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ABSTRACT
This paper presents amethod for posture prediction of the upper trunk of video terminal (VDT) oper-
ators, which is then verified by means of some test cases. The prediction of the upper trunk posture
is, in fact, a very difficult task to carry out due mainly to the complexity of the anatomy of the spine
and the surrounding muscles. The method being proposed in this paper is based on the integration
of the knowledge which is obtained experimentally through the posture analysis of real cases into a
configured humanmulti-body kinematic model which has been implemented in a commercial CAD
system. A trained artificial neural network retains the knowledge concerning the VDT operator’s pos-
tures detected in different working positions. The posture simulations obtained with the proposed
method are subsequently compared with the real ones determined by a 3D scanner. The results
obtained confirm the effectiveness of such a method, which is deemed promising to implement
other anthropometric data and further human poses.
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1. Introduction

Every individual assumes a posture (for the most part,
without a conscious decision) when interacting with
the surrounding workplace. Such adaptability is possible
thanks to the complex anatomy of the musculoskele-
tal system, which allows of different degrees of free-
dom. However, not all of postures are necessarily correct.
When a non-correct posture is adopted for a long period
of time it may cause musculoskeletal injury; as an exam-
ple, low levels of seating comfort often lead to muscu-
loskeletal complaints such as low back pain (LBP) [15]. In
order to correctly design the working place, human fac-
tor analysis is an activity that should not be disregarded.
Human models for ergonomic design are implemented
in many commercial CAD systems [11]. For one thing,
using a Digital Human Model (DHM) in designing a
new working place arrangement or industrial product
may reduce both the costs and the time required to pro-
duce and test product prototypes ([3], [12] and [16]).
Another reason for favoring the use of DHM has to do
with the highly variable level of human performance and
attributes, which necessarily require a greater number of
tests for a complete analysis. The reliability of a human
posture simulation, therefore, lies on the capability of the
DHM to reproduce the human body performance, as well
as the complex interactions between the subject and the
external environment.
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The spine, on its part, can be represented as a complex
multi-joint structurewhose configuration determines the
upper-trunk posture. However, the considerable com-
plexity of the articular system of the spine and its inter-
action with the head make it difficult to model the upper
trunkwithout large approximations ([14] and [19]). Con-
sidering that there is not a unique relation between pos-
ture and human interactionwith environment, but rather
a complex one, which is determined by unpredictable
kinematic constraints (such as the fibrous connective tis-
sues that join the articular surfaces of bones), it follows
that human pose, and hence spine configuration, are dif-
ficult to reproduce, due precisely to the postural attitudes
of each individual and the voluntary human intents.

In order to solve the inverse kinematic model, each
part of the human body can be described by a prop-
erly defined biomechanical equation which characterizes
some aspects of human performance, such as discomfort
or required energy [17]. In this sense, human posture is
deduced by solving an equation system ([14], [9], [10], [8]
and [18]). In the related literature, this approach is used
in simple cases, for which few biomechanical equations
are required, such as, for instance, the case of the right
upper limb or arm. This affords a very limited number of
degrees of freedom, though, especially if we bear in mind
the fact that the articular system of the spine requires at
least 24 DOF to be described.
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Another way of implementing a complex inverse kine-
maticmodel is by using artificial neural networks (ANN).
Artificial neural networks, like biological neural net-
works, contain a collection of neuron units communicat-
ingwith each other via axon connections. Thememory of
a neural network is included in the synaptic weights that
are adaptively trained by a learning mechanism. Amulti-
layer feed-forward neural network with an arbitrarily
large number of units in hidden layers can approximate
any real continuous function. It is for this reason that
neural networks are also proposed to implement human
biomechanical models ([11], [13] and [20]). Rezzoug and
Gorce [13], on the one hand, present a technique based
on neural networks that maps the fingertip 3D position
and the corresponding joint angles so as to predict the
hand and finger postures during grasping tasks. Zhang
et al. [20], on the other hand, present the concept and the
implementation of the ANN-based posture transforma-
tion methodology, which reconstructs the configuration
of the human body, in arbitrary postures, through 27
landmarks. More recently, Bataineh et al. [2] have pro-
posed the use of an ANN for predicting the upper-body
posture for a 41-DOF human model. This is a prelim-
inary work to test the capability of a neural network
to reproduce the inverse kinematics model of a digital
manikin. They do not introduce nothing news concern-
ing the reproduction of a realistic posture.

