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ABSTRACT
While machining width is an important factor of the machining time of freeform surface finishing
operations, in reality the kinematic capability of themachine tool is usually the bottleneck of achiev-
ing higher feed speed and optimal machining time. The purpose of this paper is to conveniently
(and approximately) determine the optimal cut direction considering the speed kinematic capabil-
ity of themachine tool, without having to compute the actual tool path.We propose amathematical
instrument, called Machine Kinematic Metric (MKM), to easily evaluate infinitesimal machining time
on a freeform surface based on machine kinematic consideration. It’s a tensor field similar to the
metric tensor in differential geometry. MKM is integrated over the part surface to approximate the
cut-direction-dependent totalmachining time, and used to determine the optimal cut direction that
minimizes the machining time. To validate the accuracy of the prediction using MKM, we apply the
method and compute the machining time at every direction with one degree apart and derive the
optimal cut-direction. The computation is performed on two examples: a simple freeform surface
and a complex die face model. We then use a commercial CNC emulator software from Huazhong
CNC to precisely simulate themachining time in distributed cut directions (five degree apart) for the
two models. We find that the optimal cut direction determined from CNC simulation is consistent
with the prediction from the proposed method. It validates that the proposed method is a conve-
nient and economical tool to approximately determine the optimal cut direction based onmachine
speed kinematic capability.
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1. Introduction

Freeform surface machining executed by Computer
Numeric Controlled (CNC) machine tools plays an
important role in the process of bringing new products
to the market. Many production parts, from automo-
tive body panels, consumer electronics, to plastic toys,
are made out of dies and moulds in mass-production
manufacturing. A typical freeform surfaces is defined
as B-spline surface or tessellated model [17], with arbi-
trary trimmed boundary. Die and mould faces usually
consist of freeform surfaces and hence freeform surface
machining is critical to die/mould making, especially
the finishing work step, and the mass production using
die/moulds.

Freeform surface finishing processes, including that of
die/mould face, are measured in two aspects: the quality
of the parts and the efficiency of the process. The part
quality requirements include accuracy (shape precision)
and surface quality (roughness). The process efficiency
is measured in machining time and tool/machine wear.
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Given the available equipments (machine tools, cutters,
and controllers) in the shop floor, the cutter path (tool-
path) used to perform a machining plays the major role
in determining the quality and efficiency of the freeform
surface finishing process.

Computer Aided Manufacturing (CAM) technology
is widely used to obtain quality tool paths (Cutter Loca-
tion trajectories) that are further post-processed to CNC
machining programs (G-Codes). Iso-planar (parallel or
pseudo-parallel) tool paths are most widely used for
freeform surface finishing, due to the advantage of sta-
ble tool paths and predictable results. Typical commercial
CAM systems compute iso-planar tool paths based on
user-input process parameters, including scallop height,
path tolerances, and cut direction (a.k.a. feed direction).
Each one of these process parameters affects the above
mentioned process quality and efficiency.

Among the process parameters, scallop height (related
to machining width) and path tolerances (related to step
size) are intuitive and can be determined easily. On the
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other hand, the choice of cut direction is highly com-
plicated. It has direct influence on process quality and
efficiency (more on this in the following paragraphs) but
the effect depends on the part shape and is difficult to
analyse and predict. In current state-of-art, the selection
of cut direction is mainly based on experiences and time-
consuming try-and-improve. Modern CAM systems do
not provide a solution to automate the cut direction
selection. There is also no existing scientific method to
validate if the chosen cut direction is optimal.

The requirements of part quality and process effi-
ciency compete with each other. The common thought
process is to first fix the part quality as a constraint then
optimize the process efficiency. The reason is that the
minimal requirement of quality cannot be violated and
hence is a hard constraint. The remainder of this paper is
limited to the optimization of process efficiency, namely
the machining time, with a predetermined quality con-
straint.

Many factors affect total machining time and the two
most important are machining width and machine kine-
matic capabilities. Wider machining width (without vio-
lating the surface roughness constraint) leads to less
number ofmachining passes and shorter tool path length,
which leads to shorter machining time. In addition, the
machining time is related to how fast the machine tool
axes can move. The instantaneous speed of the machine
axes is limited by the kinematic capabilities, that is, the
maximal (peak) velocity and acceleration load of each
axis.

While machining width with geometric consideration
is an important factor of machining time, in reality the
kinematic capability of the machine tool is usually the
bottleneck of achieving higher feed speed and optimal
machining time. The feed speed is handicapped when
the feed direction coincides with the slowest axis of
the machine tool. In addition, the acceleration limit of
the feed axes could also suffocate the feed speed espe-
cially when the dynamic property of the machine tool is
mediocre.

Acceleration, jerk, and axis speed are the main aspects
of the kinematic capability of a machine tool. Among
these factors, we focus on the axis speed in our research.
The jerk and acceleration limits of the machine are
managed by the CNC internal interpolation and speed
planning algorithms. Whatever we do in an offline opti-
mization based on acceleration or jerk, the results are
modified by the CNC. There are several kinematic rea-
soning methods from past literature, but we don’t know
which method is used by the CNC, or even if the com-
mercial CNC follows any one of the published methods.
Thus it’s almost impossible to validate the offline acceler-
ation or jerk optimization without knowing the internal

algorithms of the CNC. We believe that the effective
acceleration and jerk optimizationmust be done with the
combination of offline and online (CNC) methods. Due
to the amount of work, this paper is limited to offline
optimization, considering only the axis speed limits.

