
COMPUTER-AIDED DESIGN & APPLICATIONS, 2016
VOL. 13, NO. 3, 271–280
http://dx.doi.org/10.1080/16864360.2015.1114384

Generator of 2D Geometric Constraint Graphs

Adel Moussaoui and Samy Ait-Aoudia

Ecole Nationale Supérieure en Informatique, Algeria

ABSTRACT
In 2-dimensional geometric constraint solving, graph-based techniques are a dominant approach,
particularly in CAD context. These methods transform the geometric problem into a graph which is
decomposed into small sub-graphs. Each one is solved, separately, and the final solution is obtained
by recomposing the solved sub-graphs. To the best of our knowledge, there is no randomgeometric
constraint graph generator so far. In this paper, we introduce a simple, but efficient generator that
produces any possible geometric configuration. It would be parameterized to generate graphs with
some desirable proprieties, like highly or weakly decomposable graphs, or restricting the generated
graph to a specific class of geometric configuration.Generatedgraphs canbeusedas abenchmark to
make consistent tests, or to observe algorithm behaviour on the geometric constraint graphs with
different sizes and structural properties. We prove that our generator is complete and suitable for
two main classes of solving approaches.

KEYWORDS
geometric constraint
decomposition; graph-based
solver; graph generator

1. Introduction

A geometric constraint system (GCS) consists of a finite
set of geometric elements, such as points, lines and cir-
cles, along with relationships of different types such
as distance, angle, incidence and parallelism between
pairs of geometric elements. This problem is central
in many applications, such as computer-aided design
(CAD) [8], molecular modelling and recently localiza-
tion in wireless sensor networks [22]. Solving a GCS con-
sists of finding real coordinates of geometric elements in
Euclidean space. If a GCS is incomplete, i.e. there are not
enough constraints between geometric elements, then it
is called under-constrained. If the specified constraints
are conflicting, i.e. there are toomany constraints defined
between geometric elements, this situation is called over-
constrained. A GCS is called well-constrained, if it has
a finite number of solutions. We formally define those
notions in the next section.

In this paper, we focus on geometric constraint sys-
tems in the generic sense; we focus only on the solvabil-
ity of the graph and ignore the numerical values of the
geometric constraint. Assigning coordinates to the geo-
metric elements of a GCS that satisfies the constraints is
called a realization problem [6], Saxe [20] has shown it to
be NP-hard.

Many solvers have been proposed in the literature that
can be classified in four broad categories: graph-based,

CONTACT Adel Moussaoui a_moussaoui@esi.dz

symbolic, numerical and rule-oriented. Furthers details
can be found in [3] and [12]. In this work, we focus
on graph-based methods, developed in Computer-Aided
Design context, such as those presented in [1], [2], [4],
[10], [17], [19]. Many such solvers transform the GCS
into a graph. By applying some decomposition tech-
niques on the constraint graph, they isolate under, over,
and well-constrained parts. The well-constrained part is
then analyzed by a decomposition technique to find small
solvable sub-graphs. The final solution is produced by
merging the solved sub-graphs in respect to an order of
resolution produced in the decomposition phase. This
is referred to as Decomposition / Recombination plan
(DR-Plan) [9]. The primary aim of this decomposition
is to speed up the resolution process by limiting the use
of direct algebraic resolution to subsystems that are as
small as possible (typically ruler and compass solvable
problems).

Hoffmann et al., [9], classify DR-planners into two
main categories: SR-Planners (constraint shape
recognition), and MM-planners (generalized maximum
matching). Many SR-Planners have been proposed in the
literature. In [15], Joan-Arinyo et al. introduce a solv-
ing approach, called tree decomposition, that recursively
splits the constraint graph into three sub-graphs such that
pairwise share one vertex (called hinge). Their method
is based on searching for hinges in fundamental circuits

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://orcid.org/0000-0002-6978-1656
http://orcid.org/0000-0002-6074-2060
mailto:a_moussaoui@esi.dz
http://www.cadanda.com

272 A. MOUSSAOUI AND S. AIT-AOUDIA

of a specific planar embedding of the constraint graph.
Fudos andHoffmann proposed in [4] an algorithm called
reduction analysis which is based on a key concept called
cluster. Initially, each edge of the constraints graph is con-
sidered as a clusters, the algorithm recursively merges
each three clusters that share pairwise one vertex until
one final cluster is obtained. Owen proposes in [9] an
algorithm based on a recursive decomposition of a graph
into tri-connected components. SR-Planners are not
complete, i.e., they do not solve every well-constrained
graph but only a sub-class of geometric configurations.
These methods require that the constraint graph be bi-
connected [15], and the smallest solvable sub-graphs are
generally triangles [9]. Those algorithms can be theo-
retically extended to handle other types of shapes then
triangles by giving a specific recognition algorithm to
each new type of shape. We note that there is an infi-
nite collection of shapes [13]. As a result, SR-planners
cannot be generalized. The second class is referred to
as MM-planner. In [2], Ait Aoudia et al. transform the
GCS into a bipartite graph and use the maximummatch-
ing for finding solvable sub-graphs in the geometric
constraint graphs. Ait Aoudia et al. proposed in [1] an
algorithm that uses what they called a recursive skele-
tonization for decomposing the constraints graph. Hoff-
mann et al. proposed in [10] an algorithm called Frontier,
which is based on the finding of minimal dense sub-
graphs that are sequentially extended by adding more
geometric objects one at a time. InMM-planner category,
there is no restriction on the domain of geometric con-
straint configurations, the smallest sub-graph can be any
non-reducible well-constrained graph. These categories
detect smaller possible solvable sub-graphs and their
order of resolution. Those methods are complete, i.e. any
well-constrained graph can be decomposed, solved and
recomposed (see Figure 1).

