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Design and fabrication of periodic lattice-based cellular structures
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ABSTRACT
Amethodology, which consists of design, optimization and evaluation of periodic lattice-based cel-
lular structures fabricated by additivemanufacturing, is presented. A user-friendly design framework
for lattice cellular structures is developed by using a size optimization algorithm. A 3D modeling
process for the lattice-based cellular structures is introduced for non-linear finite element analysis
and production. The approach is demonstrated on compression block with periodic lattice-based
unit cells. First, based on loading condition, most appropriate lattice layout is selected. Then, for the
selected lattice layout, the lattice components are modeled as simple beam and size of the beam
cross sections is optimized using in-house optimization approach for both yield and local buckling
criteria. The 3Dmodel for the optimized lattice structure is built and non-linear finite element study
is conducted to predict the performance. Physical parts are 3D printed and tested to compare with
the simulations. Material properties for the 3D printed parts are determined for the finite element
study using reverse engineering of actual measured data.
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1. Introduction

The term “additive manufacturing” (AM) is applied to
any manufacturing process that is used to fabricate parts
directly from 3D CADmodels by adding material in lay-
ers. AM technique, commonly known as 3D printing
technique, offers great possibilities for fabricating parts
with high complexity and customizability such as cellular
structures which are difficult, tedious and time consum-
ing, if not impossible, to produce using conventional
manufacturing processes [8].

The concept of the cellular structures, including
foams, honeycombs, lattices, and similar constructions,
comes from keeping material only in the vital regions of
a part to attain a lightweight structure while maintaining
the high specific mechanical properties such as strength
and energy absorption. Lattice-based cellular structures
offer inherent advantages over foams due to their ability
to provide light-weight and stronger materials [6], [20].
Ashby chart [2] in Fig. 1 illustrates that lattice structures
can fill the gap that is needed for lightweight applications.

Although lattice structures provide high strength-
to-weight ratio, the traditional CAD modeling design
optimization techniques are not sufficient for design of
lattice-based cellular applications due to their geometry
complexity. In order to effectively design cellular struc-
tures, the material properties must be characterized and
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the structures should be carefully modeled. Then, their
performance must be quantified, as well. Many studies
have been conducted addressing such challenges in the
last two decades [17], [19]. Johnston et al. [10] has pro-
vided a comprehensive analytical model by considering
each member in the octet lattice structure as a beam ele-
ment and showed that finite element (FE)modeling of the
lattice structures is relatively easier when beam elements
are used. Ruderman et al. [16] and Patel and Choi [14]
have introduced a topology optimization methodology
to determine the optimized cross-sectional parameters of
lattice based unit cell of a pressure tank utilizing beam
elements in FE modeling with linear material properties.
Although using beam elements facilitates the modeling
and optimization of lattice-based structures, beam ele-
ments cannot represent the 3D geometry of the structure.
Therefore, lattice-based structures modeled using beam
elements cannot be fabricated using AM techniques. In
addition, the non-linearity of the material and geometry
of lattice-based structures has to be considered in finite
element analysis (FEA) for accurate results compared to
the physical experiments under large deformations.

In order to overcome the aforementioned issues, a
methodology for design and fabrication of lattice-based
cellular structures is introduced in this study. Specifically,
FE software Abaqus is employed for FE modeling and
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Figure 1. Strength vs. Density chart for engineering materials. There is a gap in the low density high strength region which could be
filled by lattice structures.

analysis of lattice-based cellular structures in the opti-
mization process. The 3D geometry of the optimized
lattice structures is created using 3D printing software
Netfabb [12]. The geometry is generated in STL format
since it is the required format for 3D printing. The 3D
geometry generated is also converted to a solid geome-
try with brick elements using commercial FE modeling
tool Hypermesh [9] in order to conduct the non-linear
FEA with non-linear material properties. The approach
is demonstrated on a compression block with periodic
lattice-based unit cells. First, most appropriate lattice lay-
out is selected based on the loading condition. Then,
for the selected lattice layout, the lattice components are
modeled as simple beam and size of the beam cross
sections are optimized using the in-house optimization
approach. Finally, the 3D model for the compression
block is built using the optimized lattice structure and
non-linear FE study is conducted to predict the perfor-
mance. Physical parts are also build using 3Dprinters and
tested to compare with the simulations. The compres-
sion block design is optimized for both yield and local
buckling criteria. In order to achieve the realistic design
of the block, the material properties for the 3D printed
parts were determined for the FE study using reverse
engineering of actual measured data.

