori mesh adaptation strategy is then applied
on single features for which geometric parameters (radii
for holes and shoulders and radius/length for notches)

are modified from reference cases. In these cases, plate
length and width along with boundary conditions are
kept the same. Thus the only modification is applied
on dimensions of features themselves. The three features
considered below are a hole with R = 2mm, a notch
with R = 2mm andH = 4mm and a shoulder with R =
2mm. Fig. 11 presents reference von Mises stress distri-
butions alongwith pre-optimizedmeshes and FEA errors
(δ(x, y) and δZZ(x, y)) with accuracy objective δtarget =
10% for the three cases. The color scale considered for
Fig. 11c and Fig. 11d is 0–10%. For Fig. 11a the color
scale varies since maximum reference von Mises stress is
different for each feature as shown in Tab. 2. Tab. 2 also
summarizes for the “actual” FEA error at stress concen-
tration pointsδ(xc, yc)for these three cases with various
accuracy objectives. These results confirm that accuracy
targets can reasonably be met at stress concentration
locations.

Figure 11. Results for R= 2mm (and H= 4mm for the notch) and δtarget = 10% (a) Reference stress distribution σ̃VM(x, y) (b) Pre-
optimized mesh (c) δ(x, y) (d) δZZ(x, y).

Table 2. Synthesis of results after pre-optimization at stress concentration points for other feature dimensions.

δ(xc , yc) δ(xc , yc) δ(xc , yc) δ(xc , yc)
σ̃VM (xc , yc) δtarget = 3% δtarget = 5% δtarget = 10% δtarget = 20%

Hole (R= 2mm) 3,22 Pa 0,9% 4,3% 8,7% 11,2%
Notch (R= 2mm, H= 4mm) 4,29 Pa 2,6% 3,7% 7,8% 14,1%
Shoulder (R= 2mm) 1,98 Pa 3,1% 4,6% 9,1% 15,6%
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3.3.2. A second set of results for various notch
parameters

In the next example pre-optimization is applied to
notches with different ratio H

R . H = 3mm for the first
case, H = 4mm for the second case, R = 1mm H =
5mm for the third case and H = 5mm for the fourth
case. Like in previous cases, δtarget = 10% has been con-
sidered as accuracy target. Reference vonMises stress dis-
tributions, pre-optimizedmeshes and FEA errors (δ(x, y)
and δZZ(x, y)) are presented in Fig. 12 for these four new
cases with a 0–10%. color scale for c and d. Here also, the
color scale in Fig. 12a varies since maximum reference

von Mises stress is different for each notch as shown
in Tab. 3.

Results for the “actual” FEA error at stress con-
centration points δ(xc, yc) are summarized in Tab. 3.
These results illustrate that accuracy target is met at
stress concentration locations for all notch dimen-
sions. This is due to the fact that, as mentioned in
section 2.3, a unique parameter α = 0.875 has been
chosen for all types of features, based on a worst
case logic, which makes that results are, in general,
likely to be worse for shoulders and holes than for
notches.

Figure 12. Results for various various notch H
R ratio and δtarget = 10%.

Table 3. Synthesis of results after pre-optimization at stress concentration points for various notch H
R ratio.

δ(xc , yc) δ(xc , yc) δ(xc , yc) δ(xc , yc)
σ̃VM (xc , yc) δtarget = 3% δtarget = 5% δtarget = 10% δtarget = 20%

Notch (R= 1mm, H= 3mm) 4,92 Pa 2,5% 3,7% 7,2% 13,7%
Notch (R= 1mm, H= 4mm) 5,71 Pa 2,5% 3,7% 7,2% 13,7%
Notch (R= 1mm, H= 5mm) 6,50 Pa 1,1% 3,5% 6,9% 13,2%
Notch (R= 1.5mm, H= 5mm) 5,46 Pa 2,4% 3,9% 4,7% 14,7%
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3.4. Results formultiple features

3.4.1. A first case withmultiple features
We consider now a first case with the three types of fea-
tures. Geometry is illustrated in Fig. 13 and it shows that
the part features two notches, one shoulder and three
holes with various radii. In this figure, features are num-
bered (between 1 and 6) for reference. Like for previous
validation cases, a first finite element analysis is per-
formed using an extremely refined mesh with quadratic

triangles (E = 0.025mm like in previous cases). The FEA
model used for all analyses on this case alongwith the ref-
erence vonMises stress distribution σ̃VM(x, y) are shown
in Fig. 14. In Fig. 14, the color scale is adjusted (between
0 and 8 Pa) so that all stress concentration zones can be
seen.