(a) (b)

Figure 1. Two well-constrained graphs: (a) solvable by SR-
Planners and (b) solvable only by MM-Planners.

In this paper, we discuss how to generate random
geometric constraint configurations, with desired pro-
prieties, that are in relation to the quality of the solver,
described next in this paper. We focus on generat-
ing graphs for well-constrained geometric problems for
which the Laman condition [16] holds.

Most of the decomposition algorithms proposed in
the literature have been tested on small and well-chosen
examples. However, to make consistent tests, or observe
the algorithm behaviour on graphs with various sizes and
structural properties, we propose the use of the graph
generator that produces a set of geometric configurations,
covering different situations of difficulty and sizes regard-
ing the classification shown above. We have developed a
graph generator that verifies some desired proprieties:

• Completeness: it can generate any possible geometric
configuration.

• Customizable: it would generate some specific config-
uration. This is done by parameterizing the generator.
It can be parameterized to produce a graph solvable
by SR-Planners or only by MM-Planners. Moreover,
it can generate a specific domain of GCS or a gen-
eral one. By specifying what we called a degree of
decomposition, we can build a graph that has a low
or a high number of solvable sub-graphs. We can also
specify the average size of the smallest sub-graph.
Those two parameters represent our adopted metric
of solvability.

• Simplicity and efficiency: our generator is easily
understood; it is straight forward implemented based
on a verified theory.

This paper is organized as follows: The next section
highlight the application of geometric constraints solving
in CAD software. Section 3 presents some notions rela-
tive to the geometric constraint graph, its decomposition
and its generic solvability. Section 4 outlines the gener-
ation of random well-constrained graphs and presents
some tests on their decomposability. Section 5 presents
a suitable graph generator for well-constrained problems.
Section 6 presents some experiments to evaluate the solv-
ability of generated graphs. Finally, we summarize our
contribution in section 7.

2. Application of Geometric Constraints Solving
in CAD Software

Generally, in most CAD software, a 2D geometry is con-
sidered the starting-point for most 3D models. First, the
designer sketches a 2D draft, then adds some relation
between geometric elements. The geometric constraint
solver transforms the problem into a graph of constraints.
After the solving process, that can be done in real-time,
geometric objects are adjusted to conform to the speci-
fied constraint. This offers the advantage of freeing the
user from the tedious task of exact location of differ-
ent geometric elements. The 2D sketch is extruded to

COMPUTER-AIDED DESIGN & APPLICATIONS 273

(a) (b) (c) (d)

Figure 2. (a) a 2D constrained model, (b) the corresponding constraints graph, (c) the extruded model and (d) the final 3D model.

obtain the final 3Dmodel. Geometric models will be eas-
ily updated in the future, by simply modifying the values
of the different constraints. Because the underlying sys-
tem of equation is non-linear, and most solving methods
are O(n3) or worse, the resolution speed depends on the
size of the largest system of equation. Decomposing the
GCS, which is the central role of the planner, will speed
up the resolution process and make the CAD software
more interactive, thus the productivity of the designer
will be increased.

To illustrate the importance of planners, we use the
example of Fig. 2. The problem consists of 13 cir-
cles, 8 lines, which are connected by 19 tangency con-
straints: circle-circle and circle-line, 4 constraints of
angles between lines and 16 distance constraints. The
corresponding constraint graph is given in Figure 2(b),
nodes are numbered from 1 to 21, and each constraint
is represented by an edge of the graph. We have decom-
posed its corresponding graph using the method pre-
sented in [2]. The result gives 20 systems of equations,
the largest of which contains 8 unknowns. Without the
decomposition process, we have to solve a quadratic sys-
tem of 42 unknowns. The time required for finding a
solution will significantly decrease by decomposing the
system into smaller subsystems, and consequently the
design process becomes more interactive.

3. Geometric Constraint Graphs and Their
Decomposition

Any GCS can be represented by a graph G, which con-
sists of a vertex set V and an edge set E. The vertices of
G represent the geometric elements, and the edges repre-
sent the constraints between them. The cardinality of V
will be called the size of G.

3.1. Generic solvability of the geometric constraint
problem

Laman theorem [16] gives the necessary condition of
generic solvability for any GCS. To be solvable, its

constraint graph must be structurally well-constrained,
(also called generically isostatic, minimally rigid or
Laman graph by rigidity theory and structural topology
communities).

Definition 1: A geometric constraint graph G = (V, E)
where |V| = n (n > 1) and |E| = m is structurally well-
constrained if and only if m = 2n - 3 and m’ ≤ 2n’ - 3
for any induced sub-graphG’ = (V’, E’), where |V’| = n’
(n’ > 1) and |E’ | = m’.

