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Retaining circular features on deforming subdivision surface
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ABSTRACT

In this paper, a method is proposed for retaining size and shape of circular feature on a deforming
subdivision surface. An effective alternating local/global optimization method with projections is
used to retain features. The multi-resolution property and the ability to generate smooth surface
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from arbitrary topology of subdivision surface allows user to model freeform objects. The multi-
resolution editing of subdivision surface is especially useful for obtaining a smooth mesh by editing
a low-complexity mesh. Constrained deformation is applied to the low complexity mesh. This speed
up the computation involved, and allows the constrained deformation of complex mesh to be per-
formed in a real-time manner. The method proposed illustrates that constrained deformation can be
applied to multi-resolution model constructed with subdivision surface such that essential functional

features can be retained in a shape editing process.

1. Introduction

In engineering design, designers are always facing the
problem of modify existing design to fulfill new applica-
tion requirements. In this process, existing object shapes
may have to be deformed while special shape features
are retained by including constraints in the model based
on the application requirements. Retaining features while
modifying regular objects to freeform objects is always
a challenging problem for existing engineering CAD
software. Most of the CAD software use CSG-tree and
NURBS surface representation, which is effective in
modeling regular engineering objects and is accurate in
describing the dimension of features. However CSG tree
is inefficient in representing freeform objects. NURBS
surfaces are essentially four-sided, which limits user to
model shapes with general topology.

Subdivision surface is a better candidate than NURBS
when it comes to representing freeform objects. It is capa-
ble of generating smooth surface with irregular topol-
ogy, allowing user to model freeform object efficiently.
Multi-resolution editing is also supported when using
subdivision surface. Editing can be performed on coarse
initial mesh and propagate to fine mesh, saving time
and complexity for mesh editing. With the above advan-
tages, subdivision surface is widely used in the animation
industry. However, in engineering design, subdivision
surface is usually not adopted as modeling primitives.

This is mainly due to two reasons: 1. Subdivision sur-
face cannot be expressed explicitly and 2. The instability
caused by extraordinary vertices. This makes subdivision
surfaces difficult for modeling high precision features,
limiting them to be used in conceptual design in existing
CAD systems.

In this paper, we combine mesh deformation tech-
nique and subdivision surface for the purpose of retain-
ing features while editing the general shape of the object.
A local/global optimization scheme is used to solve
the constrained deformation problem in order to retain
the user-selected engineering feature in a deformation.
On the other hand, smoothness of model and multi-
resolution editing are achieved by using subdivision sur-
face, which facilitates user to model freeform object. We
also need to compensate the possible shrinkage due to
the application of the approximating subdivision scheme
to the model. Both the shape and dimension of the
engineering features need to be maintained after defor-
mation. The initial mesh is scaled up to compensate
the shrinkage. Given the mesh of a regular object, our
method can facilitate user in redesigning of general shape
of the object to make it more attractive. At the same
time, circular engineering features can be maintained,
saving time and effort to rebuild the engineering fea-
tures or redesign component to fit in the deformed
shape.
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2. Background and related work

There are a large amount of techniques developed for
deformation and manipulation of mesh model. We
review related work on constrained deformation and
provide some background information on subdivision
surface.

2.1. Related work

Constrained deformation always involves non-linear
optimization as many geometric properties themselves
are non-linear in nature, like angle, curvature, area and
volume. PriMo[2] formulated surface deformation prob-
lem based on elastically coupled rigid prisms and the
problem is solved by using non-linear optimization.
Eigensatz [6] preserved original shape metric by map-
ping the mesh from spatial domain to curvature domain.
The constraints proposed by this method can be non-
linear, and a non-linear optimization solver is employed.
These methods took longer time to converge than linear
methods and hard to guarantee if a large number of con-
straints are applied. A more efficient method to handle
nonlinear constraints is by using local/global optimiza-
tion method [4, 11, 13]. This class of method determines
the correspondence of each feature between initial mesh
and deformed mesh. Each vertex is projected to its cor-
responding constraints locally and then globally blends
the projected vertices by using least square method. We
use this approach on mesh deformation. The optimum
transformation of each feature is determined. The trans-
formations are then applied to features on the initial
mesh correspondingly to obtain the projected vertices.
After that, the optimum vertex position is determined by
least square method. The other type of mesh deformation
technique is based on differential coordinates [1,3,7,8].
This method preserves local properties (e.g., surface
smoothness, details) in the deformation. There is also a
class of method to limit the transformation of the han-
dle vertices to explore the local modification possibility
based on constraint [5,14]. However, constrained defor-
mation is still a challenging problem. In particular, the
method to enforce hard constraints is not well addressed.

