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ABSTRACT
Boolean operation of geometric models is an essential element in computational geometry. An effi-
cient approach is developed in this research to perform Boolean operation for triangulated meshes
representedbyB-rep. This approach ismuch fast and robust thanmanyexistingmethods. TheOctree
technique is adapted to facilitate the division of the common space of twomeshes in order to reduce
the timeofOctree’s construction and intersection detection. Floating point arithmetic errors and sin-
gularity of intersections are then analyzed to guarantee the unique intersection between a segment
and a face, and the continuity of intersections. A novel technique based on intersecting triangles
is finally proposed to create required sub-meshes based on the type of Boolean operations. Some
experimental results and comparisonswith othermethods are presented to prove that the proposed
method is fast and robust.
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1. Introduction

Boolean operations of geometric models are important
processes in computational geometry [7,15,16]. A most
commonly used method in Boolean operations to dis-
play geometric models is the boundary representation
(B-Rep) based on parametric surfaces. Booleans oper-
ations on B-Rep models were introduced in the 1980 s
[24, 30]. With the development of reverse engineering
and 3D printing technologies, the use of discrete sur-
faces, especially the triangulated meshes, is increasing.
Triangulated models are used in many fields, such as
architectural design, industrial design, and CAE. Numer-
ous Boolean algorithms have been proposed to resolve
triangulated meshes in geometric modeling. However,
the complex problem challenges performance of these
methods in efficiency and robustness.

Boolean algorithms can be classified into three broad
categories: exact arithmetic, approximate arithmetic and
volumetric methods [6]. The exact arithmetic operates
Boolean operations directly over geometric elements,
such as faces, edges and vertices [2, 30]. However, they
often suffer the problem in searching stable solutions.
Various methods have been proposed to improve the
robustness of the exact arithmetic. Boolean operations
were implemented by Keyser [21] in a curved domain for
an exact arithmetic. An interval computation is adopted
by Hu [17, 18] to operate Booleans on solid models with
spline surfaces. The BSP (binary space partition) tech-
nique was proposed by Bernstein and Campen [3, 4] to
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improve the stability of the exact arithmetic. To avoid
the complex exact computation and effectively deal with
degenerated intersections, approximate arithmeticmeth-
ods and volumetricmethods were suggested. For approx-
imate arithmetic methods, Smith and Dodgson [32]
presented a topologically robust algorithm. Ming et al.
[6] proposed an approach to compute the approximate
Boolean operations of two free-form polygonal solids
efficiently with the help of Layered Depth Images. The
volumetric method converts mesh surfaces into the vol-
umetric representation. Booleans can then be operated
based on volumetric data [10, 27]. Because of the lim-
ited precision of the representation, the loss of geomet-
ric features is unavoidable. Marching Cubes algorithm
is usually used to extract features from the volumetric
result [22]. Pavic et al. [29] presented a hybrid method to
combine the volumetric technique with surface-oriented
techniques. The method can obtain an output meth
to preserve the existing sharp features and reconstruct
new features appearing along intersections of the input
meshes. This work was for the exact Booleans using B-
Rep triangle meshes which are exactly edge-based data
structures [25].

Robustness and efficiency of exact Booleans on
triangulated meshes have proven a challenging and com-
plicated task. There are twomain procedures of the trian-
gulated meshes in Boolean algorithms: the intersection
detection between two meshes and Boolean operations.
Intersection detection andBoolean operations are crucial
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to the performance of the algorithm. This paper presents
a fast and stable intersection detection technique and
Boolean operations to achieve excellent performance.

