
COMPUTER-AIDED DESIGN & APPLICATIONS, 2016
VOL. 13, NO. 6, 760–767
http://dx.doi.org/10.1080/16864360.2016.1168217

Detecting local undo conflicts in multi-user CAD

David J. French , Scot Wilcox, Kevin Tew and Ed Red

Brigham Young University

ABSTRACT
Multi-user computer-aided design (CAD) is an emerging technology that facilitates collaboration by
allowing users to work on the same design at the same time. This paper provides a classification of
the types of conflicts that can occur during the use of local undo in multi-user CAD, and describes a
method for detecting those conflicts. This method can be used to prevent and warn the user about
undo conflicts as well as provide users with information about the cause of the conflict so they can
collaborate to resolve it. This method has been successfully implemented and tested in Brigham
Young University’s NXConnect multi-user CAD prototype.

KEYWORDS
Multi-user; CAD; Undo;
Conflict; Synchronous;
Collaboration

1. Introduction

Multi-user computer-aided design (CAD) is an emerg-
ing technology that promises to facilitate collaboration,
enhance product quality, and reduce product develop-
ment lead times by allowing multiple engineers to work
on the same design at the same time [11]. The Brigham
Young University (BYU) site of the NSF Center for e-
Design has developed advanced multi-user CAD proto-
types that have begun to demonstrate the advantages of
this technology.

There are many new challenges to address to ade-
quately support multi-user CAD. Several research efforts
have already been conducted to address some of these
challenges: Jing et al. and Liao et al. have studied identifi-
cation (naming) of CAD features [12,13]; Hepworth has
studied feature reservation for conflict avoidance [9]; and
Hepworth et al. and Cai et al. have studied client model
consistency [3],[10]. Undo/redo in multi-user CAD is
an important challenge that needs to be addressed more
completely.

Abowd andDix claimed that “Few people would argue
about the importance of undo,” [1]. A large engineering
company recently used an analytics tool provided byBYU
to track which buttons their designers clicked the most
in single-user CAD. They reported to the researchers
that their engineers clicked the Undo button an average
of four times more than any other single button in the
CAD application. This validates the importance of undo
in single-user CAD, and it is likely that undo will be very
important in multi-user CAD as well.

CONTACT David J. French davidfrench11@gmail.com

A method and set of principles has been developed
for detecting when an undo command in multi-user
CAD conflicts with commands performed by other users
after the command that is being undone. This method
checks for parametric dependencies (both child and
parent dependencies) between CAD features affected
by the undo command and features affected by more
recent commands from other users. It can perform this
dependency check prior to undoing the command. This
method catches syntactic conflicts and some potential
semantic conflicts that occur during local undo/redo in
multi-user CAD.

This dependency check is made faster by storing
metadata about features, so that the undo command
does not need to check its dependencies with every
other more recent command from other users. To facil-
itate this method, some metadata is stored about fea-
tures, such as the last time that features have been
edited, and by whom each feature was last edited.
Some metadata is also stored in each command regard-
ing the previous and new state of each command’s
feature.

A method for detecting conflicts in multi-user CAD
before an undo command is performed will provide at
least the following three benefits:

1. It will detect syntactic conflicts and some possible
semantic conflicts before an undo or redo command
is allowed. This will provide an opportunity to pre-
vent or resolve the conflict.

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://orcid.org/0000-0002-3202-5590
http://orcid.org/0000-0002-9321-6913
mailto:davidfrench11@gmail.com
http://www.cadanda.com


COMPUTER-AIDED DESIGN & APPLICATIONS 761

2. It provides a way to inform the local user why their
undo cannot or should not be executed and which
other user performed the conflicting command. This
allows the local user to collaborate with the user that
performed the conflicting command to resolve the
conflict. For example, the local user could ask the
other user to undo their conflicting command so
the local user’s undo command can succeed, or both
users could collaborate using standard (non-undo)
commands to resolve the conflict.

3. It provides a way to inform the local user when
anothermethod ormechanismmay bemore suitable
than local undo for accomplishing the user’s intent.
Examples of such alternative methods and mech-
anisms include standard (non-undo) commands;
manual conflict resolution tools (commonly known
as “diff” tools); and other types of undo mecha-
nisms such as selective, regional, or global undo
that could allow the local user to undo other users’
conflicting commands before undoing their own
command.