2.2. Subdivision surface

Subdivision surface is a method to model a smooth sur-
face by successively subdividing an initial mesh following
the subdivision rules. The subdivision rules include ver-
tex insertion and corner-cutting operation. Subdivision
surface can be classified into two groups-approximating
and interpolating schemes. In the interpolating scheme,
the limit surface pass through the initial mesh. In the

approximating scheme, the limit surface only approxi-
mates the initial mesh. Though both schemes can gen-
erate smooth surface, approximating scheme generate
smooth surface with higher quality. Regular vertices are
those vertices with valence of 4 for quadrilateral mesh
or valence of 6 for triangular mesh. Otherwise, it is
an extraordinary vertex. Extraordinary vertex has differ-
ent surface connectivity with regular vertex [10,15]. For
example, the extraordinary vertices of Loop subdivision
surface are C!-continuous, while the regular vertices are
C?-continous. We employ Loop subdivision surface [9],
which is an approximating subdivision scheme applied
on triangular mesh. To achieve multi-resolution editing,
we subdivide the user input mesh into a fine mesh instead
of getting a reduced mesh from the user input mesh. We
use the original subdivision rules proposed in [9] to apply
Loop subdivision surface to refine user input mesh.

3. Method overview

There are three stages in our proposed method of model
editing. They are Shape editing, Features retention and
Initial mesh adjustment. Our method requires user to
provide a 3D mesh model as input. The target outcome
is the limit surface of a subdivision surface which is
a smooth surface with the desired freeform shape and
retained engineering features. Fig. 1 shows the proce-
dures of our method.

In the first stage, user need to provide a 3D mesh
model and specify the engineering features to be retained
under deformation. The vertex position of these features
is stored. The input mesh is taken as the initial mesh
of the subdivision surface. All the vertices of the input
mesh are the control vertices of the subdivision surface.
User edits the model by moving the control vertices. The
deformation is propagated to the limit mesh. This will
give a deformed initial mesh with desired shape as shown
in Fig. 1b.

In the second stage, we need to retain the circular engi-
neering features deformed during the editing process. We
use an alternating local/global optimization method to
retain the feature. In this stage, the isometric transforma-
tions of the features from input mesh to deformed mesh
are computed and applied to input feature vertices. These
vertices are the constraints in the optimization proce-
dure. The retaining features procedure is performed on
the initial mesh, shown in Fig. 1c. We obtain a smooth
mesh with desired shape and retained engineering fea-
tures after subdividing the feature retained mesh.

The final stage is to compensate the shrinkage of the
model due to the Loop subdivision process. Radius of the
circular features is compared before and after the subdi-
vision to determine the scaling factor of each feature. The



Figure 1. (a) User input mesh, (b) Deformation without con-
straints, (c) Deformation with constraints: Retained feature shape
from deformation, (d) Scaled up of (c) to compensate shrinkage
by Loop subdivision surface, (e) Limit surface with retained shape
and size of the features.

scaling factors are applied to the corresponding features
vertices and the initial mesh. Each scaled feature and
scaled mesh is treated as the constraint in the local/global
optimization problem to obtain the initial engineering
feature size on the smooth limit mesh as shown in Fig. le.

4. Constraint deformation

We adopted a local/ global optimization framework to
perform the constrained deformation. Bouaziz and col-
leagues [4] developed the Shape-Up method to model 3D
objects with shape constraint. A projection operator is
applied to the current point set involved in the constraint.
A shape proximity function is formulated as the squared
distance between the current point set to the projected
point set. The optimal vertices position are located by
minimizing the shape proximity function. In this paper,
we only highlight the critical procedure of this method
that we adopted. For the details of Shape-Up method,
please refer to [4].

Let the column vector of all vertices to be denoted by
X. Let the set of features be denoted as {Cy, Cy, ... ,Ci}.
For a feature C,,, there are n vertices in the current
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surface involved in Cy,, denoted as Xp,. The shape prox-
imity function for this constraint is defined as,

k
O(X) =Y Wl NuXm — PuNuX) 5 (1)

m=1

where Py, project Xy, onto constraints Cp,, Wy, is the
weight of Cp. Users are required to input the value
of the weights wp,, according to the importance of the
constraint Cp,. Ny, is the mean center matrix.

