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ABSTRACT
In any design, the dynamic characteristics of a part are dependent on its geometric and material
properties. Identifying vibrational mode shapes within an iterative design process becomes difficult
and time consuming due to the frequently changing part definition. Although research has been
done to improve the process, visual inspection of analysis results is still the currentmeans of identify-
ingeachvibrationalmodedeterminedbyamodal analysis. This paper investigates the automationof
the mode shape identification process through the use of parametric geometry and machine learn-
ing. This allows the designer to gain a more complete view of the parts’ dynamic properties. It also
allows for increased time savings over the current standard of visual inspection.
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1. Introduction

Identifying vibrational mode shapes with their corre-
sponding frequencies becomes important when design-
ing objects or structures that are subjected to dynamic
forces. That is, to alleviate structural weakness due to
resonant behavior or natural frequencies being excited
by operational forces [8]. As a check, the designer can
perform a modal analysis using the Finite Element
Method to easily identify the mode shape of his/her
given object. However, in optimization, where the design
changes on an iterative basis, identifying and compar-
ing these mode shapes becomes a complex problem. In
2011 Selin et al. explored applying parametric NURBS
geometry and the Modal Assurance Criterion (MAC) to
mode shape identification. The result of this research
showed that automatically identifying mode shapes of
parts with differing geometries and mesh densities is
possible [16].

This paper applies machine learning to the mode
shape identification problem in efforts to improve the
task of identification. Machine learning is broadly
defined to include any computer program that improves
its performance at some task through experience [14].
Machine learning has been used in various classifica-
tion and regression problems where one may wish to
know a type or category that given inputs fall under (clas-
sification) or a numerical prediction given inputs with
some training data (regression) [1]. This paper seeks to
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leveragemachine learning alongwith parametricNURBS
geometries to classify vibrational mode shapes from a
finite element analysis. In doing so, a designer can run
an iterative optimization with information about the
dynamic behavior of the object. While Selin’s research
was successful within its scope, automating the identifica-
tion process utilizing machine learning will show added
benefits and decreased disadvantages over utilizing the
MAC. One of these added benefits is increased accu-
racy. The MAC based identification program developed
by Selin had limited accuracy, and was not 100% accu-
rate over the tested geometries [16]. This paper presents
a method by which machine learning, along with para-
metric geometries will be used to automatically identify
vibrational mode shapes and frequencies from displace-
ment data. The described method will be an important
step towards the development of a complete iterative
vibrational mode shape identification tool that could be
used for a wide variety of parts or models.

Within a design process modeled parts often go
through many changes, especially within an iterative
design process such as an optimization or design of
experiments. During an iterative design process paramet-
ricmodels can be updated and thus change in either small
or large ways. The purpose of changing model parame-
ters and geometries, especially in an iterative design, is
to obtain a design that is superior to an initial or starting
design. Changing the properties of a part via geometry,
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Figure 1. Mode shapes produced by a modal analysis.

material properties or other, can have a significant effect
on its static and dynamic behavior.

In amodal analysis the natural frequencies are affected
by design changes and the vibrational mode shapes
excited by these natural frequencies can exhibit them-
selves in a different manner than in consequent design
iterations. These results can be reported in order of
increasing natural frequency. An example of the result-
ing contour plots from a modal analysis can be seen in
Fig. 1. These contour plots are simple examples of what
a designer would see if visually inspecting the results
of a modal analysis. While what these results mean is
only important to the designer’s application, it is impor-
tant to note that the mode shapes are affected by design
changes and the vibrational mode shape excited by the
parts natural frequency can exhibit themselves in a dif-
ferent sequence on different design iterations. Thismakes
the task of identifying the specific mode shape associated
with each natural frequencymore complicatedwhen exe-
cuting an iterative design. If a designer was to view these
changes after each iteration step, they may take measure-
ments of the analysis results or simply view the surface
to see how the mode shape has changed. In this way the
designer identifies the mode shape like they would any
other shape, by looking at the objects features (number of
sides, scale, how many peaks and valleys and their loca-
tions on the part, the angles contained within the part,
etc.). The designer can identify the mode shape with-
out regard to its mesh density or overall size. Machine

learning has the ability to take in attributes, like those
described, and given a label can create its own hypoth-
esis as to the correlation between the two [12]. Machine
learning has been used in a wide variety of classification
problems where the inputs and outputs of a system for
some instance are known but how to arrive at the out-
put is unknown or unclear. Applying machine learning
to mode shape identification is not a straight forward
process. Some conditioning must take place in order to
benefit from machine learning capabilities. This con-
ditioning will include identifying points on the given
surface and generating a NURBS surface to use in the
training of the machine learning algorithm. This is dis-
cussed in detail in section 3.2. Once pre-processing is
done, an algorithm must be chosen and that algorithm
must be trained given training examples thus allowing it
to learn. It will be shown that a properly trained machine
learning algorithm is able to classify mode shapes with
good accuracy.

