
COMPUTER-AIDED DESIGN & APPLICATIONS, 2016
VOL. 13, NO. 2, 246–252
http://dx.doi.org/10.1080/16864360.2015.1084197

On the interpolation of non-iso-parametric curves

Abdulwahed M. Abbas1 and Ahmad H. Nasri2

1The University of Balamand, Lebanon; 2American University of Beirut, Lebanon

ABSTRACT
Exact curve interpolation has frequently been addressed in a variety of modeling domains. The sug-
gested solutions uniformly assume the interpolated curve to be iso-parametric along one or the
other of the parameter lines controlling the interpolating surface. However, once this assumption
is abandoned, the difficulty of this problem rises to a degree that no known method is currently in
existence which is able to solve this problem efficiently enough for practical purposes. In this con-
text, this paper presents an algorithm capable of embedding a cubic B-spline curve within a regular
quad-basedCatmull-Clark subdivision surface along any arbitrary direction not necessarily along any
of the parameter lines controlling the surface.
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1. Introduction

Curve interpolation (also known as lofting [10] or
skinning [8]) has been addressed in numerous model-
ing domains: B-spline surfaces, NURBS [9], subdivision
surfaces (such as Catmull-Clark [3] and Loop [7] sub-
division surfaces), and also in the domain of T-spline
surfaces.

Approaches developed for solving the interpolation
problem range from exact interpolation, via the tradi-
tional system of linear equations with many variables [5],
to approximation methods (also known as fitting), and
lately through the use of polygonal complexes [1].

The interpolation problem is commonly posed as fol-
lows: given a curve (C) together with a surface (S), the
idea is to modify (S) minimally (but sufficiently) for the
modified version (S’) of (S) to interpolate (C).

Furthermore, in the particular domains of B-spline
and NURBS surfaces, the solution fundamentally
assumes (C) to be iso-parametric with respect to one or
the other of the parameters controlling (S), which turns
out to be a considerable simplification of a more difficult
problem.

The particular choice of the research direction
reported in this paper is motivated by the problem of
modifying an initial B-spline surface to interpolate a
non-constant-parameter B-spline curve [4]; a problem
that is still defying an exact solution, even after a few
decade of research. Moreover, the approximate solutions
that have so far been developed for that problem are not
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sufficiently efficient for practical purposes. In this respect,
the particular wording of the title of this paper is also
selected in the spirit of the title of the above reference.

In this regard, it may be argued that themain difficulty
standing in the way of an exact and practical solution of
the problem results from the inability to incorporate the
control points of the given curve as an integral part of
those of the given surface, without perhaps destroying
the regular B-spline nature of that surface, and therefore
the starting premise of the problem itself. This may also
be the source of the high degree of the curve-on-surface
emanating from the original curve, and resulting in the
inability of exactly matching the original curve with the
corresponding curve-on-surface [6], and consequently
resulting in the inability of obtaining an exact solution
of the problem.

In view of these difficulties, the present paper reduces
the problem to that of constructing a Catmull-Clark
[3] subdivision surface that can interpolate an initial
regular cubic B-spline curve. However, the relationship
between the original problem posed in [4] and the prob-
lem addressed in the present paper is still maintained
by insisting that the control mesh corresponding to the
initially given subdivision surface is regular, and that
the control polygon corresponding to the curve is not
necessarily equal in size to any of the polygons consti-
tuting the control mesh of the initial surface nor run-
ning along any of the parameter lines controlling that
surface.

© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://orcid.org/[0000-0002-3954-7076]
http://orcid.org/[0000-0002-2047-6693]
mailto:abbas@balamand.edu.lb
http://www.cadanda.com


COMPUTER-AIDED DESIGN & APPLICATIONS 247

In this sense, the research reported in this paper repre-
sents yet again another demonstration that an alternative
representation of the given of a problem might render a
defiant solution possible.

In summary, this paper presents an algorithm that
is able to embed a cubic B-spline curve on a regular
quad-based Catmull-Clark subdivision surface along any
arbitrary direction that does not necessarily run along
any of the polygons of the mesh controlling the surface.
The usefulness of this approach relies on the ability of iso-
parametricity (or otherwise) of the given curve to retain
some sensiblemeaning with respect to a subdivision sur-
face, precisely when the controlmesh associatedwith that
surface is regular.

The rest of this paper is structured as follows. Section 2
reviews the basics of Catmull-Clark subdivision surfaces.
Section 3 reviews the associated notion of polygonal
complexes and its role in achieving curve interpola-
tion. Section 4 presents an algorithm that attains non-
iso-parametric curve interpolation and further discusses
some of its possible consequences, while section 5 con-
cludes the paper with a summary and some directions for
further work.

