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ABSTRACT
This paper points out the main design goals of a novel representation scheme of geometric-
topological data, named Linear Algebraic Representation (LAR), characterized by a wide domain,
encompassing 2D and 3D meshes, manifold and non-manifold geometric and solid models, and
high-resolution 3D images. To demonstrate its simplicity and effectiveness for dealing with huge
amounts of geometric data, we apply LAR to the extraction of a clean solid model of the hepatic
portal vein subsystem frommicro-CT scans of a pig liver.
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1. Introduction

Technological advances made it possible to acquire large
sets of biomedical data at a fast rate and affordable costs.
In turn, the easiness of producing and collecting data in
digital form has triggered a progressive paradigm shift
from experiments on model organisms to simulation
based on virtual prototypes and mathematical modeling
[21, 22, 26, 45, 47, 3].

The capability to extract geometrical models from
medical images fosters the development of quantitative,
evidence-based medicine, where laboratory and clinical
observations are cumulated and made accessible to inte-
grative research [22]. In the near future, the collected
knowledge of multifarious physiological subsystems on a
hierarchy of dimensional scales and of a variety of biolog-
ical functions will be formalized, catalogued, organized,
shared and combined in many ways, providing inte-
gration across subsystems, temporal and spatial scales,
biomedical and bioengineering disciplines, to give rise to
personalized healthcare [3, 22, 47, 21].

Consistently with the availability of quantitative data,
the interest in physically-based simulations, customary in
engineering CAD, is now growing also in medicine, with
the clinical aimof getting a better understanding of physi-
ology andpathologies on a single-patient basis, using per-
sonalized models extracted from patient’s body scans. A
meaningful example of this trend, akin to the application
we focus on in this paper (the extraction of the liver por-
tal vein system), is provided by the current developments
in techniques aiming at providing surgeons with accu-
rate, patient-specific guidelines when designing partial
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hepatic resections for the treatment of liver tumors [37,
24, 23].

The rising applications of 3D medical modeling [25],
computer-based training of medical doctors, computer-
assisted surgery, etc. call for the convergence of meth-
ods and know-hows from computer imaging, computer
graphics, geometric/solid modeling, and physical mod-
eling and simulation. Similar challenges are posed also
by more established endeavors, such as materials sci-
ence—think of soft matter, engineered surfaces, nano-
materials and meta-materials—and biophysics, where
modeling issues range from the molecular/protein level
tomulti-scale modeling of subcellular organelles, cellular
structures, tissues and organs. Serious progress in these
directions demand major innovations, from cooperative
collaboration to multi-physics support, where different
field equations imply different geometric structures at the
level of basic descriptive data, to enhanced robustness
toward scale mismatch in coupled problems, complex-
ity of the simulation environment, terascale number of
elementary entities or agents.

As a contribution to these efforts, we present here
a novel representation scheme [14] which unifies the
treatment of images, meshes and polyhedral data, and
requires the minimum amount of storage for a complete
representation of their topology and geometry.

1.1. Previous work

The foundational concept of representation scheme in
solid modeling as a mapping between mathematical
models and computer representations, was defined at
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Rochester by the Production Automation Project, led by
Herbert Voelcker andAristides Requicha at the end of the
seventies, and sparked an enormous research work in the
two following decades.

This work on representation schemes includes, among
others, [36, 35, 39, 8, 6, 10, 15, 19, 50, 2, 38, 48, 42, 40,
28, 32, 9, 18, 33, 41, 20, 34, 13, 4, 31, 29, 30, 1, 7]. It is
apparent that the totality of representation schemes for
solid modeling, in particular the so-called non-manifold
representations, provide very intricate and super-linked
data structures, most of the times paired with very spe-
cialized software functions to perform localized changes
on these data structures, in order to preserve topological
consistency.

B-splines and NURBS emerged concurrently from
research developments in numerical analysis, as the ubiq-
uitous and most useful mathematical tool to support
boundary representations of solids, and the first geom-
etry kernels were created in some universities in US
and Europe. These kernels, transferred into commer-
cial software and supported by huge investments, later
became the foundational framework for all commercial
solid modelers and the then emerging business of PLM
systems for aerospace, automotive, naval, and manufac-
turing industries.