2. Background

2.1. Modal analysis

In a design process, a modal analysis becomes useful
when the designer wishes to characterize the dynamic
behavior of a part or structure. The dynamic character-
istics that the modal analysis determines are the natural
frequencies and the vibrational mode shape of the given
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part or structure [8]. Finite Element solvers perform
modal analysis on meshed models with results including
a natural frequency and a vector of nodal displacements
(mode shape). Historically theMAChas been the general
method for measuring the consistency of modal vec-
tor estimates, calculations, or experimental data [4]. The
MAC has the ability to calculate the linearity between
two modal vectors. After running the MAC calculation,
it results in a value between zero and one, which indicates
the correlation between the two mode shapes, one being
a perfect match and zero being no correlation. One of the
downsides to using the MAC is the inability to compare
modal solutions from a Finite Element model that has
differing meshes or number of elements. The usefulness
of the MAC has further been described in Selin’s work
[16]. In Selin’s research he was able to leverage paramet-
ric NURBS geometries in conjunction with the modal
assurance criterion to automatically identify vibrational
mode shapes and frequencies from modal analysis
displacement data. This work will be benchmarked
against this work with the hopes of creating a more
robust method. For more information on the MAC, see
[8, 6, 12].

2.2. Machine learning

Machine learning is actively being used today in many
instances where it is necessary to turn data into informa-
tion.Machine learning is amix of computer science, engi-
neering, and statistics, and often appears in many other
disciplines from politics to geosciences [10]. Any field
that needs to interpret and act on data can benefit from
machine learning techniques. While machine learning
has been successfully applied tomany classification prob-
lems in many fields, there is no known research that has
leveraged machine learning to identify vibrational mode
shapes. To properly implement machine learning for this
paper and to any problem that can benefit from machine
learning some design decisions must be made. These
decisions include identifying the type of knowledge to
be learned, how to represent the target knowledge, and
a learning mechanism [14]. For more information, see
[1, 3, 14, 18].

2.3. Parametric geometry

Parametric geometries are beneficial in that they are
quick and easy to compute (x,y), or (x,y,z) coordinates
of points existing on a curve or surface [15]. By gener-
ating a parametric surface with a uniform parameteri-
zation, surfaces of differing size and complexity can be
segmented into distinct areas through using a u and v

coordinate system separate from the actual x,y,z coor-
dinate system. Non-uniform rational B-spline (NURBS)
surfaces are widely used parametric geometry represen-
tations. Each surface can be parameterized such that
u-values of zero and one correspond to two edges of
the surface and v-values of zero and one correspond to
the other edges of the surface as shown in Fig. 2. Since
NURBS surfaces are defined this way, they can only be
used to represent surfaces that are four-sided, which can
be a problem. The benefit of using parametric geome-
try is that surfaces of varying size and shape can relate
to a single set of attributes by means of similar param-
eterizations that can directly relate the points on each
surface. This becomes important when assigning feature
attributes that must remain consistent through a vari-
ety of surfaces that can vary in size, shape, and mesh
densities.

Figure 2. A parameterized surface.

Interpolation through existing points and extrapolat-
ing points from control points are common methods for
creating NURBS surfaces [20]. This paper will utilize
global surface interpolation to create NURBS surfaces
from point clouds which approximates a surface through
a set of existing points. In creating aNURBS surface, each
control point defining a surface has a weight and a B-
spline basis functionwhich together determine the extent
towhich the point influences the surface. A knot vector in
each parametric direction, u and v, influences the surface
topology as well. The following equation 2.1, is the math-
ematical definition of a NURBS surface of degree p in the
udirection anddegree q in the v direction.More informa-
tion on NURBS see [15, 20]. NURBS surfaces have also
beenused as basis functions for the finite elementmethod
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as seen in the isogeometric analysis [7, 17].

S(u, v) =
∑n

i=0
∑m

j=0 Ni,p(u)Nj,q(v)Wi,jPi,j
∑n

i=0
∑m

j=0 Ni,p(u)Nj,q(v)Wi,j
,

0 ≤ u, v ≤ 1 (2.1)

3. Method

We present a method of automatically identifying the
mode shape of an object represented by a NURBS surface
resulting from a modal analysis by using machine learn-
ing. To achieve our goal a classifier must be obtained. A
classifier is a function that can identify to which category
a new observation belongs. For example, a classifier could
be trained to identify between spam and non-spam email
messages. After learning, it can then identify if an incom-
ing email is spam or not and take an appropriate action.
Once trained, our mode shape classifier can be utilized in
a stand-alone or in an automated approach tomode shape
identification. The following steps outline this method:
1. Gather information from the designer in regards to

a base line design and the design space.
2. Normalize, transform, and label nodal displace-

ments resulting from amodal analysis into aNURBS
surface representation in preparation for machine
learning.