2. Catmull-Clark subdivision surfaces

A Catmull-Clark subdivision surface [3] is a general-
ization of the uniform bi-cubic B-spline surfaces where,
given an initial controlmesh, composed of vertices, edges
and faces, one subdivision step proceeds by determining:
• For each face, a new F-vertex, that is the average of the

constituent vertices of this face.
• For each inner edge, a new E-vertex, that is the average

of the constituent pair of vertices of this edge together
with the F-vertices of the two directly-adjacent faces

• For each inner vertex V, a new V-vertex, that is deter-
mined by the following expression:

(n − 2)V + R+S
n

n
(1)

where
• n is the valence of the vertex V of the mesh.
• R =

n∑

i=1
Vi and S =

n∑

i=1
Vfi where Vi is a vertex adja-

cent toV via an edge andVfi is an F-vertex fi embody-
ing V.

The next mesh in the subdivision sequence is obtained
by linking together the various F-, E- and V-vertices
obtained by the above refinement process, in such a way
that each F-vertex and V-vertex is connected to their
directly-adjacent E-vertices (see Fig. 1).

This way, when enough of those refinement steps are
performed, the initial control mesh gradually transforms

Figure 1. A Catmull-Clark subdivision step.

into a final smooth limit surface. However, the existence
of non-quad faces in the initial control mesh gives rise
to so-called irregular vertices, which might have nega-
tive impact on the overall smoothness of the final limit
surface.

3. Catmull-Clark polygonal complexes

A simpleCatmull-Clark (CC) polygonal complex [1] may
be seen as a sequence of pairs of rectangular faces; where
each pair of this sequence has a common edge and each
two consecutive pairs have common respective edges (see
Fig. 2).

Figure 2. A simple Catmull-Clark polygonal complex.

This may be represented by a 3× n matrix M of ver-
tices representing three control polygons: top(ti), mid-
dle(mi) and bottom(bi), all having the same number n
of vertices.

The interest in polygonal complexes arises from the
observation that, after each step of the subdivision pro-
cess, the polygonal complex gets narrower and narrower
till, at the limit, it becomes a curve. Even more interest-
ingly perhaps, this limit curve is automatically interpo-
lated by the surface limit of any control mesh embodying
this complex (see Fig. 3).

Figure 3. Limit curve of a polygonal complex.

Deviating now from regularity, a general polygonal
complex is encountered when the polygons (ti), (mi)
and (bi) do not all have the same size (see Fig. 4).
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Figure 4. A general polygonal complex.

That is, though each inner vertex is regular in the sense
that it connects exactly four edges, the corresponding
faces may not be regular at the outer edges. However,
a general complex reduces to a simple one after a sin-
gle subdivision step (see inner colored complex in Fig.
4, again).

In addition to that, the limit of a simple Catmull-
Clark complexM is a cubic B-spline curve whose control
polygon (P) is determined by the following formula [8]:

1
6

× [1 4 1] × M (2)

Conversely, if the mid-polygon m of a simple (CC)
complexM is substituted by the polygon [8]:

m′ = 1
4

× [−1 6 −1] × M (3)

the limit curve of the resulting complex M′ will be a B-
spline curve identical to that ofm. Accordingly, any given
curve defined by a control polygon (mi), can be turned
into a polygonal complex M by adding two more rows
of points (ti) and (bi) to either side of it and then,
through the application of equation (3), guarantees that
anymesh embodying the complexM′ thus constructed in
fact admits a limit surface interpolating the original curve
corresponding to(mi).

4. The interpolation algorithm

This algorithm takes, as input, a polygon and a regular
control mesh of the kind depicted in Fig. 5. Such a figure
has frequently been taken by many authors (as in [6], for
example) to illustrate the projection of the given curve
in the parameter domain of the surface, to show that

Figure 5. A Non-iso-parametric curve.

the curve is clearly non-iso-parametric with respect to
the underlying regular mesh corresponding to a B-spline
surface.

However, a word of caution is due here, just to avoid
any possible mis-interpretation. In fact, Fig. 5 is assumed
here to represent the actual curve and surface as modeled
in 3D space. As a consequence, all references made below
to horizontal or vertical edges of the mesh in figures like
Fig. 5, should be understood with respect to the orienta-
tion of those edges as seen on the actual page of this paper,
and not with respect to the actual mesh as modeled in 3D
space.

4.1. Algorithm behavior

Starting from the control polygon (P) of the initial curve
(C) and the initial control mesh (M) of the surface (S),
the following steps describe in details the interpolation
process, which is simply a re-meshing process that, start-
ing from the mesh (M), leads to a final control mesh (M’)
whose associated Catmull-Clark subdivision surface (S’)
will end up interpolating the initially–given curve (C).