The paper is organized as follows. Section 2 intro-
duces the optimization procedure used for the lattice
structure with two different formulations by considering

failure due to yield and buckling. Section 3 describes the
design procedure of the lattice-based cellular structures
from optimization to 3D geometry generation and fab-
rication. In Section 4, a lattice-based compression block
design utilizing the introduced design procedure is pre-
sented and non-linear simulation results are validated by
physical experiments.

2. Optimization of lattice-based cellular
structures

The extension of design optimization to the optimization
of material layouts is known as topology optimization.
Topology optimization operates on a fixed FE mesh of
either continuum or discrete elements to optimally dis-
tributematerial in thematerial layout [4]. For continuum
structures the shape of the external and internal bound-
aries and the number of holes are optimized [3]; whereas,
for the discrete structures, the topology problem is solved
by determining the optimum number, the position, and
the mutual connectivity of structural member elements
[15]. In discrete or ground truss approach, a ground
structure, which is a grid of all elements connecting the
nodes in the design space, is optimized selecting optimal
cross section parameters of the ground truss members.
In other words, each element is associated with a design
variable that defines the element size or its contribution
to the entire topology [14]. The converged optimization
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result is supposed to drive the value of all the design
variables either close to the lower and upper limits so
that a definite topology is defined. The main objective
is to achieve the objective function with the minimum
amount of material as possible. The formulation of a
ground-truss optimization is given by

Find b (2.1)

Min f (b) (2.2)

subject to gj(b) − gj,allow ≤ 0 (2.3)
N∑
i=1

AiLi − Vallow ≤ 0 (2.4)

bl ≤ b ≤ bu (2.5)

where f(.) represents the objective function and b denotes
the vector of design variables (i.e. cross-sectional param-
eters) in Eq. (2.1) and (2.2). The function, gj, denotes the
additional constraints such as stress and gj,allow, denotes
the allowable value for this function in Eq.(2.3). Ai is the
cross-sectional area of the elements and Li is the length
of that particular element in Eq. (2.4). Vallow denotes the
maximum allowable volume of the material that can be
used in the final design. The upper and lower bounds
of design variables are denoted by bu and bl in Eq. 2.5.,
respectively.

Ultimately, the ground-truss approach is a sizing opti-
mization problem, where the cross-sectional parameters
of lattice members are the continuous design variables.
The cross-sections of the members are sized to support
the applied loads on the structure. The members with
cross-sections near zero are then removed to obtain the
optimal structure. In the optimization process, FEA is
invoked and the information required by the objective
function is evaluated at each iteration. The steps of the
optimization process are given as follows:

1. Initial feasible finite element model (FEM) is gener-
ated using the inputs such as geometry, loading and
boundary conditions. The cross-sectional parameters
(e.g. thickness, radius, etc.) are the design variables in
the optimization process.

2. FEA of the generatedmodel is carried out using an FE
solver.

3. The optimization formulation given by Eqs. (2.1) -
(2.5) is evaluated by the optimization algorithm and
the improved design is obtained.

4. If the results of FEA satisfy the objective and con-
straints in the optimization formulation and con-
verge, then the optimization stops and the optimal
design is determined.

5. Otherwise, the design variables are updated and Steps
2–4 are repeated.

The flowchart of the optimization procedure of lattice
structures is illustrated in Fig. 2.

2.1. Stress-based optimization of lattice-based
cellular structures

For the optimization with beam elements, the failure due
to yield is not seen in the FEA of the structure since
only linear material properties are used. Hence, the stress
constraint has to be included into the optimization proce-
dure. In addition, we expect the lattice structure to with-
stand the applied loads withminimumdeflection. Hence,
the objective is to minimize the maximum displacement
in the structure. The optimization formulation (i.e. Eqs.
(2.1)-(2.5)) is modified based on these criteria. Circular
cross-sections are used in this study and therefore the
design variables are the radius values of the elements in
the lattice structure. Thus, the stress-based optimization
procedureminimizes themaximum displacement (dmax)
to determine the optimal radii of the members in the
unit cells (ri) such that the maximum von Mises stress in

Figure 2. Flowchart of the lattice structure optimization process.
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the structure (Smax) will be less than the allowable stress
(Sallow):

Find ri; i = 1, . . . ,N (2.6)

Minimize dmax (2.7)

Subject to Vtotal − Vmax · Vol_Frac ≤ 0 (2.8)

Smax − Sallow ≤ 0 (2.9)

rlb ≤ ri ≤ rub (2.10)

where rlb and rub are the lower and upper bounds of
the design variables ri. The final volume of the structure
(Vtotal) must be less than or equal to a fraction (Vol_Frac)
of the maximum volume (Vmax) which is the volume of
the structure when all radii are equivalent to rub. The vol-
ume of the optimized structure (Vtotal) and themaximum
volume (Vmax) with circular cross sections are calculated
by

V =
n∑

i=1
π · ri · Li (2.11)

where n is the number of members in the structure and
Li are the length of each element.