For the intersection detection between two meshes,
many techniques have been proposed to accelerate the
speed of intersection detections. A BSP-based method
was used to accelerate the spatial queries in the pro-
cess [3]. The method is stable and can operate com-
plex meshes, however it encounters memory issues when
meshes have a large number of faces [9]. A technique was
adopted by Campen [4] to combine an adaptive Octree
with the nested binary space partition, which can achieve
the high performance and less memory consumption.
Jing et al. [20] adopted an oriented bounding box (OBB)
tree method. The OBB tree is fast to obtain the intersec-
tion lines once it is built. However, the building time of
the structure is slow and is inconvenient to use. Feito et al.
[9] used the Octree method which requires the less stor-
age and can run in a multithreaded environment. The
Octree method has the good performance to deal with
complex meshes. Some methods were proposed to cal-
culate the intersection line of a pair of triangles. Moller
[26] presented a method to compute whether or not two
triangles intersect. Tropp et al. [35] developed an opti-
mummethod to save about 20% time of themathematical
operations. When calculating intersection lines of two
meshes, there are two factors that influence efficiency and
stability of the algorithm. The first is that each intersected
edge of one mesh will produce two points with another
mesh. The two points have the same coordinate value
theoretically. The floating point arithmetic errors may
cause the incontinuity of intersections. The second is that
there may be singularity when judging the intersection

between a segment and a mesh. This also influences the
continuity of intersections.

For Boolean operations, a key technique is the point-
in-solid test to classify required sub-meshes. Several
approaches can be used to perform the point-in-solid
test. Feito et al. [28] used the simplicial covering of the
solids. Thismethod is very fast when it is implemented on
GPU, however it needs a large number of tests to classify
the newly created sub-mesh. A method of Jordan Curve
Theorem was adopted by Veblen [36], the method uses a
ray-surface intersection test in order to obtain the par-
ity of the number of intersections. The method is fast,
however it needs the Octree calculated in advance, the
method may fail when it deals with the open mesh. Guo
et al. [13] used a loop detection to decide the candidate
point whether inside or outside the solid. However, these
methods are only designed for solid models, and require
meshes no boundary edges. Jacobson et al. [19] used
a generalized winding numbers method for the inside-
outside segmentation to handle the open mesh situation.
However, there is still not a unified rule of Booleans for
open meshes. As shown in Fig. 1, using the commercial
CAD software Geomagic Studio 12, the Booleans differ-
ence operation is applied on two openmeshes. If an open
mesh’s normal is flipped, the result will be difference.

2. Method

In this paper, a fast and robust Boolean algorithm for
the triangulated mesh is presented. It involves two states
as shown in Fig. 2: intersection detection between two
meshes and Boolean operations. For the intersection
detection between two meshes, the Octree technique is

(a) (b)

Figure 1. Booleans difference results using Geomagic Studio 12.

Figure 2. Flow of the approach.
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adapted to facilitate the division of the common space of
two meshes in order to reduce the time of Octree’s con-
struction and intersection detection, floating point arith-
metic errors and singularity of intersections are analyzed
to find intersections. In this way, the unique intersec-
tion between a segment and a mesh can be obtained to
guarantee the continuity of intersections. For Boolean
operations, a fast and stable technique is presented to
realize union, intersection and difference operations. The
method is simple as it finds only points that belong to
these intersected triangles to create required sub-meshes
based on the type of Booleans. Themethod is suitable for
both closed and open meshes.

In summary, the main contributions of this work are
as follows:

(1) Octree is used to facilitate the division of the com-
mon space of two meshes in order to accelerate the
speed of intersection detection and reduce memory
utilization.

(2) Floating point arithmetic errors and singularity of
intersections are analyzed to improve the stability of
the algorithm.

(3) A stable technique based on intersected triangles is
presented to realize union, intersection and differ-
ence operations. The method is fast for both closed
and open meshes.

(4) The algorithm is robust and can be used in a simi-
lar milling simulation system which contains lots of
Boolean difference operations between a workpiece
and a cutter.

2.1. Intersection detection

Intersection detection between twomeshes is the basis of
Boolean operations. Searching for intersection lines fast
and exactly is a key to successful Booleans. In this section,
a memory-saving method is introduced to accelerate
the speed of intersection detection. The floating point
arithmetic errors and singularity of intersections are also
analyzed for the intersection test to obtain continuous
intersections.

2.1.1. Building Octree of the common space
Many techniques have been used to accelerate the inter-
section detection of two meshes, such as methods of BSP
(binary space partitions) [3, 4], OBB tree [20], Spatial
hashing [8, 33, 38], and Octree [9]. The Octree technique
is adopted in this research.