Nowadays, while the information and communication
technologies are changing at a furious pace, the most
widely used software tools in the PLM industry are still
based on the old approach established about twenty years
ago, centered around non-manifold topology, boundary
representation, NURBS curves and surfaces, despite the
tremendous amount of research done and the continuing
technical advances in computer-aided design, geometric
computing and scientific visualization.

1.2. Our contribution

We believe that the time is ripe to radically rethink
the fundamentals of solid modeling. Web- and cloud-
based systems of the next generations urge that complex
algorithms and data structures be unified and simpli-
fied, making them document-based processing compat-
ible and strongly distributed, according to the MapRe-
duce paradigm.

In particular, with LAR we aim at providing the sim-
plest andmost general representation of topological data,
equally suitable for use in solidmodeling, basic computer
graphics and rendering, 3D printing, image processing,
geometric modeling, and meshing for physical simula-
tions. Algebraic topology provides the proper language,
where collections of d-cells are described as d-chains,
elements of a linear space, parameterized by sequences
of signed integers.

In this paper we show that most common geometric
and imaging operations reduce in LAR to simple compo-
sitions of linear operators, implemented by sparse matrix
multiplication and transposition, possibly supported by
advanced graphics hardware. We expect this approach to
be beneficial for producing the CAD tools of the next
generation, capable to face the challenge posed by the
treatment of big geometric data, when solid models are
to be derived from 3D and 4D high-resolution images. A
sample application of this sort is presented and discussed
in Section 4.

1.3. Paper organization

The present paper is organized as follows. Section 2 gives
an elementary introduction to the main definitions of
Linear Algebraic Representation, illustrated with some
simple examples of cellular spaces. Section 3 discusses
the principal topological tools in LAR and presents sev-
eral related algorithms. Section 4 is dedicated to the LAR
of images, showing how to map the structure of a d-
dimensional image to a cellular complex of d-cuboids,
and discussing how to reduce the standard morphology
operators on images to the composition of topological
operators on chain complexes. This section also contains
the main application of LAR presented in this paper, i.e.
the extraction of a well-defined solid model of the liver
portal vein system from 3D images. Section 5 summa-
rizes the current state of our prototype implementation
and points to future developments.

2. Linear algebraic representation

A representation scheme is amapping between themathe-
matical spaces to be represented by a computer system
and their symbolic representation in computer memory
[36]. The Linear Algebraic Representation (LAR) scheme
[14], uses Combinatorial Cellular Complexes (CCC) as
its mathematical domain [5], and various compressed
representations of sparse matrices [11] as its codomain.

Since LAR provides a complete representation of the
topology of the represented space, the matrix [∂d] of the
boundary operator may be used to compute the coordi-
nate representation [∂d c] of the boundary chain of any
collection c of cells, through a single operation of SpMV
multiplication [11] between theCSR (Compressed Sparse
Row) representation of [∂d] and the CSC (Compressed
Sparse Column) representation of the [c] chain.

Importantly, the matrices of coboundary operators
[δ0], [δ1], and [δ2], computable in the LAR scheme by
means of multiplications between sparse matrices, pro-
vide respectively the discrete gradient, curl, and diver-
gence on the given space decomposition. The Laplacian
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operator � is computed as a combination of boundary
and coboundary operators. Last but not least, the stan-
dard operators of mathematical morphology on images
(dilation, erosion, opening and closing) [16] are obtained
by product of sparse matrices of topological incidences
times sparse matrices of boundary and/or coboundary.

For the sake of concreteness, in the following
section we use some python notations and expressions,
often directly computable in (https://github.com/cvdlab/
lar-cc), our open-source prototype software system.