The purpose of this paper is to compute the optimal
cut direction considering the kinematic speed capabil-
ity of the machine tool. Our goal also covers getting the
answer (optimal cut direction) quickly without having
to compute the tool path - computing tool paths is time
consuming especially computing multiple tool paths for
various cut directions is not feasible in practice.Wederive
themathematical framework to formulate themachining
time in terms of the axis speed capability and cut direc-
tion, and then compute the optimal cut direction that
minimizes the machining time.

We must note the optimization of five-axis machining
in general is a multi-objective problem, and influenced
by great amount of factors (or constraints). These factors
come from the workpiece geometry, tool path geometry
properties, machine performances, and even costs. This
paper aims to provide a new methodology to incorpo-
rating machine kinematics performance into tool path
optimization, so simplify the formulation process, we
only chose machining efficacy as a single objective, and
speed limits of machine as constraints. In future work,
the multiple objective optimization solution of five-axis
machining with more constraints will be addressed.

The next section provides an overview of previous
works that are related to the presented study. Sections
3 and 4 establish the main mathematical model, named
Machine Kinematic Metric (MKM), for path trajecto-
ries and surfaces, respectively. MKM is a differential
geometry-based mathematical instrument for comput-
ing machining time, like metric tensor to compute dis-
tance, hence the naming of “metric.” Section 5 presents
a numerical method derived from MKM to compute
(approximate) the machining time on workpiece sur-
faces, while section 6 explain how to use this numerical
method to compute machining time and derive the opti-
mal cut direction on freeform surfaces. Section 7 presents
two test cases being used to perform simulation experi-
ments and validate the reliability and usability of the pro-
posedmethod. The summary and conclusion are listed in
the final section.

2. Related works

The relevant works published previously are orga-
nized into the following subsections for easy reference.
Freeform surfacemachining is a general subject and there
are vast number of papers in this area. In the first subsec-
tion, we made a partial list of the publications that are
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more closely related to our work. Optimal cut direction
based on machining width is not the focus of our work
but has similarity in terms of the methodology. We cover
the relevant references in the second subsection.Machine
kinematic capability optimization is our main focus and
the references of previous contributions are listed in the
third subsection. The mathematical instrument of fields,
including scalar, vector, and tensor fields, is used in some
of the previousworks in freeform surfacemachining. The
use of fields is essential to our approach and we present
the field-based works in the fourth subsection. A sum-
mary and discussion of the listed references is given in
the last subsection.

2.1. Freeform surfacemachining

Numerous researchers in the last two decades made sig-
nificant contributions to the topic of tool path genera-
tion for free form surface machining. Traditionally iso-
parametric and iso-planar methods have been used for
the tool path generation [7]. Afterwards many methods
were developed to improve the machining quality and
efficiency, such as curved curvature matched machin-
ing [3], iso-phote basedmethods [6], configuration space
methods [20],region based tool path generation [5], etc.

Many researchers worked on tool axis/orientation
computation in 5-axis machining. The two rotary axes
allow the flexibility to avoid collision/gouging and con-
trol the cutting condition during machining. However
the additional freedom from the rotary axes makes the
5-axis machining much more complicated than 3-axis
machining. Interference avoidance and smooth tool ori-
entation transition are the two key subjects in five-
axis tool path generation. Researchers reported C-space
based tool orientation methods [13], rolling ball method
(RBM) [9], arc intersect method (AIM) techniques [10],
and tool orientation smoothing algorithms [1].

2.2. Machiningwidth optimization

On top of tool path computation strategies and methods,
it is important to improve the efficiency of machining. In
general, the approaches to increase the machining effi-
ciency in freeform surface machining could be classified
into tool path length reduction and optimal feed speed
assignment.

Wider machining strip width leads to less machining
passes which also means shorter tool path length. Effec-
tive cutting shape (ECS) and effective cutter radius (ECR)
were used to increase the machining strip width in tool
path optimization [21]. They concluded that the increase
of machining strip width is induced by the matching of
ECR with the surface normal curvature. Other methods

to obtainmaximization ofmachining strip include curva-
ture matched method, adaptive space-filling curve (SFC)
method [22], interference-free tool orientation optimiza-
tion [12], and machining potential field method [3].

2.3. Kinematic capability optimization

Several previous works considered machine tool kine-
matic capabilities in the CAM stage to achieve opti-
mal feed speed. The tool path generated and optimized
in CAM with only geometrical consideration could not
guarantee a superior machining efficiency because the
actual feedrate assigned by the controllermust respect the
machine tool’s physical performance constraints.

Kim [14] provided a time-optimal tool path gener-
ation method by considering the speed limits of the
machine axes and the surface finish requirements. Beu-
daert [1] provided a tool path smoothing algorithmbased
on the maximum reachable feedrate by considering the
velocity, acceleration and jerk limits of each drive. The
proposed algorithm starts from a given tool path and iter-
atively smoothes the joint motions in order to raise the
real feedrate. Hu and Tang [11] proposed a concept called
machine-dependent potential field (MDPF), which char-
acterized the relationship between the material removal
rate and the feed direction with considering the kine-
matic constraints of the machine’s axes. Based on the
MDPF, the optimal direction is searched which has the
maximal MDPF value and a so-called principal MDPF
curve can thus be traced out along the optimal direction
of each point. With the principle MDPF curve, a region
by region tool path generation method is proposed sim-
ilar to that in [3]. Tool path generation in this way is a
compromise between the machining efficiency and the
uniformness of the tool path pattern.