2. Background

2.1. Undo types and intent

Abowd and Dix describe two types of undo in multi-user
applications: (1) local undo, where the local user’s actions
are reverted, and (2) global undo, where the actions of all
users are undone [1]. Prakash and Knister describe other
types of undo as well, such as regional undo or selective
(arbitrary) undo [16].

Yang stated that “undo should be seen as an intention
of the user, not an aspect of system functionality,” [17].
Chen [4] states that single-user undo is most commonly
used for the following user intents:

1. Recovering from an unintended or incorrect opera-
tion

2. Learning a new feature by trial and error
3. Exploring alternatives

Prakash and Knister found that users typically use
local undo more than global undo in multi-user software
due to lack of predictability and awareness of which com-
mand global undo is going to undo [16]. Local undo also
accomplishes the intent of single-user undo better than
global undo does.

2.2. Command pattern

TheCommand Pattern is a software design pattern that is
very useful for supporting undo in both single-user and

multi-user CAD. In the Command Pattern, a historical
list of all undoable commands performed on the model
is stored [2],[6]. A representation of a command history
list is shown in Fig. 1 (from Berlage [2]). In Fig. 1, Qi
represents the state of the CAD model at a certain time,
and ci represents a specific command object. According
to Meyer, “A command object represents the informa-
tion needed to execute a user-requested operation and,
if undoing is supported, cancel it,” [15]. One way that a
command object can store this information is by storing
the state of the CAD feature before and after the feature
edited (or created or deleted). In other words, command
ci stores the states Qi−1 and Qi. An example command
object is shown in Fig. 2. When ci is performed, the state
Qi is established in the model. When ci is undone, the
state Qi−1 is established.

Figure 1. Operation history list (from Berlage [2]).

Figure 2. An example of a command object.

2.3. Linear vs. nonlinear undo

Berlage states that “undo models can be divided into
two categories: linear undo, which uses a chain of com-
mands where only the previous and next command can
be undone or redone; and nonlinear undo, which allows
the user to undo arbitrary actions,” [2]. Since commands
from each user are usually mixed in the command his-
tory list in multi-user applications, local undo requires
nonlinear undo to be supported.



762 D. J. FRENCH ET AL.

2.4. CAD feature dependencies

In CAD, features can have multiple parent features (fea-
tures it references) and multiple child features (features
that reference it). Fig. 3 (left) shows a sketch (at the base
of the model) that has multiple child and grandchild fea-
tures. Fig. 3 (right) shows an extrude that has multiple
parent and grandparent features.

2.5. Undo conflicts inmulti-user CAD

As in other multi-user systems, conflicts can occur dur-
ing local undo in multi-user CAD due to its nonlin-
ear nature and due to dependencies between commands
from different users. Due to the high number and com-
plexity of dependencies between CAD features, these
conflicts are more likely to occur and are more difficult
to detect than conflicts in many other types of multi-user
applications.

A conflict occurs in local multi-user undo when:

• the undo does not or cannot provide the expected
result due to commands that were performed by other
users after the command that is being undone, or

• the undo affects the results of commands that were
performed by other users after the command that
is being undone. So undo can cause unintended
consequences for either the local user or for other
users.

Consider the following history list, where Ai refers
to commands performed by User A, and Bi refers to
commands performed by other users:

A1 B1 A2 B2 B3

WhenUserAperforms an undo command, local undo
will attempt to revert the A2 command. If A2 is indepen-
dent of B2 and B3, then no conflicts will occur. However,
if there are dependencies between A2 and either B2 and
B3, then a conflict may occur.

2.5.1. Syntactic and semantic conflicts
There are two types of conflicts that can occur: (1) syn-
tactic conflicts, and (2) semantic conflicts. Contero et al.
suggest that syntactic deficiencies in CAD are deficien-
cies in themathematical validity of themodel (e.g. invalid
CAD features), and semantic deficiencies are aspects of
the model that fall short of the user’s design intent,
despite being mathematically valid [7].

There are several types of syntactic and semantic
conflicts that can occur during local undo in multi-
user CAD. These conflicts need to be understood and
addressed to preserve the integrity of model data and to
preserve design intent during multi-user design collabo-
ration.