2.1. Some basic definitions and examples

The first important concept introduced by LAR is the
definition of the model of a cell complex, as composed
of a list of vertices, each of which is given as a list of
coordinates, and by one or two topological relations. The
list structures we refer to, here and in the sequel, are

modern data structures, typical of languages like python
or javascript, where the access to a list element, given its
ordinal value, requires constant time.

Definition 1 (LARmodel): A LAR model is either a
pair V, FV, or a triple V, FV, EV, where:

(1) V is the list of vertices, given as lists of coordinates;
(2) FV is a cell-vertex relation, given as a list of cells,

where each cell is given as a list of vertex indices;
(3) EV is a facet-vertex relation, given as a list of cells,

where each cell is given as a list of d vertex indices
and facet stands for (d − 1)-face of a d-cell.

2.1.1. Examples
Some very simple examples of 0D, 1D, and 2Dmodels are
displayed in Figure 1. It is to be remarked that the LAR
representation scheme is dimension-independent. Hence,

Figure 1. Images of model0d, model1d, model2d, complex2d, drawn exploded.

Figure 2. (a) LAR model with 0−, 1−, and 2−cells; (b) the triple V, FV, EV of vertices, faces and edges (indexed on vertices); (c) the
extracted boundary. Note that 2-cells have different numbers of vertices, and may be non-convex.

Figure 3. The binary characteristic matrix M2 (center) of the cellular complex in Figure 2 and its BRC (left) and CSR (right) representa-
tions.

https://github.com/cvdlab/lar-cc
https://github.com/cvdlab/lar-cc
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Figure 4. Compressed Sparse Row (CSR) matrix: (a) general case with storage in 3 arrays (image from [49]); (b) special case: LAR of d-
meshes, with binary values and same number k of non-zeros in each row, with k = d+ 1 (regular simplicial d-complexes) or k = 2d
(regular cuboidal d-complexes).

(a) (b) (c) (d)

Figure 5. Orientation of the boundary of a randomly generated cuboidal 2-complex; (a) 2-cells; (b) 1-cells; (c) exploded boundary 1-
chain; (d) coherently oriented boundary 1-chain.

(a) (b) (c)

Figure 6. Orientation of the boundary of a randomly generated simplicial 2-complex; (a) 2-cells; (b) 1-cells; (c) coherently oriented
boundary 1-chain (red).

the same data structures and algorithms can be used in
every Euclidean space.

Example 1 (0D, 1D, 2Dmodel examples): The LAR
definition of models in Figure 1 follows:

V = [[[0.,0.], [1.,0.], [0.,1.], [1.,1.], [0.5,0.5]]

VV = [[0], [1], [2], [3], [4]]

EV = [[0,1], [0,2], [0,4], [1,3], [1,4], [2,3], [2,4], [3,4]]

FV = [0,1,4], [1,3,4], [2,3,4], [0,2,4]]

model0d, model1d, model2d, complex2d

= (V,VV), (V,EV), (V,FV), (V,VV + EV + FV)

Definition 2 (Complete LARmodel.): A complete d-
model is a triple V, FV, EV, where the relations

FV and EV define the d-cells and (d−1)-cells,
respectively

Remark 1 (Complete LARmodel.): In order to com-
pute the boundary and coboundary operators ∂d and
δd−1 = ∂T, in general the lists V, FV and EV are all
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(a) (b) (c) (d)

Figure 7. Extraction of the oriented boundary of a cuboidal 3-complex: (a) cellular 3-complex; (b) complex of 2-cells; (c) (exploded)
oriented boundary; (d) exploded view from inside.

needed, since both d- and (d-1)-cells need to be explic-
itly described. However, for meshes and grids where all
cells have the same number of vertices the pair V, FV suf-
fices, since EV can be computed in linear time from FV.
These complexes (such as triangular, quadrilateral, hexa-
hedral, and regular simplicial complexes), while special,
are widely used in important applications.

3. Basic representations

Several basic representations of topology are used in the
LARCC library, including some common sparse matrix
representation: CSR (Compressed Sparse Row), CSC
(Compressed Sparse Column), COO (Coordinate Repre-
sentation), and BRC (Binary Row Compressed).