3. Obtain and evaluate a classifier that will be used to
identify the mode shape for a given part.

4. Use the classifier to automatically match and report
vibrational mode shapes.

3.1. Gather user information

Some information from the designer is required before
training or testing the method. A designer must specify
the model parameters that will act as a baseline design.
These parameters represent the dimensions or properties
of the part such as length, width, thickness, mesh coarse-
ness, etc. The parameters of the baseline design that will
be changed or iterated upon would be those that would
either optimize some aspect of the model or fulfill some
requirement of an overall design. As model parameters
change new designs will arise that may not have been
observed previously and may result in unexpected mode
shapes.

3.2. Data pre-processing

Below describes the method used to prepare data result-
ing from amodal analysis by normalizing and transform-
ing the resulting nodal displacements into a mathemati-
cal NURBS surface representation. A modal analysis is

done on a Finite Element model of a part or compo-
nent and the results are written to a file. This file con-
tains the position and displacements of every node in the
model corresponding to its natural frequency solution.
This method parses through this file to obtain desired
information.

In order for the method to obtain consistent compa-
rable attributes on which to consistently identify a given
mode shape, all surfaces are normalized by the maxi-
mum nodal displacement found in the solution set. For
the normalizing equation below, Uall denotes the set of
all nodal displacements in the model solution, therefore
the normalized displacements, Unorm, are found by:

Unorm = Uall

max(|Uall|)
(3.1)

This results in normalizing all nodal displacements
falling betweennumerical values of negative one and pos-
itive one. In Eqn. (3.1) the max function finds the largest
absolute value contained in Uall.

When creating aNURBS surface, the normalized posi-
tions and displacements for each node are used. A global
surface interpolation fits the data to a preliminary surface
through a set of points containing the normalized node
locations from the original model. This surface is pro-
jected onto a working plane (see Fig. 3). The red, green,
and blue dots in Fig. 3 represent points on the surface as
they are projected onto the working plane.

The parameter values associated with every node in
themodel are determined by querying the surface and are
stored for future use. A new point set is then created with
data from each node. Points in this set are defined in three
dimensions by the u and v parameters of the node on the
preliminary surface and the normalized displacement of
the node that is perpendicular to the working plane. The
surface is fit again with this new point set, creating a new
surface representing the mode shape (see Fig. 4).

After a mode shape surface is created we then can
make comparisons with other surfaces in the presence of
differing part definitions such as length, width, thickness,
mesh coarseness, etc. An example of this can be seen visu-
ally in Fig. 5 where the top level of three surfaces have the
same mode shape but result from differing geometries.
In this example, the original geometries consisted of var-
ied edge lengths, and widths as well as thicknesses. Each
surface was then normalized and projected to a work-
ing plane as described above. After these surfaces were fit
with the displacement data that resulted from the modal
analysis, we can compare them. For illustration purposes,
three similar modes shapes were chosen. One can visu-
ally determine how close these surfaces relate despite
differences in their original part definitions.
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Figure 3. Normalized surface parameterized and projected onto working plane.

Figure 4. The preliminary surface and displacement data create the mode shape surface.

Once a surface has been created to represent the
model’s mode shape, displacements are queried from that
surface. The parametric surface displacements in the z
direction are grouped together in a grid like fashion.
Each section of the grid represents the average displace-
ment found over a given number of nodes. How these
displacements are grouped is shown in Eqn. 3.2.

x̄z =
∑M

u=0
∑N

v=0 Qu,v(z)
n

(3.2)

In this equation Qu,v is the vector containing all nodal
displacements. xz is the averaged displacement found
over the number of nodes per grouping n. Each average
displacement is considered a feature attribute of the sur-
face. All average displacements are then written as a geo-
metric definition of the surface to a file in preparation for
machine learning. For machine learning a set of geomet-
ric definitions that describe a surface are called instances,
and each instance contain feature attributes. Again, it is

important to note that the number of feature attributes
must remain consistent throughout this process for a
basis of comparison as mentioned previously.

An example of how these geometric representations of
mode shape surfaces are transformed into instances for
machine learning can be seen in Fig. 6. This illustrates
points that have been identified, grouped, and averaged
into sections to act as features of the surface. The num-
ber of points and thus the number of sections required
for this method is dependent on complexity. More com-
plex geometry and/or higher order mode shapes would
require more features to adequately describe the mode
shape.