For two intersected meshes, the size of the common
space is small. Octree can be built to divide the common
space to accelerate the speed of intersection detection and
reduce memory utilization. The common space can be
calculated as follows:

Given two triangulated meshes SA and SB as shown in
Fig. 3. Let BoxA and BoxB are the smallest axis-aligned
bounding boxes (AABBs) of SA and SB. BoxA and BoxB
shown in Fig. 3 (a) and (b) can be written as follows:

BoxA =
(
xAmax, yAmax, zAmax
xAmin, yAmin, zAmin

)
,

BoxB =
(
xBmax, yBmax, zBmax
xBmin, yBmin, zBmin

)
.

The common space BoxA ∩B oxB can be calculated as:

BoxA ∩B oxB

=
(
min(xAmax, xBmax) min(yAmax, yBmax),
max(xAmin, xBmin), max(yAmin, yBmin),

× min(zAmax, zBmax)

max(ZAmin,ZBmin)

)

The AABBs is expanded to ensure the common space
containing all the intersected triangles. The modified
result is as follows:

BoxA ∩ BoxB

=
(
min(xAmax, xBmax) + l, min(yAmax, yBmax) + l,
max(xAmin, xBmin) − l, max(yAmin, yBmin) − l,

× min (zAmax, zBmax) + l
max (zAmin, zBmin) − l

)

where l is the longest edge of SA and SB.
Table 1 shows the intersection detection time of two

different building methods of Octree. The two building

(a) (b) (c)

Figure 3. Octree used in meshes intersection. (a) & (b) Octree dividing whole meshes. (c) Octree dividing the common space of two
meshes.
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Table 1. Time comparison of intersection detections.

Triangles of
meshes (A+B)

Octree is built to divide
whole meshes(s)

Octree is built to divide
the common space of

meshes (s)

345944+345944 6.205 4.428
345944+276754 5.656 4.042
345944+221402 5.308 3.735
345944+177120 5.063 3.157
345944+106272 4.537 2.829

methods are (A) Octree built to divide whole meshes,
and (B) Octree built to divide the common space of
meshes.

The Octree can be configured to achieve a good bal-
ance between the building time and the performance of
queries on spatial data. The memory usage of Octree is
also affected by this configuration. Building the Octree
usually needsO(N log(N)) for a set ofN triangles. Build-
ing Octree starts with the common minimum AABB of
two meshes. Each node is divided into eight sub-nodes
until all nodes meet the termination condition. The ter-
mination condition is decided by two parameters: the
maximum number of triangles per leaf node and the
maximumdepth of theOctree. In order to avoid excessive
consumption of memory in extreme cases (for example,
there aremany overlapped triangles in amesh), the depth
of theOctree has a higher priority. Generally speaking, an
Octree with a depth of 8–10 and a limit of about 50 tri-
angles per node has the nearly optimal performance [9].
The Octree in this research is configured based on these
values of the depth and triangles per node.

2.1.2. Floating point arithmetic errors and singularity
of intersections

Floating point arithmetic is inevitable in computing
geometry. Especially in Boolean operations, there are
many intersections for computation. Floating point arith-
metic may cause incontinuity of intersections, which
further causes failure of Booleans.

Intersections computation inBooleans can be regarded
asmanyRay-triangle tests. Intersecting a ray against a tri-
angle is far more problematic than common “solutions”
assumed. Fig. 4 shows how an incorrect computation can

lead to catastrophic failures. It is also shown how to per-
form the calculation robustly. The reason is that this test
is not robust, it fails for intersection against two triangles
sharing an edge. As shown in Fig. 4(a), a ray, R, strikes
the shared edge ab of �abc and �abd. First the inter-
section point p of the ray R with the plane of �abc is
computed. Lets say small errors in the computation of p
put p slightly to the right of ab such that the containment
test for p being inside �abc fails, See Fig. 4(b). Then the
intersection point p of the ray Rwith the plane of�abd is
also computed. This computation uses completely differ-
ent floating-point values than the previous computation,
we can get a point p slightly different from the previous
one. Lets say this has small errors in the computation
of p to put p slightly to the left ab such that the con-
tainment test for p being inside �abd fails, See Fig. 4(c).
R misses both triangles, seemingly passing through the
shared edge. When it comes to this, the intersection is
broken at the points of p. An alternative to make a ray
test robust is to switch to a “fat” query primitive, See Fig.
4(d). For example, here a sphere is swept against the tri-
angles. Fat tests allow intersections to be found even if the
triangles have a gap between them, as long as the width of
the gap is smaller than the “fatness diameter” of the query
object.