2.6. Previous work

Multi-user conflicts and undo conflicts have been studied
extensively for multi-user text editing [4, 16, 17]. Many
multi-user text editing conflicts can be resolved automat-
ically using a method known as operational transform.
Significant conflict scenarios not handled by operational
transform in multi-user text editing happen when two
commands operate on the same position or adjacent
positions [16]. Conflict detection is as simple as check-
ing if two commands operate on the same or adjacent
characters.

Conflict detection and resolution is more difficult in
multi-user CAD than in multi-user text editing, because
each CAD feature can and frequently does have mul-
tiple parent features and multiple child features. Some
research has been conducted for detecting conflicts in
multi-user CAD.

Liu et al. compare dependence between two concur-
rent commands based on whether the commands create
Boolean operations that intersect one another or not [14].
This requires a CAD kernel-level comparison between
the results of the two commands. When checking depen-
dencies between the command being undone and more
recent commands from other users, this would require
executing the undo command and comparing the results

Figure 3. Child features of a sketch feature (left), and parent features of an extrude feature (right).



COMPUTER-AIDED DESIGN & APPLICATIONS 763

of that command with every other command that has
been executed by other users since the command that is
being undone. It would also not catch all conflicts such
as parametric dependencies between features that do not
directly involve a Boolean operation. For example when
a sketch is created on a face, the sketch is dependent on
the face even though no Boolean operation connects the
sketch and the face.

Cheng et al. compare the dependence between the
command being undone and recent commands from
other users based on whether the recent command from
another user is dependent on (i.e. a “child” of) the fea-
ture being undone [5]. This method will detect some
conflicts but fails to detect if prerequisite “parent” fea-
tures still exist before allowing a feature to be undone to
a non-deleted state. Cheng et al.’s method also requires
the undo command to be checked for dependence with
every more recent command from other users. Gao et al.
use the same method as Cheng et al., but extend it apply
to commands that involve multiple operations [17]. The
same limitations apply to Gao et al’s method as apply to
Cheng et al.’s.

3. Classification of undo conflicts

A classification of the types of conflicts that can occur
during local multi-user undo/redo has been developed.
These conflict types can be understood by considering
the Pre-Operation State and Post-Operation State of a
feature (see Tab. 1). The Pre-Operation State is the state
a feature is in prior to any operation, including prior to
an undo operation. The Post-Operation State of a feature
is the state a feature is intended to be in after an oper-
ation occurs, including after an undo operation occurs.
For example, when undoing a delete operation, the undo
operation is really “re-creating” the feature. Thus the Pre-
Operation state is null (the feature does not exist in its
deleted state), and the Post-Operation State is not null
(the deletion is being undone, thus creating the feature
again). If the Pre-Operation State is not null (if undo is
deleting or editing a feature), there are two main types of
conflicts that can occur:

• Type A: Self-Self conflicts (4 subtypes)
• Type B: Self-Child conflicts (4 subtypes; can be treated

as 2 subtypes)

Table 1. Pre- and post-operation states of a feature.

Post-Operation State

Deleted (null) Exists (not null)

Pre-Operation State Not yet created (null) n/a Create
Exists (not null) Delete Edit

If the Post-Operation State is not null there is onemain
type of conflict that can occur:

• Type C: Parent-Self conflicts (4 subtypes; can be
treated as 2 subtypes)

3.1. Type A (self-self) undo conflicts

Type A conflicts occur when the undo command is oper-
ating on a feature that another user has modified since
the command being undone was originally performed.
For example, Fig. 4 (left) walks through such a situa-
tion. Because User 2 edits the extrude that User 1 created
before User 1 attempts his undo operation, a Type A
conflict occurs.

3.2. Type B (self-child) undo conflicts

Type B conflicts occur when other users have performed
more recent commands that create or edit features that
are dependent on the feature being undone. In Type B
conflicts, it may be possible for the undo to occur, but the
undo may negatively affect the recent actions or intent of
other users. Fig. 4 (right) shows how this can occur. Since
User 2 draws a sketch on the extrude User 1 creates, the
sketch is dependent on the extrude. This results in a Type
B conflict when User 1 tries to undo the creation of his
extrude.