3.3. Machine learning

This section reviews the method used for obtaining a
classifier that will be used in this research to identify
the mode shape for a given part. The first step toward
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Figure 5. Normalization of geometry.

Figure 6. Grouping average displacements into instances.

obtaining a classifier is collecting and defining a train-
ing dataset. A training set contains examples that are
characteristic of the problem to be solved. Every geo-
metric definition of a surface, or in other words, every
instance from the previous data pre-processing stepmust
be stored with a unique user-defined label for its mode
shape. Upon creating these training instances, they are
stored for further training and testing where they may

be adjusted. This training set may be adjusted to contain
more examples or different feature attributes if it is found
that the attributes chosen are insufficient.

For example, in order to collect a training dataset to
use in classifying an animal as mammal or reptile, a list
of unique traits would be generated to describe the char-
acteristics of the animal to be identified. These charac-
teristics could include warm or cold blooded, has fur, lays
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eggs, etc. A string of characteristics describing amammal
would be labeled ‘mammal’ at the end of the string. After
a training dataset contains a number of examples of each
animal group, an algorithm can then be used to learn to
classify animals based on the examples given.

Choosing a specific learning algorithm to use in this
classification problem is a vital step. It is known in
machine learning that there is no algorithm that is uni-
formly superior over all possible problems [19]. There
are several supervised machine learning algorithms to
choose from. The optimal algorithm is determined by
cross validation to ascertain how well the algorithm can
learn the training data and by a paired t-test. Cross valida-
tion is a statistical method of evaluating and comparing
learning algorithms by dividing data into segmentswhere
one is used to learn or train a model and the other used
to validate the model. The basic form of cross-validation
is k-fold cross validation where the data may be divided
in a specific number of segments [1, 14]. A t-test is a
common method that assesses whether the algorithms
chosen are significantly different from each other in the
presence of a supplied training set. Given two paired sets
(classification results) of n measured values, the paired
t-test determines whether they differ from each other in
a significant way under the assumptions that the paired
differences are independent and identically normally dis-
tributed [2]. After an appropriate classification algorithm
is selected based on the results fromcross validation and a
paired t-test, we can then use it to run the method.While
there are a number of algorithms to choose from, this
research implements k-Nearest Neighbors (k-NN), Deci-
sion Trees, and Support Vector Machines (SVM). Please
refer to the following references for more information on
these algorithms [1, 5, 9]. While there are various algo-
rithms to choose from, these three will give the reader a
good idea of how this method performs and how well we
chose our feature attributes.

Exposing classification algorithms to a training set
allows it to learn to do its task. It learns by looking at
the provided examples of attributes and given a label or
class can create its own hypothesis as to the correlation
between them [12]. By training our classifier we will be
evaluating howwell the learning algorithm is able to learn
the sample training data. Many classification algorithms
allow for some tuning of parameters which can enhance
the classifiers ability to interpret given data. If it is found
that an algorithm is not performingwell, some parameter
tuning of that algorithm may increase its ability to learn.

When applying this method to a new design space,
a designer may evaluate the algorithm chosen to ascer-
tain how accurately that algorithm is at predicting mode
shapes. To evaluate our chosen classifier, we will use
test sets where every instance has been properly labeled

with its corresponding mode shape. These test sets con-
tain instances of mode shapes that result from parts or
models that may or may not have been observed when
creating the training data. For example, training data
may be compiled from a model that has varied in its
parameters by± 10% and testing data may be compiled
from the same model that has varied in its parameters
from± 10% to ±100%. While the change in parameters
are randomized every iteration, there is a chance that
within± 10% some test instancemay be identical to some
training instance. By testing on data that has not been
previously observed we can evaluate how well the classi-
fier and this method can extrapolate a mode shape from
geometry with which it has no previous experience. If
the training or evaluation of a classifier is unsatisfactory
the designer can return to a previous stage of the super-
visedmachine learning process. For the problem ofmode
shape identification a number of factors can be investi-
gated: the most relevant features may not be taken into
account, a larger training set may be needed, and utiliz-
ing an inappropriate algorithm or some parameters need
tuning.

3.4. Mode shape identification

Once a classifier has been obtained we can now use it
to assign class labels (mode shape names) to instances
where feature values are known but the class is unknown.
This can be done both within and without an opti-
mization workflow. Upon obtaining a classifier a new
sequence is needed for implementation of this method.
While the first 2 steps remain the same, gathering infor-
mation from the user and data pre-processing, we will
now use the classifier directly to label mode shapes with
the accuracy of the selected classifier.