Fig. 15a and Fig. 15b showmeshes generated using the
adaptation schemeproposed in this paper for respectively
δtarget = 10% and δtarget = 20%. Like in validation cases

Figure 13. Geometry for the first case with multiple features.

Figure 14. FEA model and reference von Mises stress σ̃VM(x, y) for the first case with multiple features.
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with single features, distributions of actual (middle fig-
ures) and estimated (lower figures) FEA errors δ(x, y) and
δZZ(x, y) are shown for these two accuracy objectives in
Fig. 15 (note that the color scale is adapted to accuracy
objectives). A close look at stress concentration zones in
Fig. 14 and at the two distributions of δ(x, y) in Fig. 15
globally show that accuracy objectives are met at stress
concentration points and that maximum error occurs
where vonMises stress is very low. The fact that accuracy
objectives are globally met is confirmed by the synthesis
of results presented inTab. 4where the “actual” FEA error
at stress concentration points δ(xc, yc) is provided for

each feature (from1 to 6 as illustrated in Fig. 13). All these
results confirm conclusions made in the previous section
for single features. Indeed, even if the accuracy objective
is slightly exceeded in some cases (results for which δtarget
is exceeded by more than 10% are in red in Tab. 4), the
general trend of results shows that using such a mesh siz-
ing function allows “a priori” controlling the FEA error
around stress concentration points for sets of features
in general, which is very powerful and very promising.
Tab. 4 shows that results globally tend to be worse for
lower accuracy objectives, which can be explained by the
fact that for lower accuracy objectives, the mesh size gets

Figure 15. Results for the first case with multiple features (a) δtarget = 10% (b) δtarget = 20%.

Table 4. Synthesis of results for the first case with multiple features.

δ(xc , yc) δ(xc , yc) δ(xc , yc) δ(xc , yc) δ(xc , yc) δ(xc , yc)Feature
number σ̃VM (xc , yc) δtarget = 3% δtarget = 5% δtarget = 10% δtarget = 15% δtarget = 20% δtarget = 25%

1 17.1 Pa 3,6% 4,7% 8,3% 11,5% 15,1% 17,6%
2 7,6 Pa 4,2% 6,1% 10,7% 14,3% 19,1% 22,8%
3 1,9 Pa 2,6% 4,7% 9,1% 13,3% 16,0% 19,4%
4 4,9 Pa 4,5% 6,1% 10,9% 16,0% 19,3% 22,8%
5 3,3 Pa 3,3% 5,0% 8,9% 12,8% 16,0% 19,1%
6 3,4 Pa 3,8% 5,6% 9,4% 13,0% 16,1% 19,0%
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closer to that used for reference von Mises stress distri-
bution, and that consequently the unavoidable difference
between reference von Mises stress distribution and the
exact distribution has proportionally a higher impact.

3.4.2. Feature interference and side effects
Interference between features and side effects are part of
the major problems that can be faced with the approach
proposed in this paper and with a priori mesh adapta-
tion in general. For all cases presented above, FEA results
around a given feature are neither influenced by other

neighboring features nor by vicinity with boundaries. In
Fig. 16 the geometry of the previous validation case is
modified to illustrate these effects. The location of two
holes (holes 4 and 5) is changed so that hole 4 is closer to
notches 1 and 2 and so that hole 5 is closer to the bound-
ary. Reference von Mises stress distribution σ̃VM(x, y)
and the FEA model are shown in Fig. 17. Note that the
same color scale has been used for Fig. 14 and Fig. 17 for
comparison and that the reference stress distributionwell
illustrates the interference between hole 4 and notches 1
and 2 and the side effect for hole 5.