Definition 2: A constraint graph G = (V, E) contains a
structurally over-constrained part if there is an induced
sub-graph G’ = (V’, E’) having more than 2n’-3 edges.

Definition 3: A geometric constraint graph G =
(V, E) is structurally under-constrained if it is not
over-constrained and the number of edges is less than
2n - 3.

Laman’s theorem [16] is proved only for point to
point distance constraints. There is no combinatorial
characterization for any other geometric element [19].
The extension of his theorem to other geometric ele-
ments may imply incorrect cases. A typical example of
such cases is given in [1]. The generalization of Laman’s
theorem to dimensions three, or higher, has been proved
to be incorrect. Until now, there is no combinatorial char-
acterization for 3D geometric constraint problems; it’s an
open problem.

3.2. Geometric constraint graph decomposition

Decomposition process can be done in two steps, the first
one can be considered as a pre-processing that consists
of isolating the unsolvable parts: the over- and under-
constrained sub-graphs. For this purpose, we can use
for example the algorithm proposed in [2]. Then, the
obtained well-constrained graphs, which are the solvable
ones, are decomposed in the second step. The goal of
this decomposition is to speed-up the resolution process,

274 A. MOUSSAOUI AND S. AIT-AOUDIA

(a) (b)

Figure 3. The two operation of Henneberg construction.

by providing a plan of resolution. We focus only on the
decomposition of the well-constrained parts.

Transforming thewhole geometric constraint problem
into a system of equations, and solving it, is extremely
time-consuming. The main goal of graph-based tech-
niques is to decompose the problem into small sub-
systems. Each one is solved separately with respect to an
order given as output by the DR-planer. Two parameters
that we call a decomposability metrics can decide how
fast will be the resolution process:

(1) the size of the largest sub-graph as proposed in [9]
by Hoffmann et al.

(2) the number of detected sub-graphs over the total
number of vertices. We can formulate this by a
parameter, d, called the degree of decomposability,
where d = n / g. n is the number of vertices of the
geometric constraint graph and g is the number of
detected sub-graphs to be solved directly by alge-
braic methods. d indicates if the graph is highly or
weakly decomposable.

In the rest of this paper, we show how to design a
random graph generator that uses those two parameters
as input. Our approach is organized in two steps: in the
first one, we present a procedure called RH that gener-
ates a non-decomposable graph, i.e., a graph that has a
known size and no detectable sub-graphs. Then we use
the procedure RH to develop our random graph genera-
tor, calledRRH, which can produce a graphwith a known
size of the largest sub-graph and a known number of sub-
graphs. RRH can also produce graphs that are solvable by
SR-Planner or by only MM-Planners.

4. GeneratingWell-constrained Graphs

In [21], Tay and Whiteley presented an inductive con-
struction that always produces a well-contained graph.
This construction is due toHenneberg [7]. The definition
follows.

Definition 4: Starting with a graph G = K3, a well-
constrained graph can be built inductively by adding

one vertex at a time using one of these two Henneberg
operations:

Operation HI : add a new vertex v to G, then connect v
to two chosen vertices u andw fromG via two new edges
(v, u) and (v, w).

Operation HII : add a new vertex v to G, chose an edge
(u, w) and a vertex z from G, then add three edges (v, u),
(v, w) and (v, z) to G, finally delete the edge (u, w).

Fig. 3 shows the two operation of Henneberg: (a) the
first operation HI which consists of adding the vertex e
and connecting it to two existing vertices by two edges:
(e, c) and (e, d); (b) shows the second operation HII, it
“split” the edge (b, d) by deleting it and adding a new ver-
tex e connected to vertices b, d and c via the three edges:
(c, e), (b, e) and (d, e).

The following definition justifies our interest in Hen-
neberg construction.

Definition 5 ([21]): AgraphG is well-constrained if and
only if it has a Henneberg construction.

Proof ([5]): Henneberg construction always generates a
well-constrained geometric constraint graph. In review-
ing the literature, no study was done on the relation
between the choice of Henneberg steps, HI and HII,
and the structural propriety of the generated graph. How
many solvable sub-graphs have the generated graph if we
always chose the first operation HI, or the second opera-
tion HII, or if the two operations have the same or differ-
ent probabilities of being chosen? Let p be the probability
of choosing HI. The algorithm is as follows: �

Algorithm 1. Generate a random well-constrained
graph using Henneberg construction according to the
probability p.

input : n: the size of the graph; p: the probability of
choosing HI;

output: a well-constrained graph G.
Procedure RH (n, p)
begin
1. start with an initial graph G = K3
2. for i = 1 to n - 3 do

COMPUTER-AIDED DESIGN & APPLICATIONS 275

3. Generate a random number r, uniform on
[0, 1);

4. if r < p then add a new vertex v to G
according HI;

5. else add a new vertex v to G according
to HII;

end if
end for

return (G)
end
Note: in step 3 we use a uniform pseudorandom num-

ber generator presented in [18].
To evaluate the degree of decomposability of graphs,

generated by the procedure RH of algorithm 1, for dif-
ferent values of p, three sets of 2000 random graph were
generated. Each set corresponds respectively to the value:
0, 0.5 and 1 of the parameter p. Due to the randomness,

20 instances for each size ranging from 4 to 100 vertices
were generated, and the mean has been calculated.