Ny, Xm gives the locations of the constrained vertices
relative to the center of Xy, as reference. Results from [4]
show that using Ny, can increase the convergence rate. It
is defined as,

Nm - Inxn - (l/n)nxn (2)

P (Xm) are the vertices that have the minimum
squared distance to the constraint domain X, and is
defined as

P(X,,) = argmin||Xc — Xm| |§ (3)

Combining all the projected vertices for all the con-
straints in the problem, equations (1) can be reformulated
as,

Egape = 1QX — PO 13 (4)

The constraint relations have no changes throughout
the optimization process. Q'Q can be pre-factorized by
Cholesky factorization. Therefore, Q is the matrix com-
bining all weighed mean center matrix, P(X) is all the
projected vertices.

We can first compute P(X) from current X; after
that, we update X by using the normal equation,
QTQX=QTP(X). Since there is no changes on the con-
straints relation throughout the optimization process, the
following iterations are linear systems that are solved
by back substitution of the updated vertices with the
pre-factorized matrix.

Detail preservation can be achieved by only allow-
ing the desired feature to perform isometric transforma-
tion while the non-preserving elements can be deformed
freely. The following discussion introduces the formula-
tion of the projective operator we applied in the above
optimization framework. As we stated in Section 3, the
target outcome is the smooth limit surface of subdi-
vision surface with retained features. Subdivision sur-
face cannot be represented explicitly such that subdivi-
sion surface cannot be formulated as projective operator.
Moreover, for the purpose of multi-resolution editing, we
decided to preserve the details on the initial mesh. The
specified feature vertices on the initial mesh are stored.
We applied the relative shape constraints in [4] on the
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initial mesh. The transformation parameters between the
initial feature vertices and the deformed feature vertices
are obtained by least squares estimation proposed by [12].
Let V' be the mean-centered initial feature and V* be
the mean-centered deformed matrix. We compute the
covariance matrix C,

c=wHlwv" (5)

We then perform singular value decomposition (SVD)
on the covariance matrix C,

C = ADBT (6)

The optimum rotation R between V' and V* is com-
puted by,

R = ASBT (7)
where
1 0 0
S=]0 1 0] if det(A)det(B) =1or
0 0 1
1 0 O
S=10 1 0 |if det(A)det(B) = -1 (8)
0 0 -1

The projected vertex is defined as,
P(V*) = V'R (9)

Vertices V on the current mesh is updated by solving
Eq. (4) with the above P(V). The dimension of Q is the
number of projected vertices times the total number of
vertices on the mesh. The dimension of PV is the number
of projected vertices times 3.

It is too restrictive to adjust feature vertices position if
we formulate the constrained deformation problem with
shape energy Egqp. only. Edges near the feature vertices
on the deformed mesh M’ are easily to get overlapped.
We included closeness energy Ej,s. and Laplacian energy
Esmooth for setting boundary and smoothing the deforma-
tion. These two energies are used to penalize the shape
deformation of the mesh.

n
Eciose = Y _ llvi — c(wp) 3 (10)

i=1

where c(v;) is the closest point of v; on the original
surface.

n
Egmooth = » || Y wi(lj — )3 (11)
i=1 {ijleE

where E denotes the edges of the mesh, I; = vx; — v]
and wj; is the standard cotangent weight for triangular

mesh[11].The total energy for constrained deformation
is the sum of the above energies,

Etotal = )\sEshape + AcEclose + AmEsmooth (12)

where Ag, As, Ay are the weights of the corresponding
energy. We used the weight of (10,5,1) throughout the
experiment.

The above summarizes the procedure of the Shape-
Up method. This method is capable of setting constraints
with explicit representation. Combining this method
with loop subdivision surface, circular features on the ini-
tial mesh can be retained. This features retained initial
mesh is then subdivided to obtain a smooth mesh.