4. Implementation

The methods were implemented in computer programs
in order to be utilized in an automated approach where
a design can be iterated upon, or as a standalone pro-
cess where the designer can examine a specific design.
A program was developed to create NURBS surfaces to
represent mode shapes for a set of modal analysis results.
This program outputs discretized displacements of sur-
faces to be used as feature attributes in the mode shape
identification process. This uses Siemens NX Open API
for the fitting algorithm and ANSYS Parametric Design
Language for the automation of the modeling, mesh-
ing, analysis, and results reporting for the training and
testing. All of the modal analysis completed for this
research was done using ANSYS 13.0. Weka 3.6.9 was
used for its collection ofmachine learning algorithms and
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Figure 7. Isight task example.

ability to perform statistical analysis. The applications are
integrated into SIMULIA’s Isight optimization software to
enable a designer to identifymode shapes iteratively or on
a specific design see Fig. 7.

4.1. Gather user information

The task allows users to identify which parameters of a
base design they wish to change, by how much, and how
many times within the training DOE component. Once
the user has specified their desired design space the task
can then be ran for training in order to obtain a classifier
or testing if a classifier has previously been obtained.

4.2. Data pre-processing

Preparing the data contained in the modal analysis file
to become feature attributes has several steps. The modal
analysis results which contain node locations and dis-
placements are read and stored by the program. These
results are normalized to properly compare and contrast
parts with differing geometries the magnitudes of the
nodal displacements. A parametric surface is then cre-
ated using a NX Open API function to fit the data (see
Fig. 8).

The resulting parametric surface can then be used
to obtain information about the mode shape without
regards to changing parameters in the design space by
conforming all possible geometries to a uniform basis
for comparison. That is, all possible geometries within
the design space will be re-parameterized in terms of
u-values and v-values. After creating the parametric sur-
face that represents a mode shape, points in real space
are retrieved from that surface. The displacements in the
z direction are then placed in discrete groups as shown
in Fig. 9. Each square in Fig. 9 represent the average
displacement of the surface for that region.

4.3. Machine learning

The training and testing of algorithms to be used as clas-
sifiers is performed using Weka. In order to obtain a
classifier that will properly identify the mode shape for
a given part we first must train and test an algorithm for
classification.

We construct a training set by changing the baseline
design of a model by± 10%. For example, if a baseline
design has a length of 10 inches the training set would
include designs with lengths from 9 to 11 inches. After
constructing the training data the designer must then

Figure 8. Interpolation of node data into a NURBS surface.
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Figure 9. Discretization of a mode shape surface into sections.

label the instances in the ARFF filemanually. To correctly
label thesemode shapes the designermay view each parts
corresponding contour plot that results from the modal
analysis. The number of instances in the training set
is another consideration when looking at how well an
algorithm can correlate the datawith the given labels. The
training set can be appended to through consequent runs
in order to create a larger training set if needed. A larger
training set may be desired if more training examples
are needed to more accurately and consistently identify
mode shapes.

Three algorithms to apply to this classification prob-
lem are chosen for machine learning algorithms: k-
Nearest Neighbors (k-NN), Decision Trees, and Support
Vector Machines (SVM). These algorithms are avail-
able in Weka’s Explorer application [13]. In Weka the
IBk algorithm was chosen which implements the k-NN
approach as discussed. To implement a decision tree
learner, Weka’s J48 and Random Forest were chosen. J48
is a simple decision tree, whereasRandomForests operate
by constructing a multitude of decision trees and out-
putting the class that is the mode of the classes output
by individual trees.Weka’s SMO algorithmwas chosen to
implement the SVM approach.

The training of each algorithm was also done
using Weka’s Explorer application with the training set
obtained from the previous pre-processing step. Leave-
One-Out Cross Validation (LOOCV) was used to eval-
uate how well each algorithm was able to learn the
training data. LOOCV is a special case of the general
k-fold cross validation method. LOOCV works by tak-
ing a data set with n examples and performs n experi-
ments. LOOCV uses n-1 examples for training and the

remaining example for testing. The overall accuracy can
be obtained by averaging the accuracies computed on
each experiment. LOOCV is used to allow for sparse
training data so as to train on as many examples as
possible.

Algorithms are then analyzed using Weka’s Experi-
menter which enables users to create, run, modify, and
analyze experiments [13]. To ascertain if there were sta-
tistical differences between the selected algorithms the
Experimenter’s paired t-test was used and the results of
which can be found in Section 5.

In order to ascertain the robustness of the method,
a learning algorithm is tested by subjecting the classi-
fier to models that contained changes in their baseline
design ranging from± 10% to± 100%. In this waywe see
how far this method can extrapolate outside of the ini-
tial training examples given. These tests were evaluated in
Weka and the results of the training and testing of these
algorithms will be given in Section 5.