3.3. Type C (parent-child) undo conflicts

Type C conflicts occur when other users have performed
commands that affect the validity or intent of the undo
being performed, because the necessary parent features
either no longer exist or have beenmodified in a way that
may conflict with the intent of the undo. In Fig. 5 (left) we
see a TypeC conflict.WhenUser 1 tries to undo his delete
command, the original sketch his extrude was based on
does not exist anymore; therefore his extrude cannot be
un-deleted.

3.4. Undo conflict subtypes and suggested system
responses

Table 2 describes the various subtypes of undo conflicts,
their implications, and the suggested system response for
each case.

4. Method for detecting undo conflicts

To detect Type A (Self-Self) conflicts, we store a single
Operation Number (ON) on the client that tags fea-
tures with an integer each time they are created or edited



764 D. J. FRENCH ET AL.

Figure 4. Examples of Type A (left) and Type B (right) undo conflicts.

Figure 5. Example of a Type C (Parent-Self ) undo conflict (left) and successive undo commands (right).



COMPUTER-AIDED DESIGN & APPLICATIONS 765

Table 2. Undo conflict subtypes, implications, and suggested system responses.

Type Description Implications Suggested System Response

A.1 The intent of the undo operation is to delete a
feature, but that feature has been deleted
by another user.

The undo could be allowed since the result is
the same as the other user’s intent.

“The feature you are trying to undo has already
been deleted.”

A.2 The intent of an undo operation is to delete a
feature, but that feature has been recently
edited by another user.

Allowing the undo is syntactically possible;
however, the deletionmay interfere with the
other user’s intentions.

“The feature you are trying to undo has been
edited by User X. Your undo operation may
conflict with User X’s design intent. Do you wish
to proceed?”

A.3 The intent of an undo operation is to edit a
feature, but that feature has been deleted
by another user.

The feature could be re-created back to its
pre-edit state; however, this may interfere
with the other user’s intentions for deleting
the feature.

“The undo operation is not allowed because
the feature you are trying to undo has been
deleted.”

A.4 The intent of an undo operation is to edit a
feature, but that feature has been recently
edited by another user.

The undo-edit could be allowed syntactically,
but it may interfere with the other user’s
intentions.

“The feature you are trying to undo has been
edited by User X. Your undo operation may
conflict with User X’s design intent. Do you wish
to proceed?”

B.1/B.2 The intent of an undo operation is to delete a
feature, but child features have been (B.1)
created or (B.2) recently edited since the
most recent command performed by the
local user.

Allowing undo to delete the feature will
invalidate child features.

“The undo operation is not allowed because the
feature you are trying to undo has child features
that have been recently created or edited by
User X.”

B.3/B.4 The intent of an undo operation is to edit a
feature, but child features have been (B.3)
created or (B.4) recently edited by another
user.

Allowing undo to edit the feature may cause
syntactic or semantic conflicts.

“The feature you are trying to undo has child
features that have been recently created or
edited by User X. Your undo operation may
conflict with User X’s design intent. Do you wish
to proceed?”

C.1/C.2 The intent of an undo operation is to (C.1)
create or (C.2) edit a feature, but one of the
feature’s parent features have been deleted
by another user.

Without the prerequisite parent features, the
undo operation cannot put the feature back
to its intended state.

“The undo operation is not allowed because the
feature you are trying to undo depends on
parent features that have been deleted.”

C.3/C.4 The intent of an undo operation is to (C.3)
create or (C.4) edit a feature, but one of the
feature’s parent features has been recently
edited by another user.

The feature may not be able to be restored to
its intended state.

“The feature you are trying to undo has parent
features that have been edited by User X. Your
undo may or may not be successful in returning
to its previous state. Do you wish to proceed?”

by someone. The ON increments on every command
applied to the model from either the local user or other
users. For example, if we start with an empty part, and
then create two features, the first feature would have an
ON of 1 and the second feature would have an ON of
2. If another user edited the first feature, it would then
have an ON of 3. We store that number in the undo
operation that gets made when the feature is created,
so that when the user tries to undo, we can compare
the undo operation’s number to the feature’s current
Operation Number to see if the local user was the last
person to create or edit that feature. In this fashion we
know when a feature involved in an undo dependency
has been changed by another user, which might cause
a conflict.