We have calculated the degree of decomposabil-
ity using an MM-Planner, based on the Dulmage-
Mendelsohn decomposition, presented by Ait-Aoudia et
al in [2]. This planner has been chosen because it always
returns decomposition if one exists [12].

As it can be seen in Fig. 4(b)., for p = 0, which mean
that we constantly use the second operation of Hen-
neberg construction HII, generally, graphs of size > 40
were not decomposable. For example, graph of size 20,
only 30%were not decomposable, but for size 40 this per-
centage increase approximately to 80%. In our tests, for
the 20 randomly generated graphs, with a size ranging
from 40 to 100; rarely there existed a decomposable one.
This is due to the use of the second operation of Hen-
neberg, which splits edges. This operation may merge

(a) (b)

Figure 4. (a) the size of the graph vs degree of decomposability for p = 0, p = 0.5 and p = 1. (b) The percentage of non-decomposable
graphs in each set of 20 instances generated, size ranging from 4 to 100.

Figure 5. The probability of choosing the first operation of Henneberg vs the degree of decomposition.

276 A. MOUSSAOUI AND S. AIT-AOUDIA

(a) (b)

Figure 6. (a) A weakly decomposable graphs generated by RH(50, 0). (b) A highly decomposable graph generated by RH(50, 1).

Table 1. The degree of decomposition for different values of p and size of the graph.

The probability of choosing HI (p)

Size of graph (n) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

100 0.010 0.062 0.122 0.206 0.276 0.366 0.382 0.576 0.654 0.752 0.862
200 0.005 0.063 0.134 0.184 0.294 0.400 0.456 0.511 0.659 0.787 0.853
300 0.003 0.073 0.121 0.249 0.299 0.351 0.468 0.553 0.617 0.785 0.917
400 0.003 0.074 0.133 0.214 0.299 0.354 0.488 0.547 0.712 0.814 0.911
500 0.002 0.072 0.144 0.234 0.295 0.409 0.483 0.579 0.657 0.825 0.930
600 0.002 0.068 0.145 0.241 0.290 0.367 0.481 0.568 0.641 0.800 0.928
700 0.001 0.072 0.133 0.223 0.309 0.386 0.467 0.584 0.665 0.811 0.939
800 0.001 0.078 0.148 0.231 0.277 0.372 0.475 0.559 0.702 0.793 0.954
900 0.001 0.076 0.144 0.212 0.288 0.359 0.447 0.551 0.653 0.810 0.946
1000 0.001 0.067 0.134 0.211 0.287 0.382 0.454 0.593 0.686 0.811 0.915

two sub-graphs in a single non-decomposable one at
each step. This result can be used in the generation of
non-decomposable graphs of sizes > 40. A sample non-
decomposable graph generated by RH, for the case of
p = 0 and n = 50 is given by Fig. 6(a). Fig. 6(b). shows
a highly decomposable graph. We note that these two
graphs differ in many features. For example, there are
many nodes in graph of Figure 6(b). that have a degree
of 2, we see the opposite with Figure 6(a).

In the case of p = 1, where only the first step of Hen-
neberg construction will be used, whatever the size of
the generated graph, it was decomposable. For p = 0.5,
the degree of decomposition was approximately 0.4. Tab.
1. gives the different values of d, for graph size, ranging
from 100 to 1000 vertices. We have randomly generated
5 instances for each size and calculated the mean. Results
show that the degree of decomposition depends on the
probability value p rather than on size. In Fig. 5., we
have plotted the decomposability degrees for p ranging
from 0 to 1. It can be seen that the degree of decom-
posability increases in direct proportion of p, i.e. the
more we decrease the probability value p, the more we
weaken the decomposability of the graph. To generate a
non-decomposable graphs, pmust be equal to 0.

Tests conclude that the parameter p can be used
to parameterize the generator for producing highly or
weakly decomposable graphs. In the next section, pro-
cedure RH of algorithm 1. will be used to generate non-
decomposable graphs.

5. Random Constraint Graph Generator

The central role of a Planner is the decomposition of geo-
metric constraints graphs. To evaluate how planners deal,
or howwill be their behaviour with some types of graphs,
a tool for generating situationwith somedesirable propri-
eties can be very helpful. Such tool enables the evaluation
and the performance analysis of any solvingmethod with
more data analysis rather than pure theory.

First, we show how to generate graphs that are decom-
posable by SR-Planners, and then we explain how to
set the size of the larger sub-graph to a desirable value.
Decomposability degree is always obtained, using the
probability value p.

If we want to limit the graph generated by the proce-
dure RH, presented in the previous section, to only those
that are decomposable by SR-Planners, where the small-
est sub-graphs are limited to triangles, the first ideawould

COMPUTER-AIDED DESIGN & APPLICATIONS 277

Figure 7. A geometric constraints graph.

be to use only the first operation HI.We will prove that is
incorrect, and then we modify the procedure RH so that
it can easily generate this case using only HI.