2.2. Buckling-based optimization of lattice-based
cellular structures

Linear buckling is one of the failure mechanisms for
the lattice structures under compression. Buckling is
defined as the deformation at which the lattice struc-
ture exhibited a visibly large transverse deformation and
a rapid decrease of the resistance to deformation was
observed [18]. Failure due to buckling can occur before
yield strength on the elastic region especially for thin
wall structures under compression. Therefore, buckling
has to be taken into account for the optimization of the
lattice-based cellular structures.

The critical load that causes buckling on the lattice
structure can be determined by eigenvalue linear buck-
ling analysis method. The eigenvalue that is found with
the analysis is the linear prediction of the buckling load.
The linear eigenvalue problem is given by

(KNM
0 + λiKNM

� ) vMi = 0 (2.12)

where K0
NM is the stiffness matrix to the base state

including the effect of the preloads (PN), K�
NM is the

differential initial stress and load stiffness matrix due to
the incremental loading pattern QN, λi are the eigenval-
ues, viM are the buckling mode shapes, M and N are the
degrees of freedom for the whole model and i refers to
the ith buckling mode. Then, the critical buckling load

becomes [1].

Fb = PN + λiQN (2.13)

The buckling loads are calculated relative to the base state
of the structure. The preload PN is often zero for classi-
cal eigenvalue problems. When a structure is loaded by a
compressive unit force, the resulting first eigenvalue, λ1,
represents the critical buckling load, Fb

In buckling-based optimization of the lattice struc-
tures with the proposed procedure the objective is to
maximize critical load obtained by the eigenvalue buck-
ling analysis such that the volume of the structure (Vtotal)
will be less than or equal to the pre-determined allow-
able volume (Vallow). Thus, the optimal cross-sectional
parameters (i.e. radii, ri) of members in the lattice struc-
ture, which satisfy this objective and constraint under a
unit compression load, are determined. The optimization
formulation, given by Eqs. (2.1) – (2.5), is modified for
buckling-based optimization as follows:

Find ri; i = 1, . . . ,N (2.14)

Maximize Fb (2.15)

Subject to Vtotal − Vallow ≤ 0 (2.16)

rlb ≤ ri ≤ rub (2.17)

3. Design andmodelingmethodology for
lattice-based cellular structures

Computer technologies such as CAD andCAE are widely
used for the design of engineering parts and systems. As
mentioned earlier, due to the geometric complexity of
the lattice structures, it is impractical to use the existing
CADmodeling techniques for lattice-based applications.
The lattice geometry can easily be modeled using linear
beam elements for the purpose of FEA of these structures
as but beam elements cannot accurately take the non-
linear geometry deformation and/or non-linear material
behavior into account. The 3D solid model of the lattice
structures is necessary to be built using brick elements
for non-linear FEA. In addition, beam elements cannot
represent the 3D geometry of the lattice structures which
is required for 3D printing of the structures. Hence,
advancedmodeling techniques are required to investigate
the non-linear behavior of a lattice structure by FEA and
to fabricate the designed structures. In this study, a design
methodology that can overcome all of the issues men-
tioned above is developed and applied for the design of
a lattice-based compression block. The proposed design
procedure is illustrated in Fig. 3.

The first step of the design procedure is to choose
the most efficient lattice layout. For this purpose, the
structure is modeled using different lattice types and FE
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Figure 3. Proposed design procedure of lattice-based cellular structures.

simulations are conducted in defined loading and bound-
ary conditions to evaluate their performances. The lat-
tice type, which gives the highest performance, is used
in the optimization procedure given in Section 2. After
the topology and optimal cross-sectional parameters of
the lattice members are determined, the 3D geometry
of the structure has to be created for nonlinear FEA
and manufacturing of the physical part. Commercial 3D
printing software Netfabb is used for creating the 3D
geometry of lattice based structures in the proposed pro-
cedure. It enables 3D modeling of complex lattice struc-
tures easily and allows exporting the geometry as an STL
model.

For non-linear FEA, 3D solid model of the structure is
required. For this purpose, the STL model, which con-