To detect Type B (Self-Child) conflicts, we compare
the Operation Number with that of the child features of
the feature to be undone. If any are greater than the parent
ON, we know that someone has edited that child feature
since the local user’s original action was performed. In
this case, a feature’s children are known since the undo
dependency check happens before the undo is allowed to
be performed, and the dependent children can be queried
from the API directly.

To detect Type C (Parent-Self) conflicts, we have to
store a list of parent features each time the Pre-Operation

State is not null. This list is updated every time a state is
“left”. Before an undo occurs to go back to the prior Pre-
Operation State, the model is checked to ensure that (a)
the parent features still exist, and (b) the parent features
have not been edited by other users since the previ-
ous state was left. In order to make sure (b) is true, we
compare each parent feature’s ON with the undo opera-
tion’s saved ON and make sure they are all less than the
saved ON.

4.1. Successive undo commands bymultiple users

We also allow multiple users to undo in succession. To
facilitate this, we store the previous Operation Number
of a feature in the undo operation, that is, the ON the
feature was tagged with before the user’s current ON.
When undo is performed, the feature is re-tagged with
its previous integer. This allows the user who operated on
a feature before the local user to successfully undo their
previous change, thus allowing users to collaborate to
undo their operations in the reverse order of when those
actions occurred. Fig. 5 (right) shows two users collab-
orating with successive undo commands to resolve User
1′s undo conflict. If we did not reset the Operation Num-
ber on the feature involved in the undo, then the other
client will still detect that the feature has been changed



766 D. J. FRENCH ET AL.

even though the local user’s undo command restored the
feature to its prior state.

4.2. Handlingmultiple operations in a single user
command

It is possible for a single user command to contain mul-
tiple operations. For example, a user selects three CAD
features and deletes them in a single command. That
user command would contain three operations (deleting
each of the three features). It is possible for one of the
operations in a command to fail the conflict detection
check, although the other operations pass the conflict
detection check. In this case, we suggest that it may be
most practical to disallow the undo of all operations in
that command, since the user likely expects the entire
command to succeed or fail.

4.3. Depth of dependency checking

Note that since grandchild/parent or great-grandchild/
parent features might have been created, deleted, or
recently edited by other users, a decision needs to be
made as to how many layers of feature dependencies to
check. In a large CAD model with many inter-feature
dependencies, it might be impractical to check all levels
of child features to see if any have been newly created or
edited since the user’s most recent command. Our imple-
mentation only checks the first level of dependent child
features.

4.4. Redo

The method given is applicable to redo as well as undo.
Following anundo command, it is possible for other users
to perform commands that will conflict with the local
user’s subsequent redo command. The conflict detection
method and system response described for undo can be
similarly applied to redo.

5. Results

This undo conflict detectionmethodwas implemented in
BYU’s NXConnect prototype. The prototype succeeded
at detecting all of the conflict types described above. The
screenshots shown in Figures 4 and 5 demonstrate the
NXConnect prototype responding appropriately to each
conflict type.

6. Conflict prevention and resolution (future
research)

The method described in this paper provides a method
for detecting conflicts that would happen if an undo or

redo operation was to be performed. Once the conflict
is detected, the software can prevent the undo command
frombeing performed, and the user can be given valuable
information to help them resolve the conflict, or to at least
understand why their undo command failed.

Future research could be conducted on multi-user
design strategies for preventing conflicts, such as assigning
users to work in separate, independent regions of the
model. Other future research could study enhanced
methods for conflict resolution, such as providing a “diff”
tool to allow the user to select which version of themodel
they want to keep when multiple, conflicting results are
possible from an undo command.

7. Summary

Detecting conflicts in local undo in multi-user CAD pre-
vents model corruption and provides an opportunity for
the users involved in the conflict to collaborate to resolve
conflicts. This is an important technical challenge to
address in multi-user CAD since undo is such a com-
monly used command, and since detecting conflicts in
local multi-user undo is a prerequisite for resolving those
conflicts. A method for detecting conflicts in multi-user
CADbefore an undo command is performedwill provide
at least the following three benefits:

1. It will detect syntactic conflicts and some possible
semantic conflicts before an undo or redo command
is allowed. This will provide an opportunity to pre-
vent or resolve the conflict.