2.4. Field basedmethods

Several authors used scalar and vector fields to gener-
ate smooth tool paths. The work in [8] issued a patent
to produce spiral tool path for blade milling. The patent
uses an imaginary electrical potential field to generate
auxiliary lines for constructing a spiral two-dimensional
guild path. Makhanov [19] transformed the formulation
of a tool path to a curvilinear coordinate system on the
surface with the elastic deformation being minimized.
It involves solving two scalar fields. Bieterman [2] and
Chuang [4] used path scalar fields to represent the tool
path pattern to optimize the smoothness of the tool path,
he optimization is achieved by solving an Elliptic PDE as
a boundary value problem. The formulation of Bieterman
and Sandstrom method lacks of metric tensor and is not
covariant. The Chuang and Yang method is independent
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of the surface parameterization, but is limited to 2D
planar surfaces only.

Several vector field based methods were used to
achieve other optimization requirements besides tool
path smoothness. Chiou [3] used a vector field to repre-
sent cut directions with locally optimal machining width.
The final toolpath is computed from the optimal cut
direction field via a greedy method. Kim [14] provide a
tool path generation method by considering the speed
limits of the motors and the surface finish requirements.
The final tool path is generated by fitting a continuous
vector field from the greedy solution. Hu and Tang [11]
applied a direction field to optimize the feed direction
based on material removal rate and the speed and accel-
eration limits of the machine’s axes. The direction field
is equivalent to a unitized vector field and the solution is
also based on greedy method. Kim [15] established a dif-
ferential geometry framework of sweeping path problems
by using vector field. The solution was obtained using a
greedy method instead of formal optimization.

Tensor fieldwas used inKim [16] to generate iso-cusp-
height tool paths. First, Kim [16] defined a Riemannian
manifold by assigning a new metric to a part surface.
The new metric is constructed from the curvature ten-
sors of a part and a tool surface, and referred as cusp
metric. Then, geodesic parallels ware constructed on the
newRiemannianmanifold. The constant cusp height tool
paths were built by a selection from such a family of
geodesic parallels.

2.5. Summary of relatedworks

As overviewed in the earlier subsections, Kim [14] used
vector field as the mean to compute the tool paths that
optimize the machine kinematic performance. It com-
putes a greedy vector field that represents the locally-
optimal-kinematic-performance tool path. However, this
greedy vector field is not continuous and not suitable to
construct the actual tool path. The solution proposed in
the paper is to use fitting technique to construct a glob-
ally continuous vector field that approximates the greedy
vector field. The resulting fitted vector field may not be
globally optimal, since the target cost function of the fit-
ting process is based on the fitting error, not the desirable
machine kinematic performance.

The above method exposes a limitation of vector
field: a vector field represents the locally-optimal solu-
tion - a single direction at each location. However, a
globally-optimal solution do not always satisfy locally
optimization - it has to compromise the local optimiza-
tion with global continuity and consistency considera-
tions to achieve the global optimal solution. It becomes
problematic to construct the objective function when

the globally-optimal direction deviates from the locally-
optimal direction.

To overcome this difficulty, we apply (rank-2) tensor
field instead. To compute the global optimal solution,
we need a convenient mathematical tool to construct the
objective function in every possible machining direction
at every location on the workpiece surface. Vector field
can be used to represent the quantity in a single direction
but not every direction. Hence, we choose the mathe-
matical tool of tensor, which incorporate the quantitative
measure in every direction, instead of a single direction.

Several previously mentioned papers use vector field
as well, they have to rely on locally-optimal greedy solu-
tion to derive a global solution in an ad-hoc fashion
without the formal optimization.

Kim [16] published a different paper that illustrated
the power of tensor field. This work applied tensor field
to scallop height computation but didn’t cover the topic
of optimal kinematic performance.

Another example of tensor field usage is in Liu [18]
that provided a new region-based tool path generation
method by introducing a tensor field to evaluate the
machining strip width using ball end mill. This refer-
ence also didn’t cover the optimal kinematic performance
problem.

Summarizing the previous works, we conclude the
lack a mathematically rigorous approach to address the
problem of computing tool paths with globally-optimal
machine kinematic performance. In this paper we aim at
deriving such mathematical framework based on differ-
ential geometry, especially the use of tensor fields.

3. Machine kinematic metric of a tool path

We first describe the mathematical background of the
problem. In order to optimize the finishing tool path pat-
tern on a given freeform surface, we need to find the
cut direction that minimizes the inverse cutting velocity
square:

ρ = 1
V2 =

(
dt
d|X|

)2
(3.1)

Keeping the cutting distance d|X| unitized, the mini-
mization target becomes (dt)2, the infinitesimal cutting
time square, which varies with different cut direction. To
be more specific, we need to find an instrument that can
be used to compute (dt)2 for every given cut direction
at every location on the part surface, from which we can
then find the cut direction that minimize ρ at every loca-
tion on the surface. The instrument for computing (dt)2
has to be a field over the part surface and a tensor such
that the value is sensitive to the direction, the same reason
as metric tensor or shape operator tensor in differential
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geometry. In later sections we will formulate such instru-
ment, Machine Kinematic Metric, which is a tensor field
as expected.