3.1. (BRC) Binary Row Compressed

We denote as BRC (Binary Row Compressed) the stan-
dard input representation of the LAR-CC computational
framework. A BRC representation is an array of arrays
of integers, with no requirement of equal length for the
component arrays. The BRC format is used to represent
a (typically sparse) binary matrix. Each array component
corresponds to a matrix row, and contains the indices of
columns that store a 1 value. Zero values are not stored.
Consider the LAR model in Figure 2. The relationships
between the BRC of FV relation, the binary matrix M2
and its CSR representation are shown in Figure 3. An
example of a general CSRmatrix is given in Figure 4 (left).
In Figure 4 (right) the special case of the CSR associated
to a simplicial mesh is discussed.

3.2. Compressed Sparse Row (CSR)matrix storage

General purpose representations combining a descrip-
tion of the boundary with a description of the interior
of the model are mostly used for physical simulation,
whereas computer graphics applications usually prefer
a boundary representation, like the set of triangles or

quads on the boundary surfaces, efficiently supported
by LAR. For example, the triangle-mesh geometry rep-
resentation used in the STL format for stereolitography,
the open standard AMF (Additive Manufacturing File)
and the ISO/ASTM standard for describing objects for
additive manufacturing processes (3D printing) can be
considered, as far as geometry is concerned, as special
cases of LAR.

3.2.1. 3D triangulations
Unstructured representations of the interior of an object
often consist of 3D tetrahedra, and store the four refer-
ences to vertices and the four references to the adjacent
tetrahedra for each tetrahedron [28, 27]. This adjacency
information is efficiently reconstructed by LAR, whose
long-term storage and transmission consists of only 4
vertex indices per tetrahedral cell.

3.2.2. Solid boundary representations
The representation scheme of topology most frequently
used by solid modelers is a decompositive representa-
tion of the boundary, to be coupled with a meshing of
the interior just in case of need. The boundary is usually
decomposed into faces, with face boundaries represented
in turn by a decomposition into edges, given as pairs
of vertices. In the case of manifold representations, stor-
ing only a subset of the binary incidence between such
boundary elements is sufficient. Usual non-manifold rep-
resentation relations include by necessity some set of
pointers between incident pairs of boundary elements,
usually circularly ordered to discriminate locally between
interior and exterior, so doubling (at least) the storage
size of the representation. Contrariwise, LAR includes
only lists of cells as unordered lists of vertex indices, and
manages equally well both manifold and non manifold
models. Figures 5 and 6 display the oriented boundaries
of LAR models of 2D cuboidal and simplicial meshes,
respectively. The extraction of the oriented boundary of
a cuboidal 3-chain is presented in Figure 7.
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3.2.3. Comparison with Baumgart’s scheme
The common reference term for comparing the mem-
ory requirement of solid boundary representations in
3D is the Winged-Edge scheme by Baumgart [6], which
makes use of relation tables with a storage occupancy
8|E| + |V| + |F|, where F, E, V stand for the sets of
boundary faces, edges and vertices, respectively. An
equivalent LAR representation of topology of the bound-
ary of a 3D solid (B-rep) needs only the storage of the
CSR(M2) sparse matrix, corresponding to the FV inci-
dence relation, and the computation of the CSR(M1)
sparse matrix, to obtain the EV relation, for a total mem-
ory size of 2|E| + 2|E|, according to [50].

3.3. Some LAR-based operations and algorithms

Several LAR-based algorithms have already been imple-
mented in our prototype python codelar-cc, mostly in
theMapReduce style:

• generation of 0- and 1-dimensional cellular com-
plexes;

• generation of simplicial and cuboidal d-complexes;
• computation of (sparse) matrices of hk-incidence rela-

tions (0 ≤ h, k ≤ d);
• computation of (d − 1)-faces (facets) of d-cells;
• computation of the all hierarchy of k-skeletons

(0 ≤ k ≤ d), based on the previous algorithm com-
bined with efficient sorting and removal of duplicates;

• computation of boundary and coboundarymatrices for
both oriented and non-oriented complexes;

• Cartesian product of cellular complexes;
• extrusion of simplicial complexes;
• computation of integrals of polynomials over polyhe-

dral domains (2D, 3D);
• generation of hierarchical chains (i.e., structures) and

cochains over a cellular complex;
• computation of the cellular complex generated as

assembly (i.e., hierarchical structure) of LAR models
and affine transformations.