5. Initial mesh adjustment

We assume the user input model has the desired feature
size and shape. We apply subdivision surface to pro-
vide the smoothness and multi-resolution ability of the
model. We retain the desired feature shape on the limit
surface of the deformed mesh by using the Shape-Up
method as summarized in Section 4. If we use interpolat-
ing subdivision surface scheme, the feature size can also
be maintained on the limit surface. However, the smooth
surface generated by interpolating subdivision scheme is
less desirable than that generated by approximating sub-
division scheme. We decided to use Loop subdivision
surface, one of the approximating subdivision schemes,
to provide the surface smoothness. However, the inherent
problem that comes with the Loop subdivision surface
is that the model shrinks on the subsequent subdivision

(a) - (b)
1
2

Figure 2. (a) Model A initial mesh, (b) Model A limit mesh, (
Model B |n|t|aI mesh, (d) Model B I|m|t mesh



levels. There is no general formulation for the shrink-
age of the subdivision surface. The shrinkage depends
on the initial mesh quality, the number and the position
of extraordinary vertex. Hence, each model has its own
shrinkage rate on the subsequent subdivision levels.

In order to retain the size of engineering features
on the limit surface, the most direct way is to eval-
uate the shrinkage of the feature and then determine
a suitable scaling factor to scale up the limit surface.
However, the shrinkage of each feature is different. This
depends on the extraordinary vertices near the feature.
Fig. 2 and Tab. 1 shows the shrinkage difference between
two models. They represent the same features while the
numbers of vertices representing the feature are differ-
ent. We measure the radius of the circular features on
the limit surface of the two models and compare their
difference.

Table 1. Comparison of shrinkage of features due to Loop
subdivision surface on different meshes, (Feature 1,2,3 are
indicated on F2.a).

Initial Model A Change Model B Change

radius radius (%) radius (%)
Feature 1 0.35 0.316363 9.610571 0.292578 16.40629
Feature 2 0.8 0.723115 9.610625 0.780018 249778
Feature 3 0.6 0.542337 9.6105 0.573624 4.396

(b)
(e) ®
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We evaluate the shrinkage of each feature and obtain
the compensating scale factor of each feature. We mul-
tiply each compensating scale factor to the whole initial
mesh and features vertices on the initial mesh. The scaled
initial meshes is treated as boundary energy Epoyudry and
the scaled feature vertices is treated as size energy Esiz.
The problem is then solved by using the optimization
framework discussed in Section 4. In this paper, we focus
on circular feature. We take the radius of the circular
features as the parameter to evaluate the shrinkage due
to subdivision surface and determine the compensating
scale factor. The user first select the feature vertices on
initial mesh. We perform principal component analysis to
find the cylinder axis of the user selected vertices. We first
compute the covariance matrix C of the selected vertices
on the initial mesh,

c=Vvly; (13)

We perform SVD on C. The result is shown on Eqn.
(6). Each column vector of A represents the axis of the
cylinder. Since the radial axes are the same, the cylinder
axis is either the first column A(1) or the last column A(3)
of A. The maximum point-axis distance for each axis is
denoted as D;,D,,D3. By comparing | (D3 - D;)| and |(D; -
D,)|, we obtain the cylinder axis A.. As the circular axes

(©

—

Figure 3. (a) User input mesh with feature 1 and feature 2 denoted, (b) Deformation without constraints, (c) Another view of deformed
model, (d) Deformation with constraints: Retained feature shape from deformation, (e) Scaled up of (b) to compensate shrinkage by Loop
subdivision surface, (f) Limit surface with retained shape and size of the features.
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Ay and Ay, are on the same plane, the difference between
their maximum point-axis distances is close to zero. We
denote the radius of circular feature on the initial mesh
as D’ and that on the limit surface as D*. D is defined as
the minimum distance between V; and A,

D = min | V; = Vi(AAD|]2 (14)
The compensating scale factor SF is formulate as,
F=D'/Dx (15)

There is a compensating scale factor for each feature.
Therefore there is a set of F {F1, Fp, ..., Fy }.

Let Py, be the projection operator in Epgyudry and Ps be
the projection operator in Ejiz.

Py(X') = FX' (16)
m

Epoundry = ), I1X' = Py(X)|3 (17)
i=1

Epoundry is used to find the general size of the mesh. Since
Esize is used to restore the radius of the feature. the scal-
ing factor is only applied to the radius of circular features
only, but not the height of cylinder. P is formulated as,

Py(V)) = Villzxs — (Fi— 1) (Ty1 + Tp2)]  (18)

where Ty = ArlA,T1 and Typ = A * ArT2 (19)
m

Eize = Y _ IV} = (V)3 (20)
i=1

The total energy for the initial mesh adjustment is
formulated as,

Eadjust = )\fEsize + )\hEboundry (21)

The weights (Af,A,) we used in the experiments are
(2,1). Fig. 1 and Fig. 3 to Fig. 5 show the results of our

23 vy
R .