To prepare for the mathematics in later sections,
we need to define two coordinate systems: WCS and
AMCS.Workpiece Coordinate System (WCS) is attached
to the workpiece (part geometry) and commonly used to
describe the movement of the cutter (tool) relative to the
workpiece, a.k.a. tool path or CL data. Abstract Machine
Coordinate System (AMCS) is a coordinate system in the
feed-axes space of themachine tool, as shown with a five-
axis machine tool example in Fig. 1. It’s used to describe
the G-code and axis movement. We intentionally label
it “abstract” because this space may not have an exact
match in the physical space. For instance, a rotational axis
of a machine tool does not match any dimension in the
physical space.

Figure 1. A five-axis machine tool and its axes.

The G-code is derived from the corresponding CL
data via an Inverse Kinematic Transformation (IKT).
That is, a point in AMCS is computed from a point in
WCS via IKT. Inversely, a point inWCS corresponds to a
point in AMCS thru Forward Kinematic Transformation
(FKT). Fig. 2 illustrates such relationship (it’s impossible
to visualize a 5-dimensional space so we draw a three-
axis frame to denote the AMCS, with the 4th & 5th axes
hidden).

The map from WCS to AMCS could be one-to-many
for five-axis machines. If we choose a solution that is

Figure 2. Mapping between WCS (CL data) and AMCS data
(G-code).

continuous, themapping is continuous and differentiable
outside of the singularity poles. For three-axis machines,
the mapping betweenWCS and AMCS is strictly contin-
uous and differentiable.

CAM tool-paths are defined in WCS. A five-axis tool-
path in WCS contains the CL trajectory P(τ ) and tool-
axis field A(τ ), where τ is a curve parameter but not
necessarily the time variable. In practice, a tool-path is
often discretized into GOTO points as Pi and Ai, but it
can be easily parameterized into a G0 continuous curve
(a polyline).

A CAM tool-path in WCS corresponds to an axis-
path (G-code program) defined in AMCS, via IKT, as
shown in Fig. 3. The AMCS of a five-axis machine corre-
sponds to a five-dimensional abstract vector space: � =
(�1,�2,�3,�4,�5). A five-axis axis-path is a trajectory,
or curve, in this abstract vector space: �(τ).

Figure 3. Axis-path in AMCS.

The goal of time-efficient machining is to minimize
the total machining time, which is the integral of the
time element over thewhole path:T = ∫

dt. Itmeans that
minimizing the time element throughout the path will
ensure minimal total machining time.

The time element is related to the velocity - higher
velocity results in shorter time. However, the maximally
achievable velocity is limited by many factors. Here we
address the major factor: the maximal axis speed allowed
by the machine tool kinematic capability.

Let � = (�1,�2,�3,�4,�5) represents the maxi-
mally allowed speed of the fisve axes (in the abstract axis
vector space). For each axis, theminimal time required to
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move an axis is: dt =
∣∣∣d�j

�j

∣∣∣. The minimally allowed time
element in the axis-path, �(τ ), is the largest among the
minimum time elements of the five axes:

min(dt) = max
j=1...5

∣∣∣∣d�j

�j

∣∣∣∣ (3.2)

In mathematics, the right hand side is known as the
Chebyshev distance.

We give an example about how to calculate dt in
Eqn.(3.2). Two GOTO points (P1,A1) and (P2,A2) on
a tool path in WCS, shown in Fig. 3, are mapped to
AMCS via IKT and obtain two corresponding abstract
points � and �′ in AMCS. The five elements of � are
(�1,�2,�3,�4,�5), and�′, (�′1 ,�′

2,�
′
3,�

′
4,�

′
5). The

minimally allowed time element between (P1,A1) and
(P2,A2) is computed as :

min(dt) = max

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(�′
1 − �1)/�1

(�′
2 − �2)/�2

(�′
3 − �3)/�3

(�′
4 − �4)/�4

(�′
5 − �5)/�5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Let’s introduce a scaling of the machine axes and define
the max-speed-scaled axes as:

�j = �j

�j
(3.3)

The minimum time element is then (the wording “min”
is dropped in the equation to save typing):

dt = |d�|C = max
j

|d�j| (3.4)

The subscript C in the above equation indicates Cheby-
shev distance. That is, the minimum time of the path is
exactly the Chebyshev distance in the � space. The opti-
mal total machining time is the line integral of dt along
the path, computed as:

minT =
∫

dt =
∫

|d�|C (3.5)

Define the machine kinematic metric (MKM) as the
square of the minimum time element (using the square
to make it positive definite):

MC = (dt)2 = |d�|C2 (3.6)

The above MKM allows us to conveniently compute
the shortest machining time of a given axis-path. For

any given path parameter, τ , the shortest axis-speed-
constrained machining time of an axis-path segment can
be explicitly computed as:

minT =
∫ √( |d�|C

dτ

)2
dτ (3.7)

Eqn. (3.7) is equivalent to Eqn.(3.5), it just shows that the
integral can be computed by any parameter of the path.

4. Machine kinematic metric of a surface

Consider the finishing operation of a part surface defined
as S(u, v). Assume that the finishing tool-path is densely
distributed over the surface such that it can be treated as
a function of the surface parameter. That is, we assume
that on every point on the surface there is a correspond-
ing CL point P(u, v) and tool-axis vector A(u, v), both are
defined in the WCS. Apparently the CL point and tool-
axis vector is defined only on the tool-path, not between
path trajectories. However, we assume they are defined
between paths via interpolation.

In some situations the tool-axis is defined using a for-
ward leaning angle from the surface normal toward the
cut (feed) direction, meaning that the tool-axis at every
location depends also on the cut direction. In these cases
we assume that the leaning angle is small such that the
surface normal is a good approximation of the tool-axis
and will be used as A(u, v) to eliminate the dependency
on the cut direction.