4. LAR of images

In this section we mainly discuss how to map a d-image,
with normally d ∈ {2, 3}, to the coordinate represen-
tation of chains (collections of voxels) within the linear
space Cd generated by the cellular complex correspond-
ing in (generalized) row-major order to the image voxels,
using LAR.

4.1. From d-images to chains and cochains

In order to generate the coordinate representation of
a chain in a multidimensional image (or d-image), we

choose a basis of image elements—i.e., of d-cells—and a
total ordering of image voxels, then map the multi-index
identifying each d-cell to a single integer, so labeling
the cell with its ordinal position within the chosen basis
ordering.

Grid of hyper-cubes: LetNh : = (0, 1, . . . , nh − 1) be an
ordered set of integers. Then S : = N0 ×N1 × ··· ×Nd−1
is the set ofmulti-indices of elements of a d-image.

Definition 3 (d-image shape.): The shape of a d-image,
with N = n0 × n1 × ··· × nd−1 elements, called voxels or
d-cells, is the ordered set (n0, n1, · · ·, nd−1).

Definition 4 (d-dimensional row-major order): Given
a d-image of shape S = (nh), (0 ≤ h ≤ d−1) and num-
ber of d-cells N = ∏

h nh, the mapping μ : S → {0, 1, .
. . , N – 1} is a combination of multi-indices with integer
weights (w0, w1, . . . , wd−2 , 1), such that:

(i0, i1, . . . , id−1) �→ i0 w0 + i1 w1 + . . . + id−1 wd−1,

with wk = nk+ 1 nk+ 2 . . . nd−1 for (0 ≤ k ≤d − 2).

Example 2 (LAR voxels): The general hexahedral 3-cell
(with 8 vertices), depending on three indices h, i, j (page,
row, column) is obtained as the convex combination of the
vertices indexed as integers via the mapping:

μ : N0 × N1 × N2 → M

= {m|m ∈ Z, 0 ≤ m ≤ n0n1n2 − 1},
(h, i, j) �→ hn1n2 + in2 + j,

0 ≤ h ≤ n0, 0 ≤ i ≤ n1,

0 ≤ j ≤ n2,

where (n0, n1, n2) correspond respectively to the num-
ber of pages, rows, and columns of a 3-dimensional array,
called the array shape, and Nh = {0, 1, . . . , nh − 1},
(0 ≤ h ≤ 2). Therefore we have, as LAR representation of
a 3-cell (voxel):

cell[μ(i, j, k)] = [μ(i, j, k),μ(i + 1, j, k),μ(i, j + 1, k),

μ(i, j, k + 1),μ(i + 1, j + 1, k),

μ(i + 1, j, k + 1),μ(i, j + 1, k + 1),

μ(i + 1, j + 1, k + 1)]

Assuming that vertices are located on a 3D lattice of
points with integer coordinates, it is easily seen that an
explicit storage of coordinates is not required, thanks
to the explicit bijective mapping μ between the ordi-
nal index of cells and the tuples of coordinates of their
vertices.
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Figure 8a shows our model of a d-image as a cuboidal
gridwith integer coordinates. Every d-cell is identified by
a d-tuple of integer coordinates, mapped to a single inte-
ger, in order to compute the basis vector corresponding to
the cell in the linear space C3 of chains of 3-cells (voxels).

Let us remark that the matrix [∂3] of the boundary
operator C3 → C2, used to compute the boundary of
any possible subset of voxels, i.e., of any vector in the
linear space C3 of 3-chains associated with the image,
depends only on the image shape (n0, n1, n2), andmay be
computed once for all (choosing a set of standard image
shapes), and stored or transmitted accordingly.

