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Retrieval of solid models based on assembly similarity
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ABSTRACT
The research objective is to (re)use geometric part information tomine databases for process design
information. Specifically, this research investigates an approach to use assembly solidmodel similar-
ity to mine databases for assembly work instructions from the perspective of an automotive original
equipment manufacturer. Results from this research will allow generation of assembly work instruc-
tions based on input of a solid model. This research presents an approach to determine similarity
between query assembly solid model and database assembly solid models. In this method, similar-
ity scores for the overall assembly solid model are used in conjunction with the similarity score of
individual components. These similarity scores are obtained by computing histogram-based similar-
ity scores, surface area differences and tessellation area distribution differences. A multi-index sort
of the computed values for each (query-database) pair of assembly solid models results in a list of
similar assembly solid models based on a query assembly solid model.

In addition, human designers were asked to identify similar geometric models in a controlled
study. The results from the human study and the similarity algorithm are compared. It is found that
using assembly model similarity, in conjunction with component model similarity, yields better cor-
relation to survey results, as compared to the correlation between assembly model similarity alone
and survey. Testing also shows that the proposed method has a statistically significant better cor-
relation to survey results than traditional histogram based similarity approach. The approach to
determine similarity of assembly solid models will be used to mine databases of solid models and
retrieve their related assembly work instructions.
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1. Frame of reference

This research attempts to help bridge the gap between
design and production. With respect to this, the need
to bridge the gap between design and production is first
discussed. This is followed by a review of the existing
approaches to bridge part geometry and production con-
siderations.

1.1. Need to bridge the gap between assembly and
design

Authoring assembly work instructions is a time con-
suming and subjective process. These work instructions
are used during assessment of work content, redesign of
assembly lines, training of assembly line associates and
quality audits. Therefore, it is essential to have a con-
sistent and correct set of assembly work instructions for
the same product, across different assembly locations. In
terms of the automotive development process, determin-
ing assembly work instructions at an early stage translates
to a more efficient planning process.

CONTACT Rahul Renu rrenu@clemson.edu

The automotive development process [28] can be
divided into two phases: the Development Phase and the
Production Phase.

The Development phase can be further categorized
into two sub phases: Design, and Prototyping & Evalu-
ation. The cost of implementing design changes is least
in the Design and increases subsequently. Understand-
ing the impact of Design decisions on the Production
phase can allow for early determination of downstream
issues. This will result in proactive decision making as
opposed to reactive decision making and ensure time-
and cost-savings.

The Production phase can be further classified into
two sub phases: Manufacturing; and Assembly.Manufac-
turing is where raw material is converted to the desired
component. Assembly is where manufactured compo-
nents are assembled together. Production specifications
estimated in prior stages are modified and made more
specific. The feedback loop from Production Phase to
Development Phase needs to be closed. Knowledge of
decisions made during the Automotive Development
Process has to be reused during variant and new product
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development. This is critical because the cost of imple-
menting design changes increases ten-fold through every
passing stage. Key outcomes of the Development phase
and the Production Phase are solid models (part geome-
tries) and assembly work instructions, respectively. It is
recognized that product structure will have an impact
on the subassemblies that an enterprise must assem-
ble. However, original equipment manufacturers have
adopted the concept of product modularity, and with this
come similar product structures across various product
variants. Linking these two elements will help in closing
the feedback loop from manufacturing to design.

1.2. Existing approaches that link part geometry
and assembly process considerations

Boothroyd and Dewhurst [3] have presented research
to allow for consideration of manufacturing and assem-
bly perspectives in the product design process. The
Boothroyd and Dewhurst method [3] is a systematic
method to review design of parts and the objective of
this review is to reduce assembly time and cost. The
Boothroyd and Dewhurst method [3] is based on a set
a queries that are presented to the user in terms of
tables. Navigating these tables requires the designer to
be cognizant of part characteristics. These characteristics
include: ease of handling, number of components, num-
ber of assembly directions and ease of inserting; some of
which are subjective in nature. While this method is pri-
marily used to analyze existing designs, other researchers
have built upon this method and integrated it within
the top-down design process. One such effort is from
Warnecke and Bassler [27], who present the Assembly-
Oriented Design (AOD) method to include considera-
tion of assembly processes during the design process [21].
Their method aims to provide designers with perspec-
tives of assembly process early in the design process to
ensure that the number of iterations in the design pro-
cess reduces. The AODmethod has also been researched
and adapted by DaimlerChrysler AG [26] in the automo-
tive industry.