The detailed behavior of the algorithm is described
through a trace of the following steps:

Step 1: the first step is amesh editing phase that inte-
grates the polygon (P) with the control mesh (M). With
reference to Fig. 5, this has the goal of ensuring that as
many as possible of the initial control points of (P) sit on
some of the corresponding horizontal or vertical edges of
control mesh (M), or perhaps on some of its vertices (see
Fig. 6).

Figure 6. Initial control points of polygonon initial edges or junc-
tions of mesh.

Step 2: this step adds more horizontal or vertical
edges to the new mesh, sufficiently to ensure that every
edge of the curve splits a face of the control mesh into
two faces and, at the same time, being careful that newly
inserted edges do not interfere with existing edges of the
curve (see Fig. 7).

Consequently, each inner control point of the curve
should now be the meeting point of no more than four
incoming edges; two of these are its own edges alternating
with two other edges of the modified control mesh.
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Figure 7. Adding more horizontal and/or vertical edges to the
mesh.

Step 3: any other interfering edge of the controlmesh
(in the sense of disobeying the constraints stated in Step
2) should therefore be removed (see Fig. 8).

Figure 8. Removing interfering edges.

At the end of this step, every edge of the curve should
now be adjacent to exactly two faces of the mesh; which
gives rise to a general complex, in the sense of Fig. 4 above.

Step 4: both curve andmesh are now subdivided sep-
arately one step each, resulting in a simple Catmull-Clark
polygonal complex embedded in the control mesh of the
surface (see Fig. 9).

Figure 9. The (shaded) polygonal complex.

Step 5: the mid-polygon of the resulting polygonal
complex is now replaced by the refined control polygon
of the curve; point for point, and in the obvious way.

Step 6: the control points of the mid-polygon of the
resulting complex are now repositioned through a single
application of Eqn. (3).

This way, after subdividing the curve and the resulting
mesh separately andup to the limit, the original curvewill
end up interpolated by the limit surface.

In conclusion, a couple of points are to be noted here:
• the initial curve (C) is never altered at any stage of

the modification process described above. Rather, the
above steps are designed to alter the initial control
mesh (M) only.

• the above steps introduce quite a few extraordinary
vertices to the initially-regular control mesh (M), pre-
cisely due to non-iso-parametric nature of the ini-
tial curve (C). In turn, the presence of these extra-
ordinary vertices on the final controlmesh (M’) are the
main reason for selecting Catmull-Clark subdivision
to generate the final interpolating surface (S’), sim-
ply because Catmull-Clark subdivision does not mind
the presence of those extra-ordinary vertices on that
control mesh.

4.2. Algorithm summary

The steps of the interpolation process detailed in the
previous section may be summarized by the following
numbered items. Each item summarizes the step with the
same number in section 4.1.

Given are an initial polygon C0 and an initial regular
mesh M0
1- M1 = integrate C0 within M0. This involves adding

the vertices and edges of C0 to those of M0 and also
splitting some faces of M0 accordingly

2- M2 = the mesh resulting from adding more edges
to (and maybe removing interfering edges from)
M1. This might also involve combining faces of M1
together. This gives rise to initial possibly general
polygonal complex P0 within M2

3- M3 = subdivide M2 one step. This gives rise to sim-
ple polygonal complex P1 out of P0 with C1 as the
mid-polygon of P1 corresponding to C0 within M3
C2 = subdivide C0 one step separately

4- M4 = replace the vertices of C1 by corresponding
ones from C2. This also changes P1 to P2

5- M5 = reposition the vertices of mid-polygon C2 of
P2 with respect to the vertices of corresponding
wing-polygons of P2 using Eqn. (3)

6- Subdivide C2 up to the limit curve C and subdivide
M5 up to the limit surface S

Result: the curve C will end up interpolated by the
surface S

The working of the steps 1 to 6 taken by the above
algorithm is illustrated in Fig. 10 as well as in all subse-
quent figures up to Fig. 14.

However, some clarifications are due to make sure
that these figures are correctly interpreted. In fact, each
figure is composed of a sequence of frames numbered:
(a), (b), (c), etc, intended to be seen in association with
the execution of steps 1 to 6 of the above algorithm.

In Fig. 10, for instance, frames (a) and (b) are intended
to show the regular nature of the initial control mesh,
frame (c) is intended to illustrate the integration of the
initial control polygon with the initial control mesh (i.e.
step 1 of the algorithm).



250 A. M. ABBAS AND A. H. NASRI

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. A 3D Reproduction of Fig. 5.

Frames (d) and (e) are intended to illustrate that the
initial surface does not interpolate the initial curve. In
fact, while this is clear in frame (d), the change in per-
spective in frame (e) is included as a further illustration
of this particular fact.