Since the bottleneck of GPGPU implementations lies
in the moving of data from global to local memory,

our solution is to store the (sparse) matrix operator
[∂3] of n3 voxels, with n ∈ {64, 128, 256}, in Con-
stant Memory, and move just the (binary) coordinate
vectors of chains in Private Memory. The boundary com-
putation is therefore done by partitioning the image,
according to the paradigm divide et impera, as shown in
Figures 8b and 8c.

4.1.1. Frommulti-index tuples to chain coordinates
A functional implementation of a tuple → integer map-
ping may use a second-order function, that accepts the
shape of the image (in order to compute the tuple space
of indices of d-cells) in a first application, and then takes
amulti-index tuple as parameter in a second application.

(a) (b) (c)

Figure 8. 3D image portions as 3-cell complexes: (a) image portion seen exploded; (b) divide et impera paradigm; (c) reconstruction by
removal of double cells, via a sort-basedMapReduce algorithm.

(a)
(b)

(c)

Figure 9. (a) Solid model, closed and topologically correct at the resolution of the image, of a sample of spongy bone, as LAR of the
boundary of the chain of solid voxels, computedwith the GPGPU support provided byOpenCL. Compare it with the open surfaces gener-
ated bymarching-cubes, or similar algorithms, over the 3D field defined by image intensity (b), (c). Nontrivial difficulties are encountered
for closing these imperfect boundaries without topological violations.



754 A. PAOLUZZI ET AL.

This function returns the cell index in the linear address
space associated with the given shape.

The set of address tuples of d-cells (i.e. of d-
dimensional image elements) within a given image mask
is mapped to the corresponding set of (single) integers
associated with the low-level image elements (pixels or
voxels, depending on the image dimension and shape).
This total chain of the mask window is then filtered to
coordinates of image elements of the given colour (inten-
sity values) within the considered image window, and
returned as a list of integer cell indices.

In summary, when using LAR, an image is regarded as
a general 3D mesh, with full and straightforward control
of 0-,1-,2-, and 3-cells, each identified by a single signed
integer (the sign denoting the cell orientation in a chain).
The boundary of any chain (collection of cells) is com-
putable via a single SpMV multiplication. The boundary
operator (i.e., its sparse matrix) is stored once and for
all, as all allied operators (coboundary, gradient, curl,
divergence and Laplacian). An image of the boundary
model of a sample of human spongy bone, extracted
using LAR, is given in Figure 9a. Figures 9b and 9c
are conversely produced through a standard iso-surface
extraction algorithm.

4.2. Imagingmorphologywith LAR

In this section we show how to implement the four
operators of mathematical morphology, i.e., dilation, ero-
sion, opening and closing, by way of matrix operations
representing a composition of the linear topological
operators of boundary and coboundary with other inci-
dence relations. We give here just a few hints of these
computations. Thanks to its multidimensional nature,
the LAR implementation of morphological operators is
dimension-independent.

Notice that all incidence relations between chains of
different dimensions, e.g., FV and EV, can be readily
transformed in LAR to linear operatorswith sparsematri-
ces CSR(M2) and CSR(M1), respectively (see Section
3.2.3). The linear operatorsU :Cd → Cd+ 1 andD : Cd →
Cd−1, that we denote respectively as Up and Down, cor-
respond to the incidence relations FE, EV (Up) and VE,
EF (Down) in case of 2D images, and to the incidence
relations CF, FE, EV (Up) and VE, EF, FC (Down) in 3D
images. Note that, if chains are represented as (binary)
column vectors, the relation symbols should be read
from right to left: FE stands for “from Edges to Faces”,
and so on.

The morphological gradient operator is a composition
of three basic operators: a dilation, an erosion of the
input image and a subtraction of these two results. The
(coordinate representation of a) d-chain γ being given
as input, we

(i) compute its boundary ∂d (γ );
(ii) extract the (d−2)-chain ε = (D ◦ ∂d)(γ );
(iii) single-out the (d−1)-chain returned from its

coboundary δd−2(ε);
(iv) finally compute the d-chain η : = (U ◦ δd−2)(ε) ⊂

Cd.