Zha and colleagues [29,30] build upon the AOD
method and provide a knowledge-based approach to
increase the level of automation within each stage of the
AOD method. Zha and colleagues recognize that there
are three levels at which assembly process perspectives
need to be included: component level, product level and
assembly-process level. At each level, the focus of the
AOD method is to provide designers with guidelines for
designing products that are less time consuming and less
expensive. In the knowledge-based approach presented
by Zha and colleagues [29,30], experienced design engi-
neers and production experts explain complex concepts
(pertaining to design geometries and assembly processes)

to knowledge engineers. These knowledge engineers then
generalize and codify the concepts, allowing for formal-
ization of knowledge capture and reuse. This knowledge
is supplemented with knowledge obtained from hand-
books [3]. This method is subjective and depends on
the ability of experts to comprehensively recall necessary
information. It also depends on the ability of experts to
explicate their knowledge.

It is important to note that consideration of design for
assembly rules alone may not be efficient. Assembly is
not the only downstream perspective that must be con-
sidered during design. Issues related to manufacturing,
disassembly, environment and sustainability must also
be considered. Studies have shown that use of different
design for ‘X’ rules can provide contradictory opinions
[17,19,23,24]. Kuo and colleagues [17] have presented a
summary of several design for ‘X’ rules to help design-
ers integrate all considerations. Design for assembly rules
[3] are generic and lack enterprise-specific perspective.
Design for assembly rules as an approach to link design
and assembly has been used extensively and issues with
this approach have been identified. This research aims
to link solid models to assembly process descriptions
by using a data mining approach. This research, specif-
ically investigates reuse of solid model information and
related assembly process knowledge. When engineers
design new components, the solidmodel of these compo-
nents can be assessed for similarity with respect existing
component solid models. Based on the similarity of solid
models, existing (related) process descriptions can be
presented to engineers while they design the assembly
process.

In particular, this research focuses on developing
a method to link product design to assembly process
design. This research explores the use of solid model
similarity and text analysis approaches to develop a
relationship between solid models and assembly work
instructions.

The following three objectives are identified to formal-
ize a linkage between assembly processes and solidmodel
geometry. The research presented here focusses on the
first objective.

1. Evaluate solid models for similarity in terms of their
assembly processes

2. Investigate the natural language processing appro-
aches required to analyze assembly work instruc-
tions

3. Use part geometry information to mine database
of assembly work instructions and retrieve relevant
work instructions

The need for a system that allows forecasting of assem-
bly process information to the product development
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phase is required. This will allow for cost- and time-
efficient decisions regarding assembly processes to be
made in the Development Phase. In this research, a
method to evaluate solid model similarity of assemblies
is presented. It is proposed that this method will be
used to mine databases and retrieve assembly process
information based on solid model similarity.

1.3. Approaches to determine similarity among
solidmodels

Approaches to retrieve solid models from a database
of models have been researched extensively [2,5–7,9–
16,20,22]. Similarities of shapes have also been
investigated from the perspective of image process-
ing in multimedia applications [5,9,22]. The various
approaches of shape retrieval have been reviewed by Bus-
tos and colleagues [5]. In the literature reviewed by us,
there have been minimal efforts that determine similar-
ity of assembly models by considering individual com-
ponent similarity in conjunction with assembly model
similarity.

The shape retrieval method proposed by Osada and
colleagues [20] uses random sampling of points on the
two parts being compared and generates a histogram of
the distribution of distances between the random sam-
pling points. The generated histograms (one for each
part being compared) are compared using Minkowski
difference [11,20] (see Fig. 1).

Figure 1. Illustration of histogram-based similarity computation.