In order to perform an accurate prediction the upper-
trunk posture of real video terminal operators, in this
paper a new approach is proposed, which integrates the
kinematic model of the spine with the knowledge about
human postures.With the intent to survey the knowledge
concerning human postures, who are somewhat con-
strained by the assigned working positions, an accurate
method to detect the shape of the spine has been used.
Then the data related to the environment interaction
has been transformed into a map between upper trunk
kinematic parameters and manikin interaction with the
environment. This map defines the configuration of the
multi-body structure representing a virtual manikin.

2. Trunk anatomy

The geometry of the lumbar spinal column plays an
important role in determining human posture. It is a
complex anatomical structure that interacts with the sur-
rounding musculature and that is constrained by the
position of arms, head and pelvis. The lumbar spine is a
flexible structure composed of vertebrae, which are rigid
elements. It consists of 24 vertebrae (figure 1): 5 in the
lumbar part (l1÷l5), 12 in the thoracic part (t1÷t15),
and 7 in the cervical part (c1÷c7). The trunk posture
is mainly conditioned by the orientation of the lumbar

and the thoracic vertebrae. The lumbar vertebrae form a
curvature, called lordosis, which is posteriorly concave.
The thoracic vertebrae, on their part, form a convex cur-
vature, called kyphosis (figure 1). These curvatures are
typical of the standing posture of any human being. In
the sitting posture, on the contrary, the lordosis curva-
ture generally tends to be less curved and, in some cases,
may even disappear [5].

Figure 1. Human spine.

The trunk posture, therefore, can be defined in terms
of the orientation of the motion segments and in terms
of the orientation of the thorax with respect to the
pelvis. The motion segments are the fundamental build-
ing blocks of the spine and consist of two vertebrae
connected by intervertebral discs and by a number of
ligaments. 24 motion segments which correspond to ver-
tebrae can be identified in the human spine.

3. Enhanced digital humanmodel

The method proposed in this paper is briefly described
in the chart in figure 2. It performs an Enhanced Digi-
tal HumanModel (EDHM), based on a classic kinematics
model of the human body, in which the knowledge con-
cerning the postural attitude is implemented by means
of an Artificial Neural Network (ANN). The number of
the degree of freedom of a manikin is greater than the
constraints that a working plane can determine. So that,
for a given manikin position, the redundancy of degrees
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Figure 2. The proposed method chart.

of freedom (DOF) involves that alternative postures can
be assumed. For each unconstrained articulation, it is
known that there is a defined range of possible move-
ments [1]; within this range, the specific value of these
parameters determines a specific posture. The posture
assumedby a specific subject can be described by a proper
function which relates articular configuration with the
tasks in the workplace, it is possible to say that this func-
tion describes the specific postural attitude of the subject.
Typically in commercial DHM, the redundancy in kine-
matic parametric specification are solved according to a
criterion which is generally unknown to the user. This
criterion makes manikin postures rigid, un-personal and
unnatural.

In the Enhanced Digital Human Model, here pro-
posed, the under-determinate parameters of the kine-
matic model are furnished by a properly trainedArtificial
Neural Network that controls each kinematics segment
when the manikin interacts with the working place. The
ANN is, actually, the component of the model which
retains the knowledge concerning the relations between
environment interaction and body part configuration. In
order to furnish the specific posture attitude of a real sub-
ject, some experiments have been performed in which
the posture of VDT operators in action are analyzed. The
EDHM consists in two main parts: the Digital Human
Model (DHM) and the Artificial Neural Network which
retains the specific postural attitude.When the anthropo-
metric data are assigned, theDHM is configured to repro-
duce the dimension of a specific subject. The ANN is
trained with the data concerning specific VDT operators

which works performing a specific activity in a specific
working place.

3.1. Posture attitude knowledge acquisition

In order to ascertain the postural attitude of VDT oper-
ators, some experiments have been conducted, and a
pattern has been defined for setting up different work-
ing environment configurations. The number of postures
which are necessary to identify the data to train the pos-
ture simulator grows factorially with the number of DOF.
In this study, the posture simulator has been trained to
reproduce postures that are defined in the sagittal plane;
such is the case for the VDT operator. For this purpose, a
configurable working environment has been reproduced
in the laboratory (figure 3).