Figure 4. (a) User input mesh, (b) Deformation without con-
straints, (c ) Retalned feature shapes on size adjusted initial mesh,
(d) Limit surface with retained shape and size of feature.

e B

&
o

Figure 5. (a) User input mesh, (b) Another view of the input
mesh, (c) Deformatlon without constralnts (d) Another view of
the deformed mesh, (e) Retained feature shapes on size adjusted
initial mesh, (f) Limit surface with retained shape and size of
feature.

Table 2. Result of adjusted mesh shown in Fig. 1.

Radius on adjusted Radius on adjusted Target
Initial mesh Limit mesh radius
Feature 1 0.415995 0.348929 035
Feature 2 0.820181 0.801573 0.8
Feature 3 0.628302 0.600672 0.60
Table 3. Result of adjusted mesh shown in Fig. 3.
Radius on adjusted Radius on adjusted Target
Initial mesh Limit mesh radius
Feature 1 1.0358 1.00641 1
Feature 2 0.553111 0.49999 0.5
Table 4. Result of adjusted mesh shown in Fig. 4.
Radius on adjusted Radius on adjusted Target
Initial mesh Limit mesh radius
Feature 1 0.553177 0.50000 0.5
Feature 2 0.554165 0.50006 0.5
Table 5. Result of adjusted mesh shown in Fig. 5.
Radius on adjusted Radius on adjusted Target
Initial mesh Limit mesh radius
Feature 1 0.541133 0.50002 0.5
Feature 2 0.530324 0.50002 0.5

experiment. Tables 2 to 5 summarize the result of ini-
tial mesh adjustment of Fig. 1, Fig. 3, Fig. 4 and Fig. 5
respectively.



6. Discussion

We have implemented our method using C++ language
on a i5-4570 3.20 GHz machine with 8GB RAM. We
use the Cholesky solver and SVD solver with the Eigen
library. The computational time for Fig. 1, Fig. 3 to Fig. 5
are 983 ms, 749 ms, 687 ms and 1014 ms respectively.
The half-edge data structure is used for representing
subdivision surface.

Results show that our method retains the size and
shape of circular features on the limit mesh of the sub-
division surface. Both the alternating local/global opti-
mization with projections framework and Loop sub-
division surface are easy to implement. Our method
utilizes the multi-resolution essence of subdivision sur-
face. The procedure for retaining feature is performed
on the coarse input mesh, reducing computation time
and effort. The initial mesh adjustment step takes the
features retained coarse mesh as input instead of eval-
uating the compensating scale factor at the beginning
and using the scale factor in the feature retaining pro-
cess. This is to avoid having a scale factor influenced by
the scaling effect on the model due to deformation. The
objective of initial mesh adjustment step is to compen-
sate the shrinkage of the features due to Loop subdivision
surface.

Though our method can retain circular features on
deforming subdivision surface, there are short com-
ings for our proposed method. Firstly, conflicts between
constraints cannot be detected. Distortion of engineer-
ing features may happen if the conflict exists. More-
over, this method does not avoid self-intersection of
edges although closeness energy and Laplacian energy
are included to penalize the deformation. Finally, subdi-
vision surface may deform the model undesirably due to
the extraordinary vertices on the input mesh.

For future work, we are interested in applying addi-
tional constraint types, like different element forms, or
feature relations like symmetry and orthogonality, or
inequality constraints like the range of distance changes
allowed for boundary vertices, to be retained on subdivi-
sion surface. Moreover, we are also interested in using the
optimization framework to adjust or perform remeshing
on the initial mesh of subdivision surface, such that we
are able to alleviate the undesired distortion on subdivi-
sion surface due to the extraordinary vertex.

7. Conclusion

We presented a framework to retain circular feature shape
and size on deforming subdivision surface. Local/global
optimization framework was used to retain circular
feature shape on initial mesh. After that, scaling factor
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of each feature was evaluated base on the difference in
radius of the circular features between the initial mesh
and the limit mesh of a subdivision surface. The scal-
ing factors were applied to corresponding features and
the initial mesh. The scaled features and meshes were
obtained by using the local/ global optimization frame-
work to determine an optimum initial mesh that com-
pensates the shrinkage due to Loop subdivision surface.
Experimental results showed that circular features shape
and size can be retained on Loop subdivision surface.
In summary, constrained deformation can be combined
with subdivision surface to retain circular feature shape
and size in a multi-resolution manner.
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