Ip and colleagues [11] have recognized that this
approach of using shape histograms for comparison,
provides a similarity at a coarse level-of-detail. The
same findings have also been presented by Jayanti and
colleagues [14]. Retrieval of similar shapes using the
Osada histogram approach [20], may yield false nega-
tives in a mechanical engineering setting [14]. This can
be attributed to the fact that the histogram approach
does not consider functional purpose of parts [14]. This
method (histogram) is not viable if exact differences
between two models are to be obtained. However, the
advantages of this approach are the following:

1. Independent of modeling history
2. Sensitive to size

3. Can be applied to software-independent file formats
(such as STL, STEP and IGES [4,8])

4. Independent of orientation of the part in the local
coordinate system

5. Shape distributions of database parts can be stored,
therefore offloading computation and providing
for a run-time, computationally inexpensive shape
retrieval method.

Histogram-based similarity approach has proven to be
a successful method of solid model retrieval [6,10,11,20].
From an assembly process perspective, it is hypothesized
that the histogram approach can be used to generate clus-
ters of similar components. Additional techniques will be
required to generate a ranked list of similar parts within
each cluster and also to retrieve and consolidate assembly
work instructions based on solid model similarity. This
research will test this hypothesis.

2. Aims and significance

The approach developed in this research allows for deter-
mination of similarity of assembly solid models. The
approach proposed in this research uses similarity of
component models and their assembly model to com-
pute similarity. This is tested against approaches that use
components alone, and also against approaches that use
assembly models alone. Assembly solid model similarity
information will be used to mine databases to retrieve
assembly work instructions for reuse. This research sup-
plements previous research that attempts to bridge the
gap between design and production.

3. Approach to determine solid model similarity

The objective of determining similarity of assembly solid
models presented is to retrieve assemblywork instruction
sets. 181 work instruction sets from an automotive Orig-
inal Equipment Manufacturer are analyzed. It is found
that there are, on average, four parts per work instruction
set (p-value < 0.01). Therefore, the goal of this research
will be to design a system that computes similarity of
assembly solid models that contain at most four compo-
nents. Fig. 2 shows an example of an assemblymodel with
two components.

Determining solid model similarity is divided into
four stages. In the first stage, Osada and colleagues’ [20]
method is used to generate histogram-based similarity
scores for all database solid models, with respect to query
solid model. In the second stage, histogram-based simi-
larity scores are used to generate clusters of similar solid
models. In the third stage, solid models within each
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Figure 2. An example of an assembly solid model used in this
research.

cluster are analyzed for surface area differences and tes-
sellation area distribution differences. In the final stage, a
multi-index sort is performed to generate a ranked list of
similar solid models (see Fig. 3).

Figure 3. Four stages of determining solid model similarity.

Stage 1: Generating histogram-based similarity
scores for solid models [adapted from [20]]:

This algorithm generates shape histograms for each
of the two assembly solid models being compared. Next,
the L1 Minkowski distance between the two shape his-
tograms is calculated and this indicates the geometric
similarity of the two parts. The detailed algorithm is
presented below.

1. For every part (STL format)
a. For every triangle

i. Calculate area of each triangle
ii. Store [area, cumulative area]

b. Generate random number between 0 and total
cumulative area

c. Find corresponding triangle from [area. cumu-
lative area]

d. Generate random point on this triangle using
the following formula:

iii. P= (1-
√
r1) A + r1(1-

√
r2)B

+√
(r1)(r2)C

e. Repeat the previous three steps 1024 times
f. Compute Euclidean pairwise distances for all

generated points
g. Generate histogram of distances
h. Compute L1Minkowski difference between the

two histograms
2. Compute standard deviation of all scores
3. Normalize all scores over the standard deviation

(O.S.)

Stage 2: Generating clusters of similar solid models
Histogram-based similarity provides similarity of

overall shapes of solid models. This information is used
to generate clusters of similar solid models. The solid
models within clusters can then be investigated further
for similarity at a level of finer resolution. The clusters
are generated by creating five bins. The bin widths are
determined by the dividing the histogram-based score in
fifths.