The fat test is actually a tolerance value problem. A
line can be defined as a set of points {(x, y) ∈ R

2 : ax+
by + c = 0}. Let x′ = (bc′ − b′c)/(ab′ − a′b) and y′ =
(ca′ − b′c)/(ab′ − a′b) are the coordinates of the inter-
section point between two non-parallel lines: (a, b, c)
and (a′, b′, c′), as shown in Fig 4(e). By definition,
point (x′, y′) lies on line (a, b, c) if ax′ + by′ + c = 0.
Suppose that there is a simple, floating point implemen-
tation that determines the point of intersection according
to the above formula.When ax′ + by′ + c is computed to
be exactly 0, point (x′, y′) lies on line (a, b, c). Because
of approximation errors, it often fails to judge the inter-
section point between two lines to lie on one or other
line [23]. A common method to solve this issue is to
apply arithmetic tests within a given tolerance. Hence,
the point-on-line test is operated by determiningwhether
the value ax + by + c is less than some selected tolerance
value, ε > 0. If the line representations are always held

(a) (b) (c) (d) (e)

Figure 4. Ray-triangle test.
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in a2 + b2 = 1 form, then ax′ + by′ + c represents the
signed distance from the line. If ax′ + by′ + c = d ≤ ε,
point (x′, y′) lies on line (a, b, c), otherwise not, as
shown in Fig. 4 (e).

Singularity of intersections also can break the intersec-
tion. Suppose there are two polyhedras used to calculate
the intersection line, see Fig. 5. Firstly, intersection line
loops of the two meshes are calculated. These loops are
from face to face intersections. Second, these intersection
surfaces of the two polyhedral objects are partitioned into
new surfaces. The process of this partition relies heav-
ily on traversals of adjacency intersections. When doing
intersection detection between twomeshes, we locate the
intersection points on edges of one mesh with faces of
another mesh that is where a face/face intersection ends.

Singularity of intersections often results from differ-
ent angles between edges and faces. In Fig. 5(a), it is
assumed that the front edge of the tetrahedron intersects
the top face of the cube at a steep angle and the front
face of the cube at a shallow angle. The two faces share
the common edge ef . When carrying out the intersection
detection, firstly, the intersection point between the front
edge and the top face is calculated. Let m is the inter-
section point, see Fig. 5 (b) & (c), d1 is the distance of
m to the edge ef . As the steep angle, it is possible that
the intersection point between the edge and the top face
is deemed to lie on edge of the face according to the fat
test: axA + byA + c = d1 < ε. Secondly, the intersection
point between the front edge and the front face is calcu-
lated. Letm∗ is the intersection point, see Fig. 5(b) & (c),

d2 is the distance ofm∗ to the edge ef . As a shallow angle,
it is obvious that d2 > d1. It is therefore possible that the
intersection point between the edge and the front face is
deemed to lie inside the front face according to the fat
test: axB + byB + c = d2 > ε. The front edge of the tetra-
hedron now intersects the front face twice, at m and m∗.
It is logically inconsistent and the singularity arises. This
will break the intersection loops and the algorithmwould
fail as a consequence.

2.1.3. Calculating intersection lines
When implementing intersection lines calculation, it
needs to consider two triangles that are coplanar or not.
In the coplanar case, it can be reduced to a 2D inter-
section problem for the efficient calculation. This paper
mainly discusses the non-coplanar case. In section 2.2,
floating point arithmetic errors and singularity of inter-
sections were discussed, which could break the inter-
section. An improved intersection detection strategy is
introduced to guarantee the continuity of intersections.
This contributes the robustness of our algorithm.

Generally speaking, there are three intersection types
between edge and triangle as shown in Fig. 6: the point
of intersection is one endpoint of an edge, the point of
intersection lies on one edge of triangle, and the point
of intersection lies inside the triangle. Property of these
three types are set as EndP, EdgeP and FaceP, respectively.
Among the three types, the EndP has the highest weight,
the EdgeP has the moderate weight and the FaceP has
the lowest weight. In the previous paragraph, intersection

(a) (b) (c)

Figure 5. Singularity of intersections.