With IKT, the tool position and axis, P(u, v) and
A(u, v), correspond to an axes variable defined in AMCS,
�(u, v), where � = (�1,�2,�3,�4,�5). Hence,
�(u, v) defines a surface in this abstract axes vector space
and let’s call it the machine kinematic surface, as illus-
trated in Fig. 4. A tool path contact trajectory in the part
surface (in WCS) corresponds to a curve (axis-path) in
the machine kinematic surface (in the � space).

We are interesting in computing the minimum
machining time and themachine kinematicmetric intro-
duced in the previous section. The machine kinematic
metric is now defined over a surface (the machine kine-
matic surface), instead of a curve (the axis-path).

As shown in Fig. 5, a parameter curve in (u, v) space
corresponds to a tool-path trajectory and a curve-on-
surface (surface curve) on the machine kinematic sur-
face. The differential element of the curve parameter
dτ is related to the differential elements of the surface
parameters:

dτ =
∑

α=1,2;β=1,2

dτ
duαduβ

duαduβ (4.1)
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Figure 4. Machine kinematic surface.

Figure 5. A curve on the machine kinematic surface.

In the above equation, we use duα to indicate one of
(u, v). Use the same vector,� = (�1,�2,�3,�4,�5), to
represent the maximally allowed speed of the five axes
and the same scaling,�j∼ = �j

�j
, such that themaximally

allowed speed of each axis is exactly one. Hence, we have
a scaled machine kinematic surface, �(u, v).

The optimal total machining time of a surface is the
surface integral of dt over the surface, computed as:
minT = ∫

S
dt = ∫

S
|d�|C.

Using the same reasoning, we derive the same conclu-
sion that the squared optimal time element is the Cheby-
shev distance in the � space (the subscript C indicates
Chebyshev distance):

MC = (dt)2 = |d�|C2 (4.2)

The above is the machine kinematic metric (MKM) over
the machine kinematic surface, and looks the same as the
MKM in Eqn. (3.6).

We can use simple differential geometry technique to
compute the optimal machining time of any curve in the
machine kinematic surface. The key is to utilize the bi-
linear property of the rank-2 tensor:

MC =
∑
α,β

|d�|C2
duαduβ

duαduβ (4.3)

Now recall that a tool-path trajectory corresponds to a
curve in the machine kinematic surface. If this curve is
parameterized by τ , the squared optimal machining time

of the curve (path trajectory) will be:

minT =
∫ ⎡

⎣∑
α,β

√
|d�|C2
duαduβ

duα

dτ
duβ

dτ

⎤
⎦ dτ (4.4)

The above equation is consistent with Eqn. (3.7). It also
shows that the surface integral can be computed by any
parameters of the surface.

Given the MKM defined in Eqn. (4.3), we can com-
pute the velocity (i.e., the feedrate) in any direction of
du on the surface. The physical length of an infinites-
imal segment in the WCS is related to the metric ten-
sor of S(u, v) :→ (dl)2 = 	α,βGα,βduαduβ . Hence, the
maximally-allowed velocity square (MAVS) is:

ρ(du) = v2 = (dl)2

(dt)2
=

∑
α,β Gαβduαduβ

∑
α,β

|d�|C2
duαduβ duαduβ

(4.5)

The above equation enables us to compute themaximally
allowed velocity (feedrate) at any location and in any
direction on the surface.

5. First-order approximation of optimal
machining time

Eqn. (4.4) allows us to compute the optimal machining
time using the formulation of MKM when the path tra-
jectory is given. The goal of this section is to compute the
optimal machining time without the path trajectory. We
will need to formulate the computation based on the part
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surface and machine tool kinematic (speed) capability,
with certain approximation to simplify the computation.

At this point we don’t know the exact number and
location of the lifts (retracts) in the tool path and the
traversal trajectories, and can’t compute the non-cutting
(movement of the cutter in the air) portion of the
machining time. For the time being we will confine the
discussionwithin the cutting portion of the totalmachin-
ing time (and ignore the non-cutting time).

To compute the totalmachining time of the whole part
surface, we need the machining time element of a small
surface area, dT. The time element, dt, established earlier
is the machining time of a path trajectory element, while
the machining time of an area element is the multiplica-
tion of the trajectory-element-time, dt, and the number
of stepovers, dn (number of trajectories in the area),
that is:

dT = dt dn (5.1)

The integral over the surface is based on the area integral,
dA, so we need to figure out the connection between dT
and dA. Since the tool path is distributed over the part
surface, the area element (shown in Fig. 6), dA, equals
to path length element, dl, times the path width element,
dw, which is number of stepovers, dn, times the stepover
distance, Sp. We then have the following connection:

min T =
∫

dT =
∫

dt dn
dl dw

dl · dw

=
∫

dt
dl Sp

dA =
∫

1√
ρSp

dA (5.2)

The MAVS, ρ, can be derived from Eqn. (4.5). Keep in
mind that MAVS depends on the feed direction. Hence,
to compute the abovemachining time integral we need to
know the path direction at every location of the surface.

Figure 6. An area element on part surface.

To better understand themeaning of Eqn. (5.1) & Eqn.
(5.2), let’s work out a simplified example of rectangu-
lar part surface, as shown in Fig. 7. In the example we

aim at achieving an approximated result to simplify the
computation.