Stage 3: Computing surface area and tessellation
area distribution differences

The difference between STL files is essentially the dif-
ference between the tessellations that the files are com-
posed of (see Fig. 4). This forms the basis for the following
pseudo-code that is used to recognize specific differences
between CAD (STL) models within clusters from the
previous stage:

1. For each STL file
a. For each tessellation

i. Calculate surface area
ii. Store vector of tessellation coordinates and

surface area

Figure 4. Illustration of tessellation differences in different solid
models.
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Table 1. Example of computing similarity score.

Name Cluster Number Difference in surface area N.T. L.M.A. O.S.

A 1 15 7 6 5
A.1 1 10 5 2 7
A.2 3 12 6 2 12
Total 5 37 18 10 24
B 2 22 9 7 8
B.1 2 35 9 9 9
B.2 5 56 12 5 25
Total 9 63 30 21 42

2. Count the number of tessellations (N.T.) that are
found in the complement of the intersection of the
two surface area arrays

3. Generate histogram of all tessellation’s area
4. Compute L1Minkowski difference of the tessellation

areas (L.M.A)

Stage 4: Multi-index sort to generate ranked list of
similar solid models

A multi-index sort is performed based on the follow-
ing parameters, in the listed order:

1. Cluster number
2. Difference in surface area
3. N.T. – Number of unique tessellations
4. L.M.A. – L1 Minkowski score of tessellation areas
5. O.S. – Histogram-based similarity score [20]

This results in a ranked list of similar solid models
based on an input model. This approach can be used to
analyze individual component’s solid model geometry as
well as solidmodel geometry of their assemblies. Similar-
ity scores of individual components are summedwith the
scores of their respective assemblies to obtain an overall
score.

As an example, let us consider two assembly models,
‘A’ and ‘B’. Their component models are ‘A.1′ & ‘A.2′;
and ‘B.1′ & ‘B.2′. Table 1 illustrates how the similarity
score for ‘A’ and ‘B’ will be computed with respect to a
query model.

Total score for ‘A’ and ‘B’ will be used to perform a
multi-index sort. The result of this sort will be a ranked
list of solid models that are similar to the query model.

4. Experiment design

This section presents testing results for solid model
retrieval. First, a discussion of the solid models used
in this study is presented along with details of the sur-
vey conducted. This is followed by comparison of user
study ranking results to the rankings obtained from the
algorithms.

4.1. Description of solidmodels

All solid models used in this research are STL ASCII
files. Several component models are obtained from the
C-Design Lab at Purdue University (Source: https://
engineering.purdue.edu/cdesign/wp/). All STL file pairs
that are to be compared for similarity, are created with
the same resolution of tessellations. The dimensions for
these models are obtained by opening these files in Solid-
Works © and using millimeters as the default unit of
measurement. In terms of the classification of solid mod-
els presented by Jayanti and colleagues [14], the solid
models used in this research are distributed as follows:

• Solids of revolution: 60%
o Bolt like parts: 18%
o Cylindrical parts: 18%
o Long pins: 12%
o Spoked wheels: 12%

• Flat-thin wall components: 22%
o Bracket like parts: 12%
o Curved housings: 12%

• Rectangular-cubic prism: 18%
o Small machined blocks: 9%
o Thin plates: 9%

The complexity of these assembly model files were
assessed by counting the number of tessellations and
comparing them to the number of tessellations from
primitive shapes (cone, cube, cylinder, pyramid, sphere,
torus and wedge) [25]. The results from this comparison
are presented in Tab. 2.

Table 2. Complexity of assembly models used in survey.

Primitive shape
Number of tessellations for

primitive shape P

Pyramid 18 0
Wedge 24 0
Cube 36 0
Cone 216 0
Cylinder 396 0
Torus 5940 43
Sphere 7056 43
Average 1956 2.85

The last column in Tab. 2 represents the percent of
assemblymodels used in the survey that have lesser num-
ber of tessellations (lesser complexity) than correspond-
ing primitive shape (P). The last row shows 2.85% of
survey assembly models have lesser complexity than the
average complexity of primitive shapes.