Fig. 7 shows a graph that can be decomposed by any
SR-Planner. Let shows if there exist a Henneberg con-
struction for this graph that uses only the first operation
HI. Supposes that we start with the triangle {a, b, c} as the
first step, the second step must be no other than adding
the vertex c. After this stage, no other vertex can be added
to the cluster. If we start with another triangle, than {a, b,
c}, we will obtain the same reasoning because the graph
is formed by three symmetric parts: SG1, SG2, and SG3.
Hence, this graph is solvable by SR-Planners and not con-
structible by procedure RH using only the first operation
HI. Next, we show how to add a recursion mechanism
to the procedure RH so that any graph decomposable
by SR-Planners can be generated using exclusively HI,
i.e., where p = 1. This will simplify the design of our
generator.

We have already seen, that for p = 0, graphs of
size > 40 generated by procedure RH are generally non-
decomposable, hence we can produce a larger graph by
composition of non-decomposable ones. This procedure
can be used to produce a graph that has a predefined size
of the largest sub-graph as required by the metric defined
in section 2. Generating a graphG is a sequence of graphs
G1 , . . . , Gn with the following properties:

(1) G1 = RH(m, p) ;
(2) Gn = G;
(3) Gi + 1 is obtained from Gi, through the replacement

of random chosen edge of Gi, by a new sub-graph
RH(m, p).

Let m be the desired size of the largest sub-graph, the
algorithm follows.

Algorithm 2. Generate a random well-constrained
graph, according to the two metrics:

(1) the size of the largest sub-graph

(2) the degree of decomposition.

Input : n: size of the graph;
p: probability of choosing the first step of Hen-

neberg construction;
m: the size of the largest sub-graph;

Output: G: a well-constrained graph
Procedure RRH (n, p, m)

begin
1. start with a graph G = K3
2. k = n / m
3. for i = 1 to k do / * we generate k sub-graph, each

one have a sizem * /
4. generate a random graph H of sizem using

RH(m, p);
5. pick an edge (x, y) from G
6. replace the edge (x, y) by the graphH as follows:
7. pick two random vertices x’ and y’ from the

graph H
8. connect x’, to all neighbours of x
9. connect y’, to all neighbours of y
10. delete x and y

endfor
11. Complete G by adding a sub-graph H =

RH(n - |V| + 2, p) as in step 4–10.
12. return G
end
Notice, as seen in section 3, generally the procedure

RH generates a non-decomposable graph for m > 40
and p = 0. For m < 40, mostly, procedure RRH will be
not efficient. In this case, instead of generating non-
decomposable graphs using RH(m, p), we can easily
design a dataset of non-decomposable graphs, having a
size lower than 40. Step 4 of the procedure RRH will be
replaced by a random retrieval from this dataset. If we set
the parameterm to a desirable value of size of the largest
sub-graph, the parameter pmust be equal to zero.

Claim 1: Any structurally well-constrained graph can be
generated by RRH.

Proof: Since RRH uses Henneberg construction, and
any one of the two operations (HI or HII) may be exe-
cuted in each step of RRH, and by the definition 5.,
we conclude that RRH generates all the domain of the
well-constrained graph in 2D. �

Claim 2: A geometric constraints graph is solvable by
any SR-Planner if and only if p = 1 orm = 3.

Proof: If m = 3 then the procedure RRH will start ini-
tially by a triangle, and recursively replace edges by new
triangles. If p = 1, i.e., RRH uses only the first opera-
tion of Henneberg: H1, then RRH start with a triangle

278 A. MOUSSAOUI AND S. AIT-AOUDIA

and recursively add new vertex and connecting it to two
vertices of the graph.

Replacing an edge of a triangle by a triangle, or con-
necting a new vertex to two vertices of a triangle lead to
the same graph.

We recall that all SR-planners solve only a sub-domain
of GCS. in [14], Joan-Arinyo et al. studied the domain of
SR-planners, they have proved in that Owen’s SR-planner
proposed in [19] and the planner proposed by Fudos et al.
in [4] solve the same domain of GCS,. Recently, he pro-
posed in [15] a new SR-Planner that also solves the same
domain.

To prove the claim 2, we have to prove that if a graph
G is solvable by an SR-Planner (called reduction analysis)
proposed by Fudos et al. in [4], then, it can be generated
by procedure RRH for p = 1.

Let us recall now the principal of the reduction analy-
sis algorithm. More details can be found in [4].

Given the constraint graphG = (V,E), we consider the
initial set of clusters CG = {{u,v} / (u, v) ∈ E }. Cluster
sets, that have a central role in this method, are rewrit-
ten using a reduction → . The reduction → is formally
defined as follows: Let S be a set of clusters in which there
are three clusters C1, C2, and C3 such that: ∃ g1, g2, g3 ∈
V, C1∩C2 = {g1}; C1∩C2 = {g2} ; C1∩C2 = {g3} and g1
�= g2 �= g3. (i.e., those tree clusters pairwise intersection
in a singleton). Then: S → S’, where S’ = S – {C1,C2 ,C3}
∪ { C1∪C2 ∪C3}.