For AMCS, we use the scaled � space defined in
Eqn. (3.3) for the machine kinematic surface. Consider
a common toolpath pattern that is based on angled iso-
parametric lines, as shown in the left side of Fig. 7. The
path passes, parameterized by γ , are straight lines in the
surface parameter spacewith angle θ from theu-axis. The
spacing between the passes (stepover) is constant �δ in
the parameter space. The path parameter is related to the
surface parameter as:

du = cos θdγ

dv = sin θdγ (5.3)

The value of scaled machine kinematic surface at the
four corners are �00, �01, �10, and �11. Assume the
machine kinematic surface is small enough that we can
approximate it using a bilinear interpolation. That is:

�(u, v) = �00(1 − u)(1 − v) + �10u(1 − v)

+ �01(1 − u)v + �11uv (5.4)

The derivatives of the scaled machine kinematic surface
are:

d�
du

= (�10 − �00)(1 − v) + (�11 − �01)v

d�
dv

= (�01 − �00)(1 − u) + (�11 − �10)u (5.5)

We shall further simplify the problem by approximating
the above with the mean value at u= 0.5 and v= 0.5:

d�
du

∼= 1
2
(�10 − �00 + �11 − �01) = ��0

d�
dv

∼= 1
2
(�01 − �00 + �11 − �10) = ��1 (5.6)

The above approximation is justified if the scaled
machine kinematic surface patch is quite small, meaning
that the value of � varies very little.

Based on Eqn. (4.3) and chain rule, we can com-
pute the time element along the path (with Chebyshev
distances):

(dt)2 = |d�|C2 =
[∣∣∣∣d�du du

dγ
+ d�

dv
dv
dγ

∣∣∣∣
C
dγ

]2
(5.7)

From Eqn. (5.3) & (5.6) , we then have:

dt = |��0 cos θ + ��1 sin θ |Cdγ (5.8)

We can derive the surfacemachining time, combining the
above result and Eqn. (5.1): (with dn = dδ/�δ):∫

dT =
∫

dtdn =
∫ |��0 cos θ + ��1 sin θ |C

�δ
dγ dδ

(5.9)
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Figure 7. A simple example of rectangular part surface, and the corresponding rectangular machine kinematic surface.

If the above assumption holds true that the machine
kinematic surface is small enough for linear approxima-
tion, the integrand is a constant and can be taken out
of the integral, leaving a trivial integration of the square
parameter box that is exactly one. Hence, we have:∫

dT = |��0 cos θ + ��1 sin θ |C
�δ

(5.10)

The above equation indicates that the surface machining
time (to be precise, it means the optimal machining time
allowed by the axis-speed constraint) solely depends on
the cut angle, θ , in the parameter space. We can use it to
determine the optimal cut angle that would lead to the
least machining time under the axis-speed constraint.

6. Application in 3-axis surface finishing

Wenow consider the case of three-axis finishing of sculp-
tured surfaces, such as die faces. Let’s define the tool-axis
orientation theZ-axis of theAMCS. It’s common to finish
die faces with tool paths that are straight when projected
to the X-Y plane of the AMCS. This type of X-Y par-
allel tool paths are easy to compute and the results are
predictable.

For suchX-Y parallel tool paths, once the stepover dis-
tance in the X-Y plane is determined (based on scallop
height requirement) the main variable is the direction of
the path represented by an angle measured from the X-
axis, known as cut angle. The task on hand is to compute
the optimal cut angle in order tominimize themachining
time that can be computed via Eqn. (5.1) & Eqn. (5.2)

Assume the machine tool is capable of superior accel-
eration capability such that the speed limit of the axes is
the major factor that determines the machining time. A
die face is usually quite large and consists of multiple sur-
faces, so we can’t apply Eqn. (5.10) to the whole die face.
Instead, we can subdivide the whole die face into many
small elements such that each element is small enough
for the approximation in Eqn. (5.10) to be applicable.

The subdivision scheme is inspired by Z-map. That is,
we build a rectangular grid in the X-Y plane. Each grid
cell is a small square in the X-Y plane, and its projection

onto the die face corresponds to a small surface patch and
the sum of them forms the complete die face. Hence, the
surface integral in Eqn. (5.2) can be decomposed into the
sum of surface integrals over these surface patches.

Assume each patch is small enough such that we can
apply the approximation scheme described in section 4.
The situation here is similar to section 4, except that the
parameters are the (x,y) coordinates (of the X-Y plane)
instead of (u,v), while the cut angle θ is measured from
the X-direction. The counterpart of Eqn. (5.6) is:

d�
dx

∼= 1
2
(�10 − �00 + �11 − �01) = ��x

d�
dy

∼= 1
2
(�01 − �00 + �11 − �11) = ��y (6.1)

The time element along the path is:

dt = |��X cos θ + ��Y sin θ |Cdγ (6.2)

Similar to Eqn. (5.10), the machining time integral of a
patch is:∫

dT = |��X cos θ + ��Y sin θ |C
�δ

�A (6.3)

The symbol �A in the above equation is the area of the
grid cell in the X-Y plane of AMCS, and �δ now repre-
sents the step-over distancemeasured in the X-Y plane of
AMCS.

Use (i,j) to label the patch cells, the numerical approx-
imation of the integral corresponds to a summation of all
patches, using the previous equation:

T(θ) =
∑
ij

|�ij�X cos θ + �ij�Y sin θ |C�A
�δ

�ij�X = 1
2
(�i+1j − �ij + �i+1j+1 − �ij+1) (6.4)

�ij�Y = 1
2
(�ij+1 − �ij + �i+1j+1 − �i+1j)

The illustration in Fig. 8 helps understand the meaning
of grid cells and related variables in the above equation.
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Figure 8. Illustration of a Z-map and corresponding grid cells of a surface in AMCS, and the variables for the computation of T(θ).