4.2. Results for solidmodel retrieval

The survey was administered via a website and consisted
of seven questions. Each question had five associated

https://engineering.purdue.edu/cdesign/wp/
https://engineering.purdue.edu/cdesign/wp/
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options. Each group of question and options from this
point on will be referred to as a test set. All questions and
options consisted solid model diagrams of two compo-
nents and their related assembly (see Fig. 5).

Participants were asked to rate each option based on
its assembly process similarity to that of the question. The
participants were asked to rate using the scale shown in
Tab. 3.

4.3. Algorithm testing

Fleiss’ Kappa was computed for each question to check
for inter-rater agreement (see Tab. 4). It is found that
test set 2 showed slight disagreement among participants.
Therefore results from test set 2 were not considered for
further analysis. For all other questions, Fleiss’ Kappa
indicated fair agreement [18] at least.

The ranked list of solid models, for each of the seven
test sets from the survey was compared to the ranked

Table 3. Likert scale used in survey.

1 Not at all similar
2 Somewhat similar
3 Similar
4 Very similar
5 Identical

Table 4. Fleiss’ Kappa results from the survey.

Test Set Fleiss Kappa Level of Agreement

Q1 0.3431 Fair
Q2 –0.0208 Slight disagreement
Q3 0.3721 Fair
Q4 0.6226 Substantial
Q5 0.2313 Fair
Q6 0.2627 Fair
Q7 0.2384 Fair

list obtained from each algorithm from the following
experiments:

Experiment 1. Histogram-based scores of assembly
models only

Figure 5. Excerpt of survey.
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Experiment 2. Histogram-based scores of compo-
nent models

Experiment 3. Histogram-based scores of assembly
models and their respective component models

Experiment 4. Proposed algorithm scores of assem-
bly models alone

Experiment 5. Proposed algorithm scores of compo-
nent models

Experiment 6. Proposed algorithm scores of assem-
bly models and their respective component models

The results of these comparisons are presented in
Tab. 5. The comparison shows that the proposed
algorithm performs better than the shape histogram
approach is all cases except when assembly models alone
are used. Tests for statistical significance are performed
with a level of significance of 0.01. The null and alterna-
tive hypotheses are presented below.

Null Hypothesis: The correlation coefficient is less
than or equal to zero between the entities being com-
pared.

Alternative Hypothesis: There exists a positive corre-
lation between the two entities being compared.

The p-value obtained in Experiment 4, was greater
than 0.01. In this case we fail to reject the null hypothe-
sis. This implies that there is sufficient evidence to sug-
gest that there is disagreement between the rankings
obtained from the survey and the ranking obtained from
the algorithm. All other p-values were found to be less
than 0.01 andwe can reject the null hypothesis in all these
cases. This implies that in all other cases there is sufficient

Table 5. Results of Kendall’s Tau correlation computation for sur-
vey results and results from each experiment.

Assembly
models only

Component
models only

Component and
Assembly models

Shape
histogram

0.0667 0.1333 0.5333
(Experiment 1) (Experiment 2) (Experiment 3)

Proposed
Algorithm

-0.1333 0.5333 0.7000
(Experiment 4) (Experiment 5) (Experiment 6)

evidence to suggest that there is agreement between rank-
ings. More specifically, these results show that ranked
list from Experiment 6 (the proposed approach using
component and assembly models to compute similarity)
best correlate to human interpretation of assemblymodel
similarity.

Other experiments were conducted to test the perfor-
mance of the proposed solid model similarity algorithm
(Experiment 6). The repeatability of the clustering
algorithmwas tested. The algorithmwas run on 300 solid
models and the clusters were formed. This was repeated
nine times keeping all parameters the same. For each of
the nine trials, the solid models grouped into the first
cluster were analyzed for repeatability. The number of
differences found in the first cluster in each pair of trials
was calculated and complied into a matrix. The spar-
sity of the matrix is found to be 0.58. This shows that
the repeatability of the clustering algorithm is acceptable.
The difference can be attributed to the fact the clustering
algorithm operates on histogram-based scores; and these
scores are probabilistic in nature.