5. Results

Various tests are performed to verify that the implemen-
tation of the method improves on previous automated
attempts. While there are a number of modes that may
be of interest to a designer, the tests looked at eight
modes that result fromamodal analysis for identification.
These modes can be seen in Fig. 10. Each of these modes
signifies their own class by being labeled as “Mode1”,
“Mode2” . . . “Mode8”. Any mode that cannot be classi-
fied as one of these modes is labeled as “Junk”. It is the
task of the classifier to distinguish between the different
classes given the displacement attributes provided.
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Figure 10. Eight trained mode shapes for identification.

5.1. Machine learning - algorithm selection

The method was tested on three different geometries.
First a simple rectangular plate defined by four param-
eters: length, width, thickness, and mesh coarseness. The
second was tapered and twisted along with changes in
length, top width, bottom width, thickness, twist, and
mesh coarseness. Lastly a plate was designed similar
to the second plate with the addition of two nonlin-
ear edges. A sample of these geometries can be seen in
Fig. 11.

A training dataset of 200 instances was compiled con-
taining variations in a model’s baseline design of± 10%

as described in Section 4.3. The simple rectangular plate
described above was the only model used to compile this
training set. The training set containing 200 instances
consists of 20 instances for each class “Mode1” through
“Mode8” and 40 instances for the “Junk” class. 100 fea-
tures were pulled from each surface to create each. This
training set was used in the training and evaluation of
each algorithm selected. How an algorithm performs can
be seen visually in a layout known as a confusion matrix.
For an example, how the k-NN algorithm performs with
the training set can be seen in the confusion matrix in
Table 1 where LOOCV was used.

Figure 11. Isometric views of each test geometry.
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Table 1. Confusion Matrix resulting from LOOCV of training data using k-NN

Predicted Class

Actual Class Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 Mode8 Junk

Mode1 20 0 0 0 0 0 0 0 0
Mode2 0 20 0 0 0 0 0 0 0
Mode3 0 0 20 0 0 0 0 0 0
Mode4 0 0 0 20 0 0 0 0 0
Mode5 0 0 0 0 20 0 0 0 0
Mode6 0 0 0 0 0 20 0 0 0
Mode7 0 0 0 0 0 0 20 0 0
Mode8 0 0 0 0 0 0 0 20 0
Junk 0 0 0 0 1 0 0 0 39

As can be seen by the values in the diagonal elements
of Table 1, the k-NNalgorithmwas able to learn the train-
ing data with 99.5% accuracy. Similar assessments were
made with the other algorithms chosen. The algorithms
were subjected to a paired t-test at a 5% significance level
in Weka’s Experimenter to assess their differences, and
the results of which can be seen in Table 2. It is shown that
there is no significant difference at the 5% significance
level between the IBk algorithm and the RandomForest
algorithm, whereas there is significant degradation in the
J48 and SMO algorithms. Since it was found that there
is not a significant difference between the IBk and Ran-
domForest algorithms, IBk was used due to its simplicity,
speed, and ability to learn the training set.

Table 2. Results of a Paired T-test

Dataset (1) (2) (3) (4)

Mode-Shape 99.50 99.50• 98.85 81.00•
◦,• statistically significant improvement or degradation

5.2. Mode identification

By utilizing parametric geometries, vibrational mode
shapes are easily identified without regards to mesh
coarseness. Table 3 shows three geometrically identical
models that have differing mesh densities and therefore a
differing number of nodal displacements in their modal
shape vectors. The results of testing this method include
such variations of mesh densities. Mesh density is dic-
tated by the number of nodes along the width and length
of the model and are defined in the baseline designs
reported in Table 3. Table 3 contains the parameters that
define each model tested. In order for this method to be
used in an iterative design process it must be able to iden-
tify modes that result frommodels that have varied some
parameter value(s) of its baseline design. These changes
in parameters may be small or large. Such change is illus-
trated in Fig. 12 where the length of the model on the
right has increased from its baseline design on the left.

This method was subjected to three types of geome-
try as described earlier where each model’s parameters

Table 3. Parameters of baseline designs

Parameters of Baseline Designs (inches)

Rectangular
Plate

Tapered Twisted Linear
Plate

Tapered Twisted
Non-linear Plate

Length 20 20 20
Width 20 N/A N/A
Top Width N/A 20 20
BottomWidth N/A 20 20
Thickness 0.5 0.05 0.05
Nodes along
Width

25 25 25

Nodes along
Length

25 25 25

Twist N/A 1 1

were subjected to changes in their baseline design rang-
ing from± 10% to± 100%. The DOE in this method
was used to produce the varied geometry according to a
defined parameter percent variation. The tests were per-
formed by compiling test sets of various sizes ranging
from 20 to 50 instances per test set. Tests were performed
for each geometry type three times to produce an average
accuracy. The average accuracies for the three generated
tests are reported in Table 4. These results can be com-
pared to the results from the research performed by Selin
et al. shown in Table 5.