2. It provides a way to inform the local user why
their undo cannot or should not be executed and
which other user performed the conflicting com-
mand. This allows the local user to collaborate
with the user that performed the conflicting com-
mand to resolve the conflict. For example, the local
user could ask the other user to undo their con-
flicting command so the local user’s undo com-
mand can succeed, or both users could collaborate
using standard (non-undo) commands to resolve the
conflict.

3. It provides a way to inform the local user when
anothermethod ormechanismmay bemore suitable
than local undo for accomplishing the user’s intent.
Examples of such alternative methods and mech-
anisms include standard (non-undo) commands;
manual conflict resolution tools (commonly known
as “diff” tools); and other types of undo mecha-
nisms such as selective, regional, or global undo
that could allow the local user to undo other users’
conflicting commands before undoing their own
command.



COMPUTER-AIDED DESIGN & APPLICATIONS 767

A classification of the types of conflicts that can occur
during local undo in multi-user CAD has been devel-
oped, and a method for detecting and warning about
these conflicts has been provided. This method has been
successfully implemented and tested in BYU’s NXCon-
nect multi-user CAD prototype.

8. Acknowledgement

The authors would like to thank the NSF Center for e-
Design and the industry sponsors of the BYU e-Design
site for funding this research.

ORCID

David J. French http://orcid.org/0000-0002-3202-5590
Ed Red http://orcid.org/0000-0002-9321-6913

References

[1] Abowd, G. D.; Dix, A. J.: Giving undo attention, Interact-
ing with Computers, 4(3), 1992, 317–342. http://dx.doi.
org/10.1016/0953-5438(92)90021-7

[2] Berlage T.; Genau A.: From Undo to Multi-User Applica-
tions, Human Computer Interaction, 733, 2003, 213–224.
http://dx.doi.org/10.1007/3-540-57312-7_70

[3] Cai, X.; He, F.; Jing, S.; Liu, H.: A consistency and
awareness approach to naming merged faces in col-
laborative solid modeling, International Conference on
Computer Supported Cooperative Work in Design,
2008, 803–807. http://dx.doi.org/10.1109/CSCWD.2008.
4537082

[4] Chen, D.; Sun, C.: Undoing any operation in collaborative
graphics editing systems, International ACMSIGGROUP
Conference on Supporting Group Work, 2001, 197–206.
http://dx.doi.org/10.1145/500286.500316

[5] Cheng, Y.;He, F.; Xu, B.;Han, S.; Cai, X.; Chen, Y.: Amulti-
user selective undo/redo approach for collaborative CAD
systems, Journal of Computational Design and Engineer-
ing, 1(2), 2014, 103–115. http://dx.doi.org/10.7315/JCDE.
2014.011

[6] Command Pattern, Wikipedia.org, 2014, http://en.
wikipedia.org/wiki/Command_pattern. [Accessed: 11-
Dec-2014].

[7] Contero, M.; Company, P.; Vila, C.; Aleixos, N.: Product
data quality and collaborative engineering, IEEE Com-
puter Graphics and Applications, 22(3), 2002, 32–42.
http://dx.doi.org/10.1109/MCG.2002.999786

[8] Gao, L.; Lu, T.; Gu, N.: Supporting semantic maintenance
of complex Undo operations in replicated Co-AutoCAD
environments, International Conference on Computer
Supported Cooperative Work in Design, 2009, 84–89.
http://dx.doi.org/10.1109/CSCWD.2009.4968039

[9] Hepworth, A.; DeFigueiredo, B.; Shumway, D.; Fronk, N.;
Jensen, C. G.: Semantic conflict reduction through auto-
mated feature reservation in multi-user computer-aided
design, International Conference on Collaboration Tech-
nologies and Systems, 2014, 56–63. http://dx.doi.org/10.
1109/CTS.2014.6867542

[10] Hepworth, A.; Tew, K.; Trent, M.; Ricks, D.; Jensen, C.
G.; Red, W. E.: Model Consistency and Conflict Res-
olution With Data Preservation in Multi-User Com-
puter Aided Design, Journal of Computing and Infor-
mation Science in Engineering, 14(2), 2014, 021008.
http://dx.doi.org/10.1115/1.4026553