The working environment chosen consists of a seat
with a footrest, a table and a target to be observed by the
subject selected for the experiments. All the components
of the simulated working environment may, nonetheless,
be modified to define different working configurations.
The environmental parameters used to design the exper-
iment comply with EN ISO 9241 (2001); they are the
following (figure 4):

• θ = angle between the line of view and the horizontal
plane;

• a = distance between the buttocks and the table edge;
• b = height of the table with respect to the seat;
• c = height of the seat with respect to the footrest.
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Figure 3. The experimental set-up.

θ

Figure 4. The four characteristic parameters of a VDT virtual
working environment.

When the individual’s anthropometric data and the
parameter c are known, it is possible to calculate the angle
β which measures the inclination between the femur and
the base of the spine (L5) near the pelvis. The parame-
ter β , through the pelvis configuration, greatly affects the
sitting posture [5].

The geometry of the back must be acquired so that
precise quantitative information can be taken. At this
purpose, the geometry of the back is acquired by using
a structured-light 3D scanner, which makes it possible
to obtain the whole three-dimensional geometry of the
back with a single scanning operation in a relatively short
time with a density sampling of about 0.75mm. The

acquisition of the back needs to be complete and per-
formed across the vertebral column. After the acquisition
is completed, the point cloud is processed by a typical
smoothing operation and then tessellated. This filtering
process is useful to reduce outliers and large noise.

First of all, however, before scanning the geometry of
the back, markers are placed on the individual in corre-
spondence with the landmarks T1 and L5 of the spine
column (figure 5a) so as to identify its beginning (ver-
tebra T1) and its end (vertebra L5). Second, and with a
view to detecting the vertebral column, a specificmethod
to evaluate the symmetry line is used [6], which performs
a 3D virtual reconstruction of the spine. Then, the typical
human global reference frame is estimated, whose char-
acteristic planes are coronal (�C), transversal (�T) and
sagittal (�S).

For the type of postures which have been analysed, the
symmetry line is nominally contained in the sagittal plane.
In real cases, however, the symmetry line detected for a
VDT operator is a curve which deviates from the sagittal
plane. This deviation is, at any rate, limited, and, conse-
quently, there is not a great difference between the 3D
symmetry line and its projection onto the �S (figure 5).

The symmetry line evaluated by means of the method
proposed in [5] is projected onto the sagittal plane and,
then, approximated by using a polynomial parametric
curve c= c(t) of degree 3 (figure 5b). The interpolation of
the points detected on the symmetry line is approximated
by using a special kind of parameterization, in such a
way that a linear map is defined between the value of
the parameter t and the position of the column segments
associated with the vertebrae. The value of t associated
with L5 is 0 and the value at the end of the column (T1)
is 1. The approximation of the points Pi is performed
by the least-squares method, for which the best coeffi-
cients are those which minimize the sum of the squared
deviations of the curve from the points Pi:

S =
√√√√1

n

n∑
i=1

Pi − c(ti)2 (3.1)

where the value of the parameter ti associated with the
point Pi is evaluated as follows:

ti =
∑i

j=1 Pj+1 − Pj∑n−1
j=1 Pj+1 − Pj

(3.2)

This parameterization makes it possible to normalize
the symmetry linewith little deviation from the real value,
regardless of the specific anthropometric characteristic of
the analysed subject.

The spine is modeled as amulti-body kinematic struc-
ture comprising 17 motion segments (figure 6c). Each
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Figure 5. The point clouds acquired for the back of an individual, position markers and symmetry line.

motion segment of the lumbar spine is associated with
a human vertebra and is defined as a rigid mechani-
cal link. Thus the spine is modeled as an open kine-
matic chain in which each link is connected by ball-and-
socket joints with both the previous and the subsequent
vertebrae.