It is possible to show that η = (⊕γ )− (	γ ), where⊕,
	 respectively denote the dilation and erosion operators,
as illustrated in Figures 10, 11 and 10.

Hence, we obtain⊕γ = γ ∪ η, and	γ = γ − η. The
other operators, i.e., opening ⊕◦	 and closing 	◦⊕, are
algebraically computable in the standard way [43]. The
component steps of dilatation and erosion operators on
a small 2D image portion are displayed and discussed in
Figure 12.

(a) (b)

Figure 10. Consider the random chain γ ∈ C2 of white pixels of an image: (a) original PNG image; (b) exploded model of |γ | ⊂ E3
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(a) (b) (c) (d) (e)

Figure 11. Subimage 128× 128 example: (a) input chain γ ∈ C2 (white) ; (b) extraction of the boundary chain β = ∂2 (γ ) ∈ C1 ; (c)
chainη = VE(β) ∈ C0 ; (d) chainβ2 = FV(η) ∈ C2 ≡ (FV ◦ VE ◦ ∂2)(γ ); (e) from the chainβ2 the dilation componentβ2 − γ (yellow),
and the erosion component β2 ∩ γ (cyan) are obtained.

(a) (b) (c) (d) (e)

Figure 12. Subimage 64× 64: (a) input chain γ ∈ C2 ; (b) chain β = ∂2 (γ ) ∈ C1 ; (c) chain (VE ◦ ∂2)(γ ) ∈ C0 ; (d) (EV ◦ VE ◦ ∂2)(γ )
∈ C1 ; (e) chain β2 = (FE ◦ EV ◦ VE ◦ ∂2)(γ ) ∈ C2, exhibiting the dilation component chain DIL(β2)(γ ) = β2 − γ (yellow), and the
erosion component chain ERO(β2)(γ ) = β2 ∩ γ (cyan).

4.3. Extraction ofmodels from images

Biomedical applications require fast performances with
big geometric data, for topological tasks such as model
extraction from 3D images. In medical images density
values represent scalar fields (cochains) over cubical cel-
lular complexes, and LAR is used to guarantee topologi-
cally correct 3D image segmentation as well as to extract
(enumerative) solid models subsequently smoothed out
via Laplacian smoothing. This approach has the nice fea-
ture that the entire image is partitioned into a set of
cochains associated with field values, including the inter-
stitial space, thus providing a well-defined mesh both of
the relevant features and of their outer space.

In particular, any portion of a d-image (2 ≤ d ≤ 4)
can be seen as a d-chain in the linear space of chains
induced by a regular d-cubical decomposition of the
bounded d-cuboidal image space, delimited by two
extreme picture elements of minimum and maximum
multi-indices.

Because of the isomorphism between a d-complex S
and its dual S*, any d-image subset c ⊂ S(d) can be rep-
resented as a 0-chain c* ⊂ S*(0), and stored as a column
vector of binary coordinate representation CSC(c). Since
the structure of the space decomposition does not depend
on the image content, but only on the shape of the image,
the boundary/coboundary matrices of images are com-
puted once for all, and stored/transmitted in CSR format
for the most used image shapes.

The stored content of any image chain (subset of
image elements–either pixels or voxels) shall be seen
as a cochain associated to the given chain, and its
discrete integrals (e.g. the volume, or surface area, or
inertia moments) or other chains to be computed by
means of discrete differential operators, shall be com-
puted accordingly, by the proper SpMspVmultiplication,
taking appropriate benefits by advanced computational
hardware, e.g., by GPGPU methods.

In conclusion, we would like to remark that anymodel
mesh, either of the internal or the external surface,
using either unstructured (triangle, tetrahedra) or struc-
tured (quadrilaterals, hexaedra) or more general convex
cells, can be stored on computer media, or transmit-
ted on communication networks, using LAR as efficient
representation of topology and as support for curved
geometry.