Figure 6. Intersection of edge and triangle.
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points m and m∗ are obtained. According to the type of
intersection, property of m and m∗ are set as EdgeP and
FaceP, respectively. Because m has a higher weight than
m∗, the property and coordinate ofm∗ is reset as the same
as m. If m and m∗ have the same property, the property
and coordinate ofm∗ is just reset as the same asm. In this
case, an edge has unique intersection point with amesh at
the same location. Details of intersection line calculation
are listed in Algorithm 1.

Algorithm 1 Calculate intersection lines
for each pair of triangles (T1,T2) do

for each edge e ∈ T1 do
m = Intersection(e,T2);
if (exist_intersection (e, T2) &&
m∗ = Intersection(e, T2))
Properties(m) = Properties(m∗) =

Priority(m,m∗);
Coordinate(m∗) = Coordinate(m);

end for
for each edge e ∈ T2 do
m = Intersection(e, T1);
if (exist_intersection (e, T1) &&
m∗ = Intersection(e, T1))
Properties(m) = Properties(m∗) =

Priority(m, m∗);
Coordinate(m∗) = Coordinate(m);

end for
end for

2.1.4. Retriangulating intersected triangles
After calculating the intersection for all triangle-pairs,
for an individual intersected triangle, usually there are
several intersection lines inside the triangle since it per-
haps intersects with several other triangles, and it will
be divided into several polygons by these intersection
lines. All resulting polygonal faces should be decom-
posed into new triangles and the topology of the mesh
is updated. For the polygon triangulation, there are at
least three popular algorithms: Recursive Ear Cutting
algorithm improved by Held [14] and Toussaint [34],
Incremental Randomized Algorithm proposed by Sediel
[31] and Sweep Line algorithm presented by Garey et al.
[11]. Recursive ear cutting algorithm is easy to imple-
ment compared to other complicated algorithms. How-
ever, the algorithm has the poor performance as it is
difficult to extend it to polygon with holes. On the
other hand, the incremental randomized algorithm has
better performance, however, the improved algorithm
presented by Nancy et al. [1] is very difficult to imple-
ment. The sweep line algorithm is the most widely used

algorithm in nowdays real applications. Wu [37] pro-
posed an optimized sweep line algorithm called Poly2Tri
to handle the polygon with holes. Poly2Tri is adopted in
this paper. The result is shown in Fig. 7.

Figure 7. Polygon triangulation of Poly2Tri algorithm.

2.2. Boolean operations

In this section, details of Boolean operations on triangu-
lated meshes are delivered. Our method has two steps:
to identify if a point is inside or outside a mesh, and to
create sub-meshes and merge them. This paper proposes
a technique to only identify points that belong to these
intersected triangles. It only utilizes these points to cre-
ate required sub-meshes based on the type of Booleans.
This method is fast and can be used to both closed and
open meshes.

2.2.1. Point classify
In almost all literature, a ray-surface intersectionmethod
is used to identify if a point is inside or outside a mesh.
However, this method is designed based on the assump-
tion that a mesh is a solid without boundaries. When
there is an open mesh with boundaries, the method
often fails, as there is no strict inside and outside for
open meshes. It is difficult to identify the location of the
point. This paper proposes a simple method to decide
point locations for openmeshes of Booleans. Themethod
classifies only points that belong to these intersected
triangles.

Let mn is the intersection line of �abc and �efg. The
two triangles belong to twomeshes, respectively. nabc and
ndef are the normal of �abc and �efg. The directions
of normal are (xn1, yn1, zn1) and (xn2, yn2, zn2) respec-
tively. p (x1, y1, z1) and q(x2, y2, z2) are two arbitrary
points that lie in planes of �abc and �efg respectively.
Equations of the two planes are as follows:

Fabc(x, y, z) = (x − x1).xn1 + (y − y1).yn1
+ (z − z1).zn1 = 0 (1)

Fdef (x, y, z) = (x − x2).xn2 + (y − y2).yn2
+ (z − z2).zn2 = 0 (2)
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Figure 8. Point classification.