Figure 16. Geometry for the second case with multiple features.

Figure 17. FEA model and reference von Mises stress σ̃VM(x, y) for the second case with multiple features.
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Fig. 18a and Fig. 18b show meshes generated using
the adaptation scheme proposed in this paper for respec-
tively δtarget = 10% and δtarget = 20% and distributions
of actual (middle figures) and estimated (lower figures)
FEA errors δ(x, y) and δZZ(x, y)for these two accuracy
objectives.

The synthesis of results in Tab. 5 first shows that,
as expected, the maximum reference von Mises stress
σ̃VM(x, y) increases for features 1,2,4 and 5 since stress
distribution around these four features is clearly affected
by changes made to the geometry. These results confirm
that results globally tend to be worse for lower accuracy
objectives.

However, these results also clearly illustrate that
results are strongly and negatively affected by feature
interference and side effects. Indeed, several results for
features 2,4, and 5 show differences with accuracy objec-
tives that are over 40% (in bold underlined while for
results in red the objective is exceeded by 10%). This
does not call into question the whole methodology but
they enlighten that achieving better results in the case of
feature interference and side effects would require fur-
ther processing. A simple, but approximate, approach
to decreasing δ(xc, yc) would be to apply a factor γ

(with γ < 1) to coefficient α in equation 2 to features
that are subject to feature interference and side effects.

Figure 18. Results for the second case with multiple features (a) δtarget = 10% (b) δtarget = 20%.

Table 5. Synthesis of results for the second case with multiple features.

δ(xc , yc) δ(xc , yc) δ(xc , yc) δ(xc , yc) δ(xc , yc)Feature
Number σ̃VM (xc , yc) δ(xc , yc) δtarget = 5% δtarget = 10% δtarget = 15% δtarget = 20% δtarget = 25%

1 28.8 Pa 3,3% 5,3% 10,3% 14,3% 21,0% 22,0%
2 12,4 Pa 6,3% 9,6% 15,9% 22,8% 28,4% 33,9%
3 1,4 Pa 3,4% 5,5% 9,9% 14,3% 17,8% 21,2%
4 12,8 Pa 5,8% 9,0% 16,9% 23,0% 30,1% 33,5%
5 6,21 Pa 5,3% 7,5% 14,7% 18,4% 23,6% 27,3%
6 3,4 Pa 3,8% 5,6% 9,4% 13,0% 16,2% 19,1%
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This would first require detecting feature interference
and side effects, based on distance between features
(for feature interference) and distance between holes
and the boundary (for side effects). Then, it is obvi-
ous that factor γ should decrease as distance between
features and distance with the boundary decrease. How-
ever, using this approach would minimize the prob-
lem only and would not guarantee quantitative results
for δ(xc, yc). A further approach to solving problems
due to feature interference and side effects would be
using a similar approach to the one used for single fea-
tures, which means applying the approach to reference
cases with two features and do a quantitative study of
the effect of distance between these two features on
δ(xc, yc).

4. Conclusion

The proposed methodology shows that quantitative
results can be achieved in a priori mesh adaptation,
which brings about interesting perspective with respect
to the practical use of FEA, especially in early design
stages along product development processes. It is a first
step towards quantitative mesh pre-optimization and
improvements can be foreseen either for achieving better
results or for extending its fields of application. Further
research is namely necessary to take into account feature
interference and side effects and to extend the method
to other types of features (slotted holes of V notches
for example). However, for any feature for which δref =
F(E) is linear, the same methodology can be success-
fully applied. Another potential extension of this work is
extending it to 3D elasticity problems. Indeed, as shown
in [5], the a priori adaptation method presented in this
paper can only be applied to 3D problems for which
thickness effects are negligible. For 3D elasticity prob-
lems in general, further investigations are necessary but
the same methodology can be used. The extension of the
approach to other types of physical problems (thermal,
CFD, electromagnetics, etc.) also represents a natural
subject of research.
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