When STL files are created, users typically have the
choice of controlling the resolution of tessellations. As the
resolution of the STL files is made finer, the number of
tessellations increases (see Fig. 6).

The sensitivity of the proposed algorithm to the res-
olution of the tessellations is tested. The goal of this test
was to test the hypothesis that the causation for correla-
tion is tessellations. Also, the test will indicate the sensi-
tivity of correlation values to tessellations. Four levels of
resolution for tessellations are chosen. The experiment is
performed on one query model and five database mod-
els from the survey (test set 6). The query and database
models are varied through all four levels of resolution.
Kendall’s Tau rank correlation coefficient is used to check
correlation between survey results and algorithm results.
Results from this experiment are presented in Tab. 6.

Results from this experiment indicate that as the res-
olution of tessellations decreases, the correlation to sur-
vey results reduces. Therefore, it is vital that maximum

Figure 6. Example of change in number of tessellations as resolution changes.
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Table 6. Results from experiment to evaluate sensitivity of proposed algorithm to sensitivity of tessellation resolution.

Level of resolution Fine Intermediate 1 Intermediate 2 Coarse

Number of tessellation of component 1 model 4808 2496 1920 1568
Number of tessellation of component 2 model 2202 1092 748 744
Number of tessellation of assembly model 7010 3862 3512 2312
Kendall’s Tau rank correlation 0.6 0.4 0.4 0.4

number of tessellations be used and resolution of these
tessellations must remain consistent across query and
database models.

4.4. Conclusions

From the tests conducted, the following conclusions can
be drawn:

• Use of proposed approach (multi-index sort along
with component and assembly model similarity) pro-
vides best correlation to survey results andwill be used
for assembly solid model retrieval.

• As the tessellation resolution moves from coarse to
fine, the correlation to survey results increases. There-
fore, fine resolution tessellation models will be used
for assembly solid model retrieval.

5. Closure and future work

A method to retrieve assembly solid models based on
individual component and overall assembly similarity is
presented and validated. The algorithm developed in this
research yields better results for retrieval of solid model
similarity when compared to five other approaches. Test-
ing also shows that the proposed method has a statisti-
cally significant better correlation to survey results than
traditional histogram based similarity approach.

To test the causation for the correlation, the tessella-
tion resolution of assembly solid models was varied. It is
found that as the tessellation resolution reduces (number
of tessellations reduces), the correlation to survey results
reduces.

By analyzing 181 assembly work instruction sets from
an automotive Original Equipment Manufacturer, it has
been determined that there are, on average, four parts
per work instruction set. Since the goal of this research
is to predict assembly work instructions based on assem-
bly model similarity, the proposed assembly solid model
similarity algorithm must be tested on assembly mod-
els that consist of three and four parts. A survey is
being designed to perform this testing. For this survey,
in addition to solid models obtained from C-Design Lab
at Purdue University (https://engineering.purdue.edu/
cdesign/wp/), solid models from GrabCAD© (https://
grabcad.com/) and 3DContentCentral R© (http://www.
3dcontentcentral.com/) are being used. Assembly solid

models from a graduate-level Computer-Aided Design
course (from Clemson University) will also be
incorporated in this survey.

Since there does not exist an assembly solid model
database and benchmark, assembly solid models are
being collected for this purpose. Complexity of these
assembly solid models is being assessed by counting
number of tessellations [25]. Existing shape similarity
algorithms [1,7,10,13,14] will be compared to the pro-
posed algorithm using precision-recall curves. These
curves can then be reused by other researchers to assess
their assembly model similarity algorithms. Compari-
son to approaches that use feature-based similarity [7,12]
is required. It is hypothesized that determining specific
assembly process related features will not be a non-issue.
Assembly processes not only depend on the interface
between two components, but it also depends on other
features of both components as they relate to handling of
the components.

Once tested and refined, the approach presented here
will be used to mine databases of assembly work instruc-
tions. Natural Language Processing tools will be used
to analyze assembly work instructions retrieved. These
assembly work instructions will be consolidated and pre-
sented to the user, resulting in a system that takes input of
assembly solid models and provides an output of assem-
bly work instructions.
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