As shown in Fig. 8, the edge ac and �def have
an intersection point n. For the vertex a(xa, ya, za),
Fdef (xa, ya, za) < 0. a lies inside of themeshwhich con-
tains �def . Following the same way, d lies inside, c and
e lie outside. In a degenerated intersection case, there is
at least a vertex v(x, y, z) of one triangle that lies on
anothermesh. For v(x, y, z), F(x, y, z) = 0 and the ver-
tex is labeled “on”. When all vertexes that belong to the
intersected triangles have been judged, vertexes lie inside
a mesh are labeled “in”, vertexes lie outside the mesh are
labeled “out” and these intersection points are labeled
“on”. The following creating sub-meshes will depend on
these labeled vertexes.

2.2.2. Creating sub-meshes andmerging them
There are three types of Boolean operations: union, inter-
section and differences. If there are two meshes MA and
MB, and MAinB is a set of triangles from MA inside MB.
MAoutB is a set of triangles from MA outside MB. MBinA

is a set of triangles from MB inside MA. MBoutA is a set
of triangles from MB outside MA. MonAB is a set of tri-
angles from Both MA and MB (when there are coplanar
intersections). The three types Boolean operations can be
presented as follows (MA − MB):

MA ∪MB(union) : MAoutB + MBoutA + MonAB

MA ∩MB(intersection) : MAinB + MBinA + MonAB

MA − MB(difference) : MAoutB + MBinA

In this paper, the method only utilizes above labeled
vertexes to create required sub-meshes. For instance,
the process is as follows if there is a need to create
sub-meshes inside a mesh. Firstly, selecting a vertex Vin
labeled “in”, see Fig. 9(a), shown as the red vertex. Sec-
ondly, the selected vertex grows according to the topol-
ogy of the mesh with these intersection lines as borders.
The procedure terminates when the number of vertex
doesn’t increases, as shown in Fig. 9(b). Thirdly, ver-
texes labeled “in” that haven’t been visited are handled
using the same method. When all vertexes labeled “in”
are visited, the required sub-mesh is created as shown
in Fig. 9(c). Details of creating sub-meshes are listed
in Algorithm 2. After all required sub-meshes are cre-
ated, these meshes are merged to complete Booleans. Fig.
10 shows some samples of Booleans using our method.
Fig. 10(a) is Booleans between a bunny model (closed
mesh) and a Schwarz P-surface (open mesh). Fig. 10(b)
is Booleans between two sphere models, there are many
singular intersections. Fig. 10(c) is Booleans between two
armadillo models. The two models are complex with
350000 triangles.

3. Results and discussion

The algorithm code has been completely written using
C++. Our Booleans algorithm is tested using some tri-
angulated meshes. Some other systems are also tested

(a) (b) (c)

Figure 9. Creating required sub-meshes.
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Algorithm 2 creating required sub-meshes (such as MAinB)
Mnew: a new empty mesh
V∗
new: the set of intersected points

for each V labeled “in” && V /∈ Mnew do
add V into a contain Ver_C;
for each Vc ∈ Ver_C do
search all neighbouring vertexes Vnei−C and triangles Tnei−C of Vc;
for each V ′ ∈ Vnei−C &&V ′ /∈ V∗

new&&V ′ /∈ Mnew do
add V ′ intoMnew;
add V ′ into Ver−C;

end for
for each T′ ∈ Tnei−C&&T′ /∈ Mnew do
add T′ intoMnew;

end for
remove Vc from Ver−C;
end for

end for

(a)

(b)

(c)

Figure 10. Samples of Booleans (a) bunny and Schwarz P-surface (closed and openmesh) (b) two spheremodels (singular intersections)
(c) armadillo models (complex model).