The dimension of each motion segment depends on
the anthropometric characteristicswhich are chosen. The
surveyed model of the spine, described by means of a
polynomial function, is subdivided into 17 rectilinear
segments whose lengths correspond to the links of the
kinematic model. For this purpose, 17 intervals (ti-ti+1
for i=1, . . . .,18) of the parameter t of the curve c are
identified, which correspond to the location and length
of 17 vertebrae. The angle ϕi of the i-th link is evaluated

as follows (figure 6 d):

ϕi = arccos[xi · xi−1] (3.3)

where xi is the direction of the (i-1)th link. The posi-
tion and orientation of the end-effector of the i-th link
is expressed, according to the Denavit-Hartenberg con-
vention, in terms of the joint variables by the following
transformation matrix i

i−1T:

i
i−1T =

⎡
⎢⎢⎣
cos(ϕi) −sin(ϕi) 0 ai
sin(ϕi) cos(ϕi) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (3.4)

where ai is the length of the link projected along xi.
Therefore the position of the end-effector of the i-th link

Figure 6. The multi-body kinematic structure modeling the spine.
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in homogeneous coordinates (P̃i), as a function of the
origin of the kinematic chain (P̃0), can be expressed as:

P̃i =
⎛
⎝ i∏

j=1

j
j−1T

⎞
⎠ · P̃0 (3.5)

4. Software and tests

The proposed method has been developed in a commer-
cial CAD environment (CATIA V5 R12), by using the
Visual Basic Developer environment, which implements
the Safework R© virtual manikin (DASSAULT SYSTEMS,
2014). Safework R© provides a digital geometric represen-
tation of humans and permits the analysis of the interac-
tions between theworking place and the user. The skeletal
structure of the human model comprises 100 indepen-
dent elements and the complete model has 148 degrees
of freedom, which are enough to ensure realistic joint
movement capability. The spine is modeled with 17 ele-
ments (5 lumbar vertebrae + 12 thoracic vertebrae) and
the neck is defined as a single rigid piece. It is a fully
articulated spine that can be configured by setting the
values of the angles between the 17 elements. The pos-
tures and movements of the Safework virtual manikin
can be simulated by assigning control commands follow-
ing a direct kinematic approach or an inverse kinematic
approach. The direct-kinematic control commandsmake
it possible to set the degree of freedom of each manikin
component and assign its posture. Those direct control

commands are generated by the trained neural network
and presented to Safework R©.

The neural network which has been used is of a back-
propagation type and has been implemented in theMAT-
Lab platform. It consists of 4 nodes in the input layer, 144
and 72 nodes in the two hidden layers and 17 nodes in the
output layer. The four nodes in the input layer are associ-
ated with the environment configuration parameters and
each node in the output layer provides the inclination
angle between two connected links (Figure 7). The activa-
tion functions used are sigmoid – tangent for the hidden
layers and linear functions for the output layer.

In order to be able to generalize the results obtained
in the posture reconstruction of a specific individual to
apply them to others characterized by different anthro-
pometric parameters, the input parameters a and b
(figure 4) are then normalized. Parameters a and b are
divided by the eye height:

ā = a
eye height

; b̄ = b
eye height

(4.1)

In order to train the ANN, in the present study, the
spine geometry of three different individuals has been
acquired for each of the simulated working environ-
ments, which are obtained by combining the parameters,
previously defined, in a fully factorial set of experiments.
The anthropometric parameters are depicted in figure 8
and the results for each individual are reported in table 1.

That is to say, the 45 working environment configura-
tions (figure 9) are obtained with 5 different values for
parameter θ , three values for parameters a and b, and

Figure 7. Neural network scheme.
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Figure 8. Anthropometric parameters used to characterize an individual.

Table 1. Anthropometric data that characterize the individuals
analyzed.

Anthropometric parameters
Individual
No.1 [mm]

Individual
No.2 [mm]

Individual
No.3 [mm]

Acromion – radial length 340 320 330
Axilla height 1390 1290 1440
Chest breadth 320 380 400
Chest height 1350 1270 1360
Crotch height 830 800 870
Hip breadth, standing 360 360 440
Radial - stylion length 240 270 270
Sleeve outseam 620 90 600
Stature 1780 1700 1860
Waist breadth 280 340 360
Waist height 1120 1010 1100
Eye height 760 730 800
Hip breadth, sitting 380 390 430
Shoulder – elbow length 380 360 370
Sitting height 900 890 920
Buttock – knee length 570 550 590
Knee height, sitting 590 570 610

assuming a fixed value for parameter c (fixed value for β).
In any case, the working environment for the experiment
has been defined according to the optimum situation for
EN ISO 9241 [7].