Throughout all comparable geometry and DOE
parameter variation, the method employed in this paper
showed improvements in identification accuracy. The
results of testing the rectangular plate show significant
improvement over previous research. It can be seen from
Table 4 that the accuracy of the mode identification
method developed in this paper is related to the amount
of variation in model parameters. However, such degra-
dation of accuracy does not come into effect until the
variation reaches± 60%. Throughout the full range of
parameter variation the results show that the average
accuracy never falls below 90% for the rectangular plate.
Through± 50% variation of the rectangular plate the
accuracy was found to be 100%.

The tapered, twisted, linear plate showed a similar
relationship between the amount of variation and the
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Figure 12. A baseline model and modified design.

Table 4. Accuracy of the method averaged over three tests

Mode Identification Method Accuracy over 3 Tests

DOE Parameter Variation

± 10% ± 20% ± 30% ± 40% ± 50% ± 60% ± 70% ± 80% ± 90% ± 100%

Rectangular Plate 100% 100% 100% 100% 100% 99% 97% 97% 90% 98%
Tapered Twisted Linear Plate 100% 100% 100% 99% 96% 94% 92% 81% 76% 93%
Tapered Twisted Non-linear Plate 99% 100% 98% 97% 96% 97% 97% 89% 86% 84%

Table 5. Results from Selin et al. using surface templates

Mode Identification Method Accuracy - Surfaces

DOE Parameter Variation

± 10% ± 20% ± 30% ± 40%

Rectangular Plate 96% 87% 82% 87%
Tapered Twisted Linear Plate 93% 90% 82% 84%
Tapered Twisted Non-linear Plate 91% 88% 87% 82%

method accuracywith amplified effects. This loss of accu-
racy is largely due to the fact that the baseline design
of the tapered twisted linear plate has different param-
eters than those for the rectangular plate used in com-
piling the training data. By observing Table 4 it can be
seen that this method was able to identify mode shapes
with 100% accuracy through± 30% variation. At± 90%
variation is found the lowest accuracy in the method of
76%. Next, the tapered twisted non-linear plate model
was used for testing. This model, having the most differ-
ences from the model used in the training set, showed
results consistent with the relationship between varia-
tion and the method accuracy. While staying above 95%
accurate through± 70% parameter variation, the average
of the three tests show that for a tapered twisted non-
linear plate this method is never 100% accurate. While
the results show that at± 20% variation the method

has 100% accuracy, because it is only 99% accurate at
the± 10% variation level, we cannot say that this method
is ever 100% accurate for the tapered twisted non-linear
plate model. By investigating which mode shapes were
incorrectly matched, it was determined that the mis-
matches were mainly caused by two problems. The first
problem was when one mode closely resembled another
and the distinctions between the two were difficult to
identify even by visual inspection. This problem may
be amplified when looking at higher order modes when
distinguishing between mode shapes is subtle. The func-
tion used to create a NURBS surface from nodal dis-
placements determines an approximate surface from a
cloud of points. As it is an approximation and does
not pass through each point, the surface may not rep-
resent the mode shape as accurately as possible. This
approximation could add to the problem of misidenti-
fying similar mode shapes. An example of how mode
shapes can blend into one another can be seen in Fig. 13
where a distinct mode is represented at the ends of the
figure and are conflated with each other towards the
middle.

The second problem that was observed was when a
mode shape had not been properly trained. For exam-
ple in Figure 14 both contour plots represent the same
mode in bending, but while examples of the mode on
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Figure 13. Sample of modes blending into another.

Figure 14. Sample of trained and untrained mode shape of same mode.

the left was included in the training set the mode on the
rightwas not thus causing some errorwhen the untrained
mode was encountered. Both of these problems could
be relieved by a larger training set that includes more
examples of distinct mode shapes. The research per-
formed has verified that by expanding the training set
to include more examples these problems could be over-
come. However, through continual use of this method
new mode shapes would arise that exhibit the problems
just mentioned and required further adjustment to the
training set.

A final caveat that should be clear is that it was dis-
cussed that the displacements collected as attributes were
in the z direction. This method looks at displacements
perpendicular to a working plane. In this paper the work-
ing plane was the xy plane and as such z displacements
were used as feature attributes. If the designed model
is significantly displaced outside of the working plane
information about the model could be lost. If in vary-
ing parameters of a design a model should be displaced
in a direction that is not primarily perpendicular to
the working plane, then the proposed methods effec-
tiveness is not guaranteed and new attributes that can

describe the model should be explored. For this reason
a designed model should stay relatively in a working
plane for best results. For established design processes
this should not pose a problem as a working plane can
be readily identified.