[11] Hepworth, A. I.; Tew, K.; Thomas, N.; Mark, B.; Jensen,
C. G.: Automated Conflict Avoidance in Multi-user
CAD, Computer-Aided Design & Applications, 11(2),
2013, 141–152. http://dx.doi.org/10.1080/16864360.2014.
846070

[12] Jing, S.; He, F.; Liu, H.; Liao, B.: Conflict Analysis in Repli-
cated Collaborative Solid Modeling Systems, Computer
Graphics and Virtual Reality, 2006, 175–181.

[13] Liao, B.; He, F.; Jing, S.: Replicated collaborative solid
modeling and naming problems, Conference on Com-
puter Aided Design and Computer Graphics, 2005, 3–8.
http://dx.doi.org/10.1109/CAD-CG.2005.72

[14] Liu, H.; He, F.; Li, X.; Huang, Z.: A less constraint
concurrency control and consistency maintenance in
collaborative CAD system, International Conference
on Computer Supported Cooperative Work in Design,
2010, 104–109. http://dx.doi.org/10.1109/CSCWD.2010.
5471994

[15] Meyer, B.: Object-Oriented Software Construction, Pren-
tice Hall, Santa BarbaraCA, 1988, 1073.

[16] Prakash, A.; Knister, M. J.: A framework for undo-
ing actions in collaborative systems, ACM Transactions
on Computer-Human Interaction, 1(4), 1994, 295–330.
http://dx.doi.org/10.1145/198425.198427

[17] Yang, Y.: Undo support models, International Jour-
nal of Man-Machine Studies, 28(5), 1988, 457–481.
http://dx.doi.org/10.1016/S0020-7373(88)80056-7

http://orcid.org/0000-0002-3202-5590
http://orcid.org/0000-0002-9321-6913
http://dx.doi.org/10.1016/0953-5438(92)90021-7
http://dx.doi.org/10.1016/0953-5438(92)90021-7
http://dx.doi.org/10.1007/3-540-57312-7_70
http://dx.doi.org/10.1109/CSCWD.2008.4537082
http://dx.doi.org/10.1109/CSCWD.2008.4537082
http://dx.doi.org/10.1145/500286.500316
http://dx.doi.org/10.7315/JCDE.2014.011
http://dx.doi.org/10.7315/JCDE.2014.011
http://en.wikipedia.org/wiki/Command_pattern
http://en.wikipedia.org/wiki/Command_pattern
http://dx.doi.org/10.1109/MCG.2002.999786
http://dx.doi.org/10.1109/CSCWD.2009.4968039
http://dx.doi.org/10.1109/CTS.2014.6867542
http://dx.doi.org/10.1109/CTS.2014.6867542
http://dx.doi.org/10.1115/1.4026553
http://dx.doi.org/10.1080/16864360.2014.846070
http://dx.doi.org/10.1080/16864360.2014.846070
http://dx.doi.org/10.1109/CAD-CG.2005.72
http://dx.doi.org/10.1109/CSCWD.2010.5471994
http://dx.doi.org/10.1109/CSCWD.2010.5471994
http://dx.doi.org/10.1145/198425.198427
http://dx.doi.org/10.1016/S0020-7373(88)80056-7

	1. Introduction
	2. Background
	2.1. Undo types and intent
	2.2. Command pattern
	2.3. Linear vs. nonlinear undo
	2.4. CAD feature dependencies
	2.5. Undo conflicts in multi-user CAD
	2.5.1. Syntactic and semantic conflicts

	2.6. Previous work

	3. Classification of undo conflicts
	3.1. Type A (self-self) undo conflicts
	3.2. Type B (self-child) undo conflicts
	3.3. Type C (parent-child) undo conflicts
	3.4. Undo conflict subtypes and suggested system responses

	4. Method for detecting undo conflicts
	4.1. Successive undo commands by multiple users
	4.2. Handling multiple operations in a single user command
	4.3. Depth of dependency checking
	4.4. Redo

	5. Results
	6. Conflict prevention and resolution (future research)
	7. Summary
	8. Acknowledgement
	ORCID
	References