The solving process is a repetitive application of reduc-
tions → , that start from the initial cluster SG. If this
process endwith a singleton {V}, i.e. the final cluster con-
tain only on element which is the set of nodesV, then the
graph is solvable by the reduction analysis algorithm.

First, we prove by induction that if p = 1, then the
generated graph is solvable by the reduction analysis
algorithm.

Because p = 1, the procedure RRH always uses the
first operation HI (in step 4). The generation process of
the graphG byRRH a sequence of graphsG1, . . . ,Gn with
the following properties :G1 = K3;Gn = G; andGi + 1 is
obtained from Gi , though only the operation HI.

1. G1 is a triangle; hence it is decomposable by the
reduction analysis algorithm (trivial).

2. Suppose that Gi is decomposable by SR-Planners.
Gi + 1 is obtained by adding a new vertex v to Gi
and connecting it to two randomly chosen vertices
ofGi: u andw. BecauseGi is supposed decomposable
by the reduction analysis algorithm, then it corre-
sponding set of clusters can be reduced to a single
set SGi where u,w ∈ SGi. SGi ∩ {u,v} = {u}. SGi
∩ {w,v} = w and {u,v} ∩ {w,v} = v. Hence, the set
of clusters: {SGi, {u,v}, {w,v}} → {SGi ∪ {u,v} ∪

{w,v}} = SGi + 1. We deduce that Gi + 1 is Decom-
posable by SR-Planners.

Nowwe prove thatRRH generate all the domain of SR-
Planners if p = 1 or m = 3.

LetG be a graph that is decomposable by the reduction
analysis algorithm. Then there exist a cluster reduction:
SG1 → SG2 → . . .SGk−1 → SGk.We prove that there is a
sequence of steps in the procedure RRH that generate G.

SK−1 is the penultimate set of clusters of the reduc-
tion analysis, then it has three elements = {L, M, N},
where L∩M = {g1}; L∩N = {g2};M∩N = {g3}. The last
step of the reduction corresponds to the first step of the
procedure RRH. (step 1 in algorithm 2). It creates a trian-
gle, let be {g1, g2, g3}. The three edges of this triangle:
(g1, g2), (g1, g3), (g2, g3), will be replaced respectively
(steps 4 and 5 of algorithm 2) by three graphs: GL, GM
and GN that corresponds to the three clusters: L, M and
N. If a cluster C has only two elements, i.e., it corre-
sponds to an edge, this edge will not be replaced by
any graph, but considered as a graph composed by only
on edge.

Because the three graphs GL, GM and GN are well-
constrained, there exist a reduction sequence for every
one of them, and the last reduction of each sequence has
a corresponding step in the procedure RRH that can be
demonstrated in the same manner as the last reduction
sequence of G shown above.

Because there is a finite number of reduction, we
deduce that, if a graph has a reduction sequence, i.e. it
is solvable by any SR-Planner, then it can be generated by
the procedure RRH for p = 1. �

6. Experimental Results

We conducted experiments to evaluate the solvability
of graphs generated by procedure RRH. Each gener-
ated graph that have a known number of sub-graphs
will be decomposed to show how those sub-graphs are
detected. Experiments are done for graphs size n in
{500,600,700,800,900,1000} and for the largest sub-graph
size m in {50,10,150,200,250,300,350,400,450,500}. To
ensure that sub-graphs are not decomposable, we fixed
the parameter p to 0 and the size m of the smallest sub-
graph to 50. We recall that for the others values of p and
m, experiments are presented in section 3.

We calculate the mean of the number of sub-graphs
detected, after decomposition. Due to randomness, for
each size, we generate 20 instances of each situation and
calculate the mean. Tab. 2 gives the average number of
sub-graphs detected after decomposition.

Theoretically, we expect that the number of sub-
graphs detected is at least equal to n / m. Tab. 2. shows the

COMPUTER-AIDED DESIGN & APPLICATIONS 279

Table 2. The average number of sub-graph detected for graphs generated by RRH (n, 0, m) for different values of n andm.

Size of the largest sub-graph (m)

Size of the graph (n) 50 100 150 200 250 300 350 400 450 500

500 5.850 3.750 3.000 2.850 2.300 2.050 1.450 1.400 1.700 1.100
600 7.300 3.550 2.450 2.950 2.600 2.050 2.400 2.100 1.050 1.200
700 5.800 3.350 3.250 2.950 2.800 2.450 2.150 2.000 2.000 2.000
800 7.800 4.500 3.400 2.900 3.100 2.600 2.600 2.050 2.250 2.050
900 7.500 3.500 3.600 3.000 2.600 2.800 2.650 2.650 2.000 2.000
1000 8.600 3.550 3.650 3.250 2.700 2.900 2.600 2.450 2.700 2.200

opposite. For example, for n = 500 and m = 50, instead
of detecting at least 500 / 50 = 10 sub-graphs, the decom-
position returns only an average of 5.85. The method
of decomposition that we used did not really detect all
sub-graphs, nor did other decomposition methods. This
is explained by the fact that finding sub-graph of min-
imal size is NP-Hard as reported by Hoffmann et al.
in [11]. We note that For RRH (500,0,500), the aver-
age was 1.1, as we were expecting. Notice, those results
may change with others decomposition algorithm. Fig. 8
shows a large graph composed of 500 vertices, gener-
ated by RRH(500,0,50). It contains 10 non-reducible sub-
graphs, each one is generated in step 4 of algorithm 2
and has a size of 50 nodes. To be differentiated, sub-
graphs are plotted in different colours. Some sub-graphs
will be merged because the creation process is a recur-
sive replacement of edge of the graph by a new generated
sub-graph H (step 6 of algorithm 2.). In Fig. 8. The yel-
low sub-graph is merged with the orange and the brown
with light-blue. To find the best decomposition possible,