Frames (f) to (i) are intended to depict the re-meshing
process that goes on in step 2 up to step 6 of the above
algorithm and in the same sequence. Finally, frame 11
is intended to illustrate the final state of the algorithm
where exact interpolation is finally reached.

This strategy (and all the decisions that come with it)
has the benefit ofmaking interpolation exact (rather than
approximate). Moreover, so far, there appears to be no
need for any modification of the subdivision coefficients
or rules being employed at any stage of the subdivision
process.

However, note here that even though exact interpo-
lation is always achieved following this approach, the
addition and removal of edges and faces will result in the
appearance of extra-ordinary vertices on the final surface
which, as mentioned earlier, will have an obvious impact
on the overall quality and the smoothness of the resulting
surface.

These extra-ordinary vertices arise as a result of irreg-
ular faces appearing during the so many transformations
that the, initially regular, faces have to go through during
the re-meshing process. The irregularity of those faces is
mainly due to the non-iso-parametric nature of the ini-
tial control polygon, which cannot be entirely eliminated,
since it is the initial premise of the problem at hand.

However, these undesirable effects can somewhat be
minimized by a careful design of the initial control mesh,
which can always be done at minimal cost. In fact, in
the case where the initial control polygon avoids the
junctions of the control mesh, there will be no need for

the removal of any of the existing edges of the control
mesh. In turn, this will suppress most of the T-shaped
junctions and will therefore remove plenty of the badly-
shaped irregular faces.

In this respect, in the situation where each vertex of
the initial control polygon is sitting on a separate edge
of the control mesh without coinciding with any of its
vertices (see Fig. 12(d), for an illustration); the following
observations may be recorded:
• The initial curve is distinctly removed from the initial

surface (see Fig. 11(e)).
• No additional edges need to be inserted into themesh.
• None of the existing edges of the mesh need to be

removed.
This implies an absolute minimum of extraordinary

faces (the white ones in Fig. 11(d)) and a total absence of
superfluous degrees of freedom.

In this context, it would be possible to interpolate
intersecting non-iso-parametric curves by the given reg-
ular surface (see Fig. 12). Here, the intersection points on
the control mesh are necessarily irregular. As such, they
will give rise to the so-called X-configurations (see cen-
ter of Fig. 12(c)) at the next subdivision level, which have
to be subdivided differently so as to insure interpolation
at and around those points (more details on that may be
found in [2]).

Note here that, in contrast with the other figures pre-
sented in this paper, Fig. 12 has more involved features,
in the sense that the initial control mesh is comparatively
composed of much more control points. Nevertheless,
exact interpolation is still maintained in the final state of
the mesh.

Furthermore, the given regular surface is also able
to interpolate partial non-iso-parametric curves (see
Fig. 13) (i.e. curves that do not stretch to the border of
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(a) (b) (c)

(d) (e)

(g)

(f)

Figure 11. An Ashtray.

(a) (b) (c) (d)

Figure 12. Interpolating Intersecting Curves.

(a) (b) (c) (d)

Figure 13. Interpolating a partial non-iso-parametric curve.

the interpolating surface). In fact, the end points of the
curves would simply be designed in the same way as
the meeting points of the intersecting curves mentioned
earlier.

In Fig. 13(b), two extra white edges are inserted next
to the partial curve (in yellow), which is necessary for the
automatic appearance of X-configurations at the extrem-
ities of the partial curve at the next subdivision level
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(Fig. 13(c)). These structures are designed for interpo-
lating the extremities of the curve by the limit surface
(Fig. 13(d)).

5. Summary and directions for further work

This paper presents an algorithm for the interpolation of
non-iso-parametric curves, which relies on subdivision
surfaces and polygonal complexes. This approach regards
the solution as essentially a control mesh reconfigura-
tion process. In contrast with previous research work that
could be judged as relevant to the subject, the present
approach results in precise (not approximate) interpo-
lation, which does not require any changes to the sub-
division coefficients except in well specified situations.
Moreover, following this approach, efficiency does not
present itself as an issue in the overall process.

Finally, the area of the research, that has not received
any attention in this paper (and therefore requires fur-
ther work), is the quality of the resulting surface. This is
obviously related to the particular decisions that should
be taken when choosing the extra points needed during
the re-meshing process.

In this respect, in all the figures presented in this paper,
given that no particular care is exercised when the initial
control points of themesh are selected, the changes affect-
ing the initial state of the mesh to reach the final state
seem to be tolerable. This may be attributed to the rela-
tive proximity assumed to exist between the initial poly-
gon and the initial control mesh. Thus, if the integration
phase (i.e. Step 1) of the algorithm passes with no anoma-
lies, the rest of the re-meshing process should not cause
any visible artifacts to appear on the final state of the
interpolating surface. This observation should require a
more rigid verification, however.
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