The task is then to find the cut angle θ that min-
imizes T(θ). To show how this works, let’s consider a
very simple example of a X-Y planar surface. Assume
the size of each grid cell is 1.0mm and there are M ×
N cells in the surface. There is no movement in the
Z-axis so it can be ignored; and the feed speed upper
bounds are set to �X and �Y. In the max-speed-
scaled � space, the differences of � in a grid cell
are

(
1

�X
, 1

�Y

)
. Thus, the last equation yields: �ij�X =(

1
�X

, 0
)
, �ij�Y =

(
0, 1

�Y

)
; and the optimal machining

time is T(θ) = MN
δ
max

(∣∣∣ cos θ�X

∣∣∣ , ∣∣∣ sin θ
�Y

∣∣∣), where Cheby-
shev distance (max operator) is applied to the � vectors.
The plot of T(θ) with (�X = 2000 and �Y = 1000) is in
Fig. 9.

It’s not hard to prove that T(θ) is minimal when
|cos θ/�X| = |sin θ/�Y|, which implies: tan θ = �Y/�X.
The above result serves as a greedy solution of the optimal
cutting time and can be used as theoretical comparison
and the initial guess for experimental search.

Figure 9. Illustration of T(θ) for a X-Y planar surface.

7. Simulation and experiments

To evaluate the effectiveness of the proposed method, we
carry out the surface finishing experiments on two test
cases: one simple freeform surface model and a complex
multi-surface die face model. For each test case, we com-
pute the machining (surface finishing) time as a function
of cut angle using the MKM method, and compare it to
the experiment using a (real) commercial CNC simula-
tor. We describe the two experiments and their results in
the following sections.

7.1. Case 1: A simple freeform surface

Consider a simple freeform surface illustrated in Fig. 10.
The machining strategy is a 3-axis zig-zag tool path and
the process parameters andmachine tool kinematic capa-
bilities are listed in Tab. 1. The programmed feedrate is
higher than the resultant velocity limit of all linear axes.
The acceleration capability is assumed to be superior and

Figure 10. Freeform surface model and the cut angle θ .
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Table 1. Process parameters of example 1.

Cutter Ball end mill,�10 mm

Blank Dimensions (X× Y×Z) 110mm×100mm×35mm
Step-over of Tool Path (�β) 1mm
Velocity Limit of X axis (�X ) 1430mm/min
Velocity Limit of Y axis (�Y ) 715mm/min;
Velocity Limit of Z axis (�Z ) 300mm/min
Programmed Feedrate 10000mm/min
Acceleration Limits of X,Y,Z 1.04 × 103mm/s2

Jerk Limits of X,Y,Z 125mm/s3

hence not a factor.Once the parameters listed inTab. 1 are
determined, the only variable to influence the machining
time is the cut angle θ measured from X-axis (as shown
in Fig. 10).

Theoretical Computation of T( θ)

The steps to compute T( θ) and the optimized cut
angle θ are as follows:

• Build a rectangular gird in the X-Y plane. Each grid
cell is a 1mm ×1mm square. Then all cells are pro-
jected to the freeform surface to form a discretized
surface net that approximates the original surface
S(u, v), shown in the left portion of Fig. 11.

• Map the surface S(u, v) into the AMCS thru IKT, and
apply themaximally allowed speed scaling of the three
linear axes, to obtain the abstract kinematic surface
�(u, v) in Cartesian coordinate system, as shown in
the right portion of Fig. 11.

• For each of the cut angle θ = 0, 1◦, 2◦, . . . 179◦, com-
pute the numerical approximation of the integral
according to Eqn. (6.4), which denotes the predicted
machine time of the zig-zag tool path with cut angle θ .

The total lengths of the tool paths according to cut angle
θ are listed in Fig. 12. It shows that the minimum length
is around θ = 90◦.

The theoretical prediction curve of T( θ) is plotted in
Fig. 14. The cut angle that minimizes T( θ) , theoretically,
is around θ = 58◦.

Simulation Experiment and Discussion

We then use a commercial CNC control simulator to
simulate the machining processes of the series of zig-zag
tool paths. The simulator, shown in Fig. 13, is provided
by Wuhan Huazhong Numerical Control Co., Ltd, and
used to simulate the machining time by using the same
command interpolation andmotion planning algorithms
that are used in HNC-8 series controller products. The
simulatedmachining time equals to the actualmachining
time executed by theHNC-8Controller at amachine tool
without manual interference.

We use UG NX to generate 36 zig-zag tool paths, one
for every 5° difference of cut angle. Each tool path is
post-processed and sent to the above HNC-8 Simulator,
which is set to the axis speed limits listed in Table 1. The

Figure 12. The total length of the toolpath (G01) according to cut
angle θ .

Figure 11. Freeform surface and the corresponding scaled kinematic surface.
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Figure 13. The UI of HNC-8 simulator.

Figure 14. Comparison of T( θ ) between theoretical prediction
of our method and HNC-8 Simulator in Case 1.

execution time for every tool path is recorded and also
plotted in Fig. 14, against the theoretical prediction curve.
It shows that the optimal machining time occurs around
θ = 55◦.