Figure 8. A well-constrained graph of 500 vertices generated by
RRH(500,0,50).

a good planner must be able to isolate all of them.
In Tab 2. (The top-left cell of the table), the average num-
ber of detected sub-graphs is 5.85 but the real number is
500 / 10 = 10.

7. Conclusion

We presented two algorithms for generating 2D geomet-
ric constraint graphs. The first one, RH, can be used
to produce non-decomposable graphs or graphs with a
given degree of decomposability. The second algorithm,
RRH, can serve as a generator of graphs with desired
size of the larger sub-graph. It can also be parameter-
ized to generate graphs that are solvable by SR-Planners
or MM-planners. We conducted an experimental study
to show how generated graphs are decomposable. Our
graph generator is complete: generate all the domain of
well-constrained geometric systems; Fast: linear on the
number of iteration;Customizable: it requires fewparam-
eters to generate a class-specific graph with desired prop-
erties. It can be used to test and observe the behaviour of
many SR-planners or MM-planners, moreover, it enables
the comparison of solving methods with more data anal-
ysis rather than pure theory. Efficient and simple: based
on strong theorems and simple to be implemented. It
has been validated experimentally by decomposing gen-
erated graphs with a well-chosen planner.

Acknowledgements

We thank two anonymous reviewers for their careful reading of
the paper, their suggestions and comments.

ORCID

Adel Moussaoui http://orcid.org/0000-0002-6978-1656
Samy Ait-Aoudia http://orcid.org/0000-0002-6074-2060

References

[1] Ait-Aoudia, S.; Foufou, S.: A 2D geometric constraint
solver using a graph reduction method, Advances in Engi-
neering Software, 41(10), 2010, 1187–1194. http://dx.doi.
org/10.1016/j.advengsoft.2010.07.008

http://orcid.org/0000-0002-6978-1656
http://orcid.org/0000-0002-6074-2060
http://dx.doi.org/10.1016/j.advengsoft.2010.07.008
http://dx.doi.org/10.1016/j.advengsoft.2010.07.008

280 A. MOUSSAOUI AND S. AIT-AOUDIA

[2] Ait-Aoudia, S.; Jegou, R.; Michelucci D.: Reduction of
constraint systems,Compugraphics’93 Alvor, Algarve, Por-
tugal, 1993, 331–340.

[3] Bettig, B.; Hoffmann C. M.: Geometric constraint solving
in parametric computer-aided design, Journal of Comput-
ing and Information Science in Engineering, 11(2), 2011,
021001. http://dx.doi.org/10.1115/1.3593408

[4] Fudos, I.; Hoffmann, C. M.: A graph-constructive
approach to solving systems of geometric constraints,
ACM Transactions on Graphics (TOG), 16(2), 1997,
179–216. http://dx.doi.org/10.1145/248210.248223

[5] Haas, R.; Orden, D.; Rote, G.; Santos, F.; Servatius, B.; Ser-
vatius, H.; Souvaine D.; Streinu I.; Whiteley, W.: Planar
minimally rigid graphs and pseudo-triangulations, Pro-
ceedings of the nineteenth annual symposium on Com-
putational geometry, ACM, 2003, 154–163. http://dx.doi.
org/10.1016/j.comgeo.2004.07.003

[6] Hendrickson, B.: Conditions for unique graph realiza-
tions, SIAM Journal on Computing, 21(1), 1992, 65–84.
http://dx.doi.org/10.1137/0221008

[7] Henneberg L.: Die graphische Statik der starren Systeme,
Leipzig, 1911, Johnson Reprint, 1968.

[8] Hoffmann, C. M.; Joan-Arinyo R.: A brief on constraint
solving, Computer-Aided Design and Applications, 2(5),
2005, 655–663. http://dx.doi.org/10.1080/16864360.2005.
10738330

[9] Hoffmann, C. M.; Lomonosov, A.; Sitharam, M.: Decom-
position plans for geometric constraint systems, Part
I: Performance measures for CAD, Journal of Symbolic
Computation, 31(4), 2001, 367–408. http://dx.doi.org/10.
1006/jsco.2000.0402

[10] Hoffmann, C. M.; Lomonosov, A.; Sitharam, M.: Decom-
ponosition plans for geometric constraint problems,
part II: new algorithms, Journal of Symbolic Computa-
tion, 31(4), 2001, 409–427. http://dx.doi.org/10.1006/jsco.
2000.0403

[11] Hoffmann, C. M.; Lomonosov, A.; Sitharam, M.: Geo-
metric constraint decomposition. In Geometric con-
straint solving and applications, Springer Berlin Hei-
delberg, 1998, 170–195. http://dx.doi.org/10.1007/978-3-
642-58898-3_9