Some experiments have been conducted to verify the
repeatability of the posture assumed when an individual
repeats the sitting process for a given environmental con-
figuration. This preliminary test has confirmed a good
repeatability of the sitting posture when the hand posi-
tion is pinpointed with a marker on the table. Once the
repeatability of that posture has been verified, each of
the subsequent postures is adopted three times by the

Figure 9. The 45 working environment configurations used in
the posture experiments.

same subject, and average values are assumed to be the
inclination angles of the motion segments of the spine.

The initial training of the neural network, which has
been carried out by using the postural data of subject
no.1 (table 1), has required 2200 training cycles. The
training process is interrupted, though, for a training
mean-square error, for all training data, less than 10−5.
Figure 10 shows the output error of the neural network
for each of the 17 characteristic angles used to define the
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Figure 10. Neural network output angular error for each of the 17 characteristic links used to define the spine geometry, for three
environment configurations of the same working place.

spine geometry, and for three environmental configura-
tions. The maximum error does not exceed 2.4% of the
inclination angle dimension.

Once the input parameters (θ , a, b, c) are provided
to the system, the virtual environment is set up and
the manikin, defined by its anthropometric parameters,
adopts the corresponding posture. The proposedmethod
automatically configures the virtual manikin to assume
the postural attitude of the specific individual that has
been previously analysed.

The postures predicted by using the proposedmethod
are compared with the postures generated by the Safe-
work inverse kinematic approach. The inverse kinematic
approach is supported by five types of postures (stand, sit,
reach, span, kneel) and the specific configuration can be
defined by constraining the manikin in the virtual envi-
ronment at up to 20 points. However, Safework develop-
ers do not supply any detailed information about the 7
criteria necessary to define postures (DASSAULT SYS-
TEMS [4]). Very little, if not anything, is known about

Figure 11. Comparison of the postures predictedwith Safework (a) andwith the proposedmethod (b) for a givenworking environment:
θ = 0°, a= 230mm e b= 250mm.
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Figure 12. Examples of predicted postures for three different environment configurations.

those criteria of use. Figure 11a illustrates an example
of a Safework manikin posture in a pre-defined working
environment where the view direction and the position
of the pelvis, feet and hands are constrained in the vir-
tual environment. Figure 11b, on the other hand, shows
the posture of the manikin for the same environment but
this time simulated by the proposed method. The pos-
tures predicted with the proposed method appear to be
more natural, since it faithfully reproduces the postural
attitude of the individual. The postures adopted for the
different configurations of the working environment are
shown in figure 12. All these postures are assumed with
environment parameters which fall outside the training
range.

5. Conclusion

The use of Artificial Neural Network to predict posture is
not new in absolute, but new is the use of this technique to
simulate posture using information concerning the spine
configuration. With the proposed method it is possible
to predict the spine posture of a virtual human model
that interacts with a virtual working environment. The
model can implement the postural attitude of a reference
individual in order to predict postures in specific settings
where a particular activity is carried on. The EDHM here
proposed overcomes the weakness of the typical methods
used in commercial DHM to predict postures, perform-
ing a prediction of a more natural posture. Themethod is
devoted to the reproduction of the posture of the upper
trunk of VDT operators; this is a part whose posture is
particularly difficult and complex to simulate. For these
reasons, what has been verified in this work proves that it
can used in posture prediction for the whole body and in
other working activities.

The tests of the implementedmethod show high accu-
racy in posture reproduction for a single individual.
Some problems have been encountered, though, when
the method used to predict posture is extended to other

individuals for whom the neural network has not been
trained. In fact, the postural attitude is not merely a func-
tion of the anthropometric parameters and can, rather,
vary a great deal from one individual to another. Future
works should be addressed to define apposite parameters
suited to classify and describe classes of postural attitude,
such as koilorachic and kurtorachic attitudes.

This approach can be extended, in the future, to imple-
ment data related to new critical human activities in
which women and men could take non correct pos-
tures for long time due to new habits. It could be the
case in young people which use intensively tablets and
mobiles.

The method could be improved by considering the
rotation of the vertebrae around the sagittal and coronal
axes. In this way, it would be possible to simulate and pre-
dict those postures assumed, consciously or forcedly, by
workers in a typical factory workplace which are highly
asymmetric.
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