Despite the drawbacks of thismethod, the results show
that the identification of mode shapes using machine
learning and parametric surfaces is feasible. The results
reported here demonstrate improvement in overall accu-
racy over a larger design space using machine learning
over previous attempts using a MAC calculation. The
advantage of using machine learning in this method is
its ability to be modified to more accurately identify
mode shapes. By modifying or adjusting algorithms or
training data, a classifier can become more accurate in
its predictions.

Machine learning also allows for additional descrip-
tive attributes to be used in conjunction with such
attributes of displacements used in this paper thus allow-
ing for the identification of more complex parts. For
example, by using the number of peaks and valleys
present in a mode shape may help identify higher order
modes.
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5.3. Mode identification in iterative design

By automatically identifying mode shapes significant
time savings have been realized over the current method
of visual inspection. To test the time required to iden-
tify vibrational mode shapes in this method 40 runs were
completed, each runproducing 5mode shapes to be iden-
tified. These results are benchmarked against the current
method of visual inspection and to previous work per-
formed by Selin et al. in Table 6. Due to the similarities in
approach, the results for time required via visual inspec-
tion of mode shapes will be those reported by Selin et al.
[16]. Selin’s research used both parametric curves as well
as surfaces. Since the proposed research uses parametric
surfaces, the time saving reported herein will be com-
paring time to identify mode shapes using parametric
surfaces only.

Table 6. Benchmarking time required of mode shape identifica-
tion methods.

Identification Method Total Time (sec) # of Matches Time per Match (sec)

Proposed Method 159.86 200 0.7993
Selin et al. 311.07 200 1.55535
Visual 2433.28 200 12.1664

Benchmarking the proposed method delivers time
savings twice as fast as the method using the MAC and
parametric surfaces proposed by Selin et al. and 15 times
faster than visual inspection. While it is possible that
using this method may result in an incorrect identifica-
tion of mode shapes, the significant time savings that are
achieved present a compelling argument for the use of
this method even if the identification is not always 100%
accurate.

6. Conclusions

This paper shows that machine learning can be effec-
tively used to identify themode shapes of dissimilar finite
element models. This is possible through the representa-
tion of the model’s modal analysis results as parametric
surfaces which allows parts with different geometric def-
initions and mesh coarseness to be matched to trained
mode shapes. By using parametric surfaces, the behav-
ior of a mode shape can be well defined over the entire
part. The nodal position and displacement data are used
to create parameterized surfaces that represent specific
mode shapes. Once the results from a finite element
model are transferred into a parameterized geometric
form, attributes are then easily collected to be used for
classification using machine learning. Machine learning
is then able to identify mode shapes between models of

different mesh density and geometric definition given a
trained classifier.

This method has shown to have high accuracy and
over a large design space. The high accuracy achieved by
this method suggests that the chosen attributes of dis-
placements was sufficient in describing the mode shape
surfaces used. The results also suggest that machine
learning could be a valuable tool in identifying vibra-
tional mode shapes of geometries other than four-
sided surfaces provided proper feature attributes can be
obtained. By automating the mode identification pro-
cess, more detail about a part’s dynamic properties can be
obtained without having to visually inspect each modal
solution. The greatest benefit of this paper can be realized
when implementing an iterative design process, such as
optimization or design of experiment. In iterative design
processes the geometric parameters of a model are mod-
ified with each iteration. By using parametric surfaces to
represent mode shapes, models of differing geometric or
mesh properties to be successfully identified. While this
method is not 100% accurate in the identification of the
modes contained in the analysis results over all possi-
ble variations, its high accuracy can provide a designer
with an understanding of the part’s properties in the
design process. Comparing the accuracies of this method
with prior work by Selin et al. indicate that machine
learning provides more accurate results over a broader
design space. The time required to execute the proposed
method has twice the time saving realized by Selin’s work
using parametric surfaces and 15 times faster than visual
inspection of results. These time savings can become
even more significant when a large number of modes are
identified within an iterative process.

While this work was applied to two dimensional finite
elementmodels, the ability ofmachine learning to choose
attributes that can describe a model’s features can also be
used to identify more complex models. For more com-
plex analysis one would need to obtain feature attributes
that can describe three dimensional finite element results.
This could include number of sides or faces, location in
Euclidian space after normalization, or some method of
mapping a three dimensional object to u, v space in a
similar manner as this paper employs. The main require-
ment to apply this method to more complex geometry is
to identify some features to sufficiently describe the part
in order to consistently identify its resultingmode shapes.
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