4.4. Extraction of the liver portal vein system

Venous systems are called portal when a capillary bed
pools into another capillary bed through veins, without
first going through the heart. The hepatic portal system
is the system of veins comprising the liver portal vein and
its tributaries. The liver is a vital organ of all vertebrates.
In turn, hepatic vasculature is essential to the liver func-
tion. A good assessment of individual liver vasculature
is preliminary to hepatic surgery. While the macroscopic
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Figure 13. The exterior and a cross-section of the portal vein system through the liver sample (top). Images of a vein interior (bottom).
Note the mesh of quadrilaterals.

structure of the hepatic vasculature is well studied, the
microvasculature is not yet fully understood.

Several techniques have been applied to investigate
models of the liver unit [12], but several issues are still
open. Current knowledge is limited, in particular, by
the resolution of imaging techniques. From sequential
cryosections of autopsy specimens of human liver, [46]
reconstructed polyhedral modules of the microvascula-
ture, having 7 to 9 facets, whose size was in the range
0.3 to 0.9 mm. [17] used scanning electronmicroscopy of
vascular corrosion casts to study the liver lobule anatomy.
These and other authors have examined only a small
piece of liver tissue, comprising just a few lobules.

The present work is part of a collaborative effort with
a Czech research team based at the University of West
Bohemia and the Charles University, integrating spe-
cialists in biomechanics, biophysics, informatics, liver
surgery, radiology, and histology. We aim at increasing
both the scope and the resolution of 3D liver imag-
ing—an arduous goal, but crucial to enhance our under-
standing of liver lobule anatomy and function.

Data from scanning electron microscopy of corrosive
casts of pig liver were used to prepare our input images.
Their resolution is (0.004682 mm)3. The size of the image
subset selected for visualization is 370× 228× 237.
Figure 13 illustrates the extracted 3Dmodel of the portal
vein system. Its topology is correct (the boundary repre-
sentation is closed and valid) at the resolution of the input
image, and its geometry is accurate. This solid model will
be used to perform computational fluid dynamics (CFD)
simulations of blood flow within the portal system.

5. Conclusion

This paper demonstrate that LAR—a general-purpose
framework for solid and geometric modeling—has the
capability of generating topologically valid and geomet-
rically accurate boundary models of complex biologi-
cal systems extracted from 3D high-resolution imag-
ing. Our prototype implementation of LAR is an inte-
gral part of a permanent effort to rethink the foun-
dations of solid modeling, aiming at simplifying and
generalizing its data representation and disentangling
its main algorithms, in order to produce a computa-
tional framework well adapted to the new world of
big geometric data over cloud- and web-based infras-
tructures. This long-term project has already achieved
some tangible results in applications to the extraction
of solid models from 3D medical images (as docu-
mented in this paper) and to the simplified generation of
building models for indoor mapping and the Internet of
Things [44].

The prototype implementation (done in Python) is
currently in progress. We are presently working on a
novel approach to Boolean operations on cellular com-
plexes, designed to be multidimensional, variadic and
well-suited to distributed implementation over big geo-
metric datasets. The next step will be to consolidate
LAR in the form of a Haskell library, characterized by
a strongly-typed reference implementation with well-
defined API and function signatures, suitable for being
subsequently compiled to C and to JavaScript, the lan-
guage of modern web.
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We see great opportunities in this project: (i) LAR uses
just arrays of signed integers, instead of complicated data
structures, to describe 1D/2D/3D/4D meshes/images
and topologies of any sort and size; (ii) whenever nec-
essary, LAR uses distributed algorithms of MapReduce
kind; (iii) it is based on the well-established conceptual
infrastructure of algebraic and combinatorial topology.
On the downside, the main threat to this project is a
dearth of funding. The prototype implementation under-
way is adequate for demonstration purposes. However,
for LAR to be really successful, it would need a dedicated
company and investments enabling the development of
an optimized and portable library for general use.
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