From the comparison between the simulation results
and the theoretical prediction, it can be seen that the gen-
eral shape of the machining-time curves are consistent.
The maximum machine time occurs at cut angle θ = 0
in both curves and the minimum machine time occurs
around θ = 55◦in simulation and θ = 58◦ in theoreti-
cal computation. It also can be seen that the values of
simulated machining time are always larger than the the-
oretical values. The main reason is that in the theoretical
computation of T( θ) we do not consider the time spent
on non-cutting (air)moves and the slowdown due to axes
acceleration constraints.

7.2 Case 2: A complexmulti-surface die face

In this example, we consider a complex multi-surface
die face illustrated in Fig. 15. The machine strategy is

Figure 15. A complex multi-surface die model and the cut
angle θ .

Table 2. Process Parameters of example 2.

Cutter ball end mill ,�10mm

Blank Dimensions (X×Y×Z) 110mm×100mm×35mm
Step-over of Tool Path (�β) 1mm
Velocity Limit of X axis (�X ) 1430mm/min
Velocity Limit of Y axis (�Y ) 715mm/min;
Velocity Limit of Z axis (�Z ) 150mm/min
Programmed Feedrate 10000mm/min
Acceleration Limits of X,Y,Z 1.04 × 103mm/s2

Jerk Limits of X,Y,Z 125mm/s3

3-axis zig-zag tool path and the process parameters and
machine tool kinematic capabilities are listed in Tab 2.
The programmed feedrate is higher than the resultant
velocity limit of all linear axes. Again, the acceleration
capability is ignored. The definition of cut angle θ is
shown in Fig. 15.

Theoretical Computation of T( θ)

Similar to the previous example, we build a rectangu-
lar gird in the X-Y plane with cell size of (1mm×1mm)
square. The discretized surface net that approximates the
original surface, S(u, v), shown in the left portion of Fig.
16. The mapped abstract kinematic surface �(u, v) in
AMCS thru IKT with axis speed scaling is shown in the
right portion of Fig. 16.

The range of cut angle θ is [0,180]. We set a cut
angle sequence (θ = 0,1°, . . . ,179°), then compute the
machining time T(θi) of each tool path with cut angle θi
according to Eqn. (6.4). The theoretical prediction curve
in Fig. 17 shows the computed machining time of the
sequence of tool paths. The minimal machining time
occurs at θ = 79°.

Simulation Experiment and Discussion

UG NX is used to generate 36 zig-zag tool paths, one
for every 5° difference of cut angle. Each tool path is
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Figure 16. Discretized multi-surface die face and the corresponding scaled kinematic surface.

Figure 17. Comparison of T( θ ) between theoretical prediction
of our method and HNC-8 Simulator in Case 2.

post-processed and sent to the above HNC-8 Simulator,
which is set to the axis speed limits listed in Tab 2. The
execution time for every tool path is recorded and plot-
ted in Fig. 17. It shows that the optimal machining time
occurs around θ = 80◦.

From the comparison between the simulation results
and the theoretical prediction (Fig. 17.), it can be seen
that the general shape of the machining-time curves are
consistent. The minimum machine time occurs around
θ = 80◦ in simulation and θ = 79◦ in theoretical compu-
tation. The time optimal tool path with cut angle θ = 80◦
is shown in Fig. 18. It also can be seen that the HNC-8
simulated machining time is always larger than the theo-
retical values. The reasons were discussed in the previous
example.

Figure 18. Tool path generated by UG NX with cut angle= 80°.

8. Summary and conclusion

We derived a mathematical model, named Machine
Kinematic Metric (MKM) to encode the speed kine-
matic capabilities of a machine tool. MKM can be used
conveniently to analyse the workpiece and evaluate the
machining time to finish the workpiece face. We also
presented a numerical method of using MKM to com-
pute the (approximate) machining time for every cut
direction.

To validate the reliability and usability of the proposed
method, we perform simulation experiments on two test
cases. For each test case, we perform numerical compu-
tation using MKM to compute the machining time on
each cut direction and derive the optimal cut direction
(with the minimal machining time). We then carry out
the experiment for each test case with HNC-8 controller
and prove that the experimental results are consistent
with the numerical predictions.
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The experiments confirm that the proposed MKM
method is reliable and provides a convenient and eco-
nomicalmean to estimatemachining time and determine
the optimal cut direction at the tool path programming
stage. The numerical computation is approximate and
the model is simplified such that there is a small devi-
ation between the actual optimal cut direction and the
computed one. However, the experiments showed that
the deviation is within several degrees and reasonable for
practical purpose.

Another benefit is that the experiments show cut
direction causes significant difference inmachining time.
Conventional CAM softwares tend to leave the determi-
nation of the cut angle to end users, and the end users
make the decision depending on experiences instead
of machine tool’s kinematic performances. The experi-
ments themselves have their value for pointing out the
determination of cut angle is another source to optimize
the tool path.

While thework presented in this paper established and
validated the MKM method, there are several remain-
ing challenges. Due to the extensive amount of work
required, these tasks will be accomplished and presented
in future reports. The following is a partial list of the
future tasks:

• In addition to the axis velocity constraints, include
axis acceleration constraints to cover both aspects of
machine kinematic capabilities.

• Incorporate Scallop Height Metric with MKM, in
order to achieve the optimization with dual objectives:
machine kinematic capabilities and machining width.

• Besides zig-zag tool paths, extend the numerical com-
putation to more complex path patterns, including
spiral and boundary conforming patterns.
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