in order to compare the quality of the results and the
overall performance including CGAL [5], the GUN tri-
angulated surface library (GTS) [12], Rapidform 2006
and Gilbert Bernstein et al.’s method [3]. All of these

tests have been carried out on a computer with 3.00GHz
Inter Core2 Duo CPU and 4GB RAM. Table 2 shows
the performance time of these tests. Each result is cal-
culated as the average of time for all three Boolean
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operations: union, intersection and differences of two
same meshes which have a different position in space.
A variety of results have been obtained. Based on the
comparion of results, our algorithm shows the best per-
formace using the least time. Gilbert et al.’s method,
GTS and Rapidform 2006 are relatively slow, CGAL is
the slowest. When the models are complex, the advan-
tage of our algorithm is obvious. Ourmethod, Rapidform
2006 and Gilbert et al.’s method can handle all the five
meshes. In order to further validate the stability of our
algorithm, the algorithm is also tested in amilling simula-
tion system. The process of milling simulation is actually
the removal of material from a workpiece, which con-
tains abundant Boolean difference operations between
the workpiece and a cutter. Most of the milling simula-
tion systems are developed based on 2D environments
or based on Multi-Resolution 3D Models. However, it
is difficulty to use Boolean algorithm to simulate the
process because the results of Boolean operations often
contain many self-intersections, overlapping and non-
manifold triangles which greatly reduce the stability of

Boolean algorithms. It is challenging to implement con-
secutive Boolean operations for many existing Boolean
algorithms. Our method successfully uses a cube model
and a cylindrical ball-head model to imitate three pro-
cesses of machining in a real 3D environment. Fig. 11
shows consecutive Boolean operations in a milling simu-
lation system. A cylindrical ball-head milling cutter cuts
a cube model using the Boolean difference operation.
The leftmost is the original model. The remaining three
pictures are results of the three processes of milling sim-
ulation containing 1200 Boolean difference operations.
The bottom pictures are top views of the corresponding
mesh, respectively.

Table 2 lists the performance comparison of differ-
ent systems in Boolean operations. Each result is calcu-
lated for the average of time for all Boolean operations.
The time of our algorithm contains the whole processing
pipeline of the Booleans, including all required conver-
sions. The Iphigenie model is from the reference [4],
which provides the materials on their project homepage.
Table 3 shows the performance time of different types of

Figure 11. Boolean operations for the milling simulation.

Table 2. Performance comparison of different systems in Boolean operations.

Model(Triangle Number)
Sphere Bunny Horse Armadillo Iphigenie

Methods (8.448 K) (71.69 K) (158.7 K) (345.9 K) (800 K)

CGAL 10.023s 80.45s Failed Failed Failed
GTS 0.255s 2.015s Failed 7.505s Failed
Rapidform 2006 Less than 1s ≈ 2.05 ≈ 6.250s ≈ 20.15s ≈ 101.0s
Gilbert et al.’s method 0.177s 1.878s 4.221s 9.952s 26.423s
Our method 0.179s 1.859s 3.112s 6.068s 14.752s
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Table 3. Performance time (Intersection detection/Boolean operation/total time) of different types of Boolean operations (Union,
Difference, Intersection) for different models.

Model(Triangle Number)
Sphere Bunny Horse Armadillo Iphigenie

Boolean operation type (8.448 K) (71.69 K) (158.7 K) (345.9 K) (800 K)

Union 0.089s/ 0.862s/ 1.505s/ 3.014s/ 7.502s/
0.090s/ 0.927s/ 1.476s/ 2.993s/ 6.900s/
0.179s 1.789s 2.981s 6.007s 14.402s

Difference 0.088s/ 0.859s/ 1.598s/ 3.102s/ 7.512s/
0.088s/ 1.007s/ 1.529s/ 3.036s/ 7.115s/
0.176s 1.866s 3.127s 6.138s 14.627s

Intersection 0.090s/ 0.869s/ 1.587s/ 3.104s/ 7.511s/
0.091s/ 1.028s/ 1.727s/ 3.014s/ 7.492s/
0.181s 1.897s 3.314s 6.118s 15.003s

Boolean operations (Union, Difference, Intersection) for
different models.

CGAL andGTS are two geometric processing libraries
which provide Boolean algorithms. CGAL provides tools
for processing polygons. It is designed to allow arbi-
trary precision arithmetic Booleans. The performance of
CGAL is acceptable for low-complex meshes. However,
when meshes are complex such as more than 200K tri-
angles, it becomes slow and may even fail, because the
internal representation already consumes about 5.3GB of
the main memory [4]. On the other hand, GTS has good
performance in the processing speed as it uses an AABB
tree to accelerate the process of intersection. GTS can
also process complex meshes and the quality of results
is high. However, it is very strict for the topology of
meshes. Any self-intersecting, inconsistency or nonori-
entable of input meshes, such as the Horse and Iphige-
nie, will cause the failure of the Booleans. It is therefore
weak in implementing consecutive Boolean operations.
It successfully completed only 10 Booleans operations
in imitating the process of the milling machining
example.