[12] Jermann, C.; Trombettoni, G.; Neveu, B.; Mathis, P.:
Decomposition of geometric constraint systems: a sur-
vey, International Journal of Computational Geometry &

Applications, 16(05n06), 2006, 379–414. http://dx.doi.
org/10.1142/S0218195906002105

[13] Joan-Arinyo, R.; Soto-Riera, A.; Vila-Marta, S.; Vilaplana-
Pasto, J.: Revisiting decomposition analysis of geometric
constraint graphs, Computer-Aided Design, 36(2), 2004,
123–140. http://dx.doi.org/10.1016/S0010-4485(03)
00057-5

[14] Joan-Arinyo, R.; Soto-Riera, A.; Vila-Marta, S.; Vilaplana,
J.: On the domain of constructive geometric constraint
solving techniques, in Computer Graphics, Spring Con-
ference on Computer Graphics, IEEE, 2001, 49–54. http://
dx.doi.org/10.1109/SCCG.2001.945336

[15] Joan-Arinyo, R.; Tarrés-Puertas, M.; Vila-Marta, S. :
Decomposition of geometric constraint graphs based on
computing fundamental circuits. Correctness and com-
plexity,Computer-Aided Design, 52, 2014, 1–16. http://dx.
doi.org/10.1016/j.cad.2014.02.006

[16] Laman, G.: On graphs and rigidity of plane skeletal struc-
tures, Journal of Engineering mathematics, 4(4), 1970,
331–340. http://dx.doi.org/10.1007/BF01534980

[17] Latham, R.; Middleditch, A.: Connectivity analysis: a tool
for processing geometric constraints, Computer Aided
Design, 28(11), 1996, 917–928. http://dx.doi.org/10.1016/
0010-4485(96)00023-1

[18] Matsumoto M.; Nishimura T.: Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom
number generator, ACM Transactions on Modeling and
Computer Simulation, 8(1), 1998, 3–30. http://dx.doi.org/
10.1145/272991.272995

[19] Owen, J. C.: Algebraic solution for geometry from dimen-
sional constraints, in Proceedings of the first ACM sym-
posium on Solid modeling foundations and CAD/CAM
applications, ACM, 1991, 397–407. http://dx.doi.org/10.
1145/112515.112573

[20] Saxe J.: Embeddability of weighted graphs in k-space is
strongly NP-hard, Proceedings of 17th Allerton Confer-
ence in Communications, Control and Computing, 1979,
480–489.

[21] Tay T.S.; Whiteley W.: Generating isostatic frameworks,
Structural Topology, 11, 1985, 21–69.

[22] Zhang, Y.; Liu, S.; Zhao, X.; Jia, Z.: Theoretic analysis
of unique localization for wireless sensor networks, Ad
Hoc Networks, 10(3), 2012, 623–634. http://dx.doi.org/10.
1016/j.adhoc.2011.06.016

http://dx.doi.org/10.1115/1.3593408
http://dx.doi.org/10.1145/248210.248223
http://dx.doi.org/10.1016/j.comgeo.2004.07.003
http://dx.doi.org/10.1016/j.comgeo.2004.07.003
http://dx.doi.org/10.1137/0221008
http://dx.doi.org/10.1080/16864360.2005.10738330
http://dx.doi.org/10.1080/16864360.2005.10738330
http://dx.doi.org/10.1006/jsco.2000.0402
http://dx.doi.org/10.1006/jsco.2000.0402
http://dx.doi.org/10.1006/jsco.2000.0403
http://dx.doi.org/10.1006/jsco.2000.0403
http://dx.doi.org/10.1007/978-3-642-58898-3_9
http://dx.doi.org/10.1007/978-3-642-58898-3_9
http://dx.doi.org/10.1142/S0218195906002105
http://dx.doi.org/10.1142/S0218195906002105
http://dx.doi.org/10.1016/S0010-4485(03)00057-5
http://dx.doi.org/10.1016/S0010-4485(03)00057-5
http://dx.doi.org/10.1109/SCCG.2001.945336
http://dx.doi.org/10.1109/SCCG.2001.945336
http://dx.doi.org/10.1016/j.cad.2014.02.006
http://dx.doi.org/10.1016/j.cad.2014.02.006
http://dx.doi.org/10.1007/BF01534980
http://dx.doi.org/10.1016/0010-4485(96)00023-1
http://dx.doi.org/10.1016/0010-4485(96)00023-1
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/112515.112573
http://dx.doi.org/10.1145/112515.112573
http://dx.doi.org/10.1016/j.adhoc.2011.06.016
http://dx.doi.org/10.1016/j.adhoc.2011.06.016

	1. Introduction
	2. Application of Geometric Constraints Solving in CAD Software
	3. Geometric Constraint Graphs and Their Decomposition
	3.1. Generic solvability of the geometric constraint problem
	3.2. Geometric constraint graph decomposition

	4. Generating Well-constrained Graphs
	5. Random Constraint Graph Generator
	6. Experimental Results
	7. Conclusion
	Acknowledgements
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