The commercial packages of Rapidform 2006 have
good performance to produce correct results for all the
tested meshes. It is very fast when the model is low-
complex (less than 200K triangles). However, when the
input mesh is large, the time increases sharply. For the
Iphigenie model with 800K triangles, the time is even
over 100 s.

Gilbert et al.’s method performs excellent stability and
efficiency. It can give correct results for all the tests as it
uses a BSP-tree based Booleans algorithm which allows
to explicitly handle all geometric degeneracies without
treating a large number of cases. The algorithm also can
successfully complete all the Booleans operations in imi-
tating the process of the machining operation. It takes
about 26 s for the Iphigenie model with 800K triangles.

We also compare our method with Campen’s method
[4] using the Iphigenie model that has 200K triangles. In
[4], the authors evaluated their algorithm using a com-
puter system with Intel Core i7 2.67GHz CPU and 6GB
RAM, and we evaluate our algorithm on a system with
Intel Core i5 2.2GHz CPU and 4GB RAM. Using the
same Iphigeniemodel, Campen’s method takes 19.1 s and
ourmethod takes only 12.5 s. For thememory utilization,
the Campen’s method requires about 300M of the com-
puter main memory for the internal representation and
our method requires only 160M of the main memory for
the whole Boolean algorithm and the two meshes.

In [9, 29], both authors use the Octree technique
to accelerate the spatial queries. In [29], the authors
combine polygonal and volumetric computations and
representations for performing Boolean operations over
polygonal meshes. The method is an approximate
method. Our method is faster than the method in [29]
because the processes of preserving the existing sharp
features and reconstructing new features along intersec-
tions of the input meshes take much of the time. In
[9], the method is well designed and optimized in a
multithreaded environment. It is slightly faster than our
method when using one thread. We believe that our
code can run as fast as the method in [9] when it is
optimized.

Our algorithmproposed in this paper provides correct
results for all the tests. The algorithm uses an Octree to
facilitate the division of the common space of twomeshes
which can accelerate the speed of intersection detection
and reduce memory utilization. GTS uses an AABB tree
to divide the whole space of two models. This is the
reason that our algorithm is faster than GTS. From the
comparisons, it is also faster than Gilbert et al.’s method
which does not consider the conversion of meshes. By
analyzing floating point arithmetic errors and singular-
ity of intersections, our algorithm shows the ability to
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guarantee the unique intersection between a segment and
a face, and the continuity of intersections. The algorithm
is therefore robust to implement consecutive Boolean
operations. It is also a novel technique based on inter-
sected triangles to realize union, intersection and differ-
ence operations, which is suitable for both closed and
open meshes. The proposed method can create required
sub-meshes according to the type of Booleans automati-
cally which also enhances the performance.

4. Conclusions and future work

This work improved the performance and robustness
of Boolean operations in the geometric computation.
An efficient and robust Booleans method is presented
in this paper. The Octree technique is used to facili-
tate the division of the common space of two meshes
in order to accelerate the speed of intersection detec-
tions and to reduce memory utilization. Floating point
arithmetic errors and singularity of intersections are ana-
lyzed to improve the stability of the algorithm. The pro-
posed algorithm can handle very complex meshes. These
meshes can be either open or closed because only inter-
sected triangles are used for the point classification. It
is fast and robust to meet the requirements of modeling
in reverse engineering. Our algorithm uses the Octree
technique. The building of the Octree, the intersection
detection and the retriangulating intersected triangles
can be accelerated in a multithreaded environment after
our code has been optimized, which will be done in our
future work. Our algorithm can implement consecutive
Boolean operations and simulate the process of machin-
ing operations. However, with the increasing of the num-
ber of Boolean operations, the number of triangles will
be increased significantly. This will reduce the efficiency
of Booleans operations for the milling simulation. This is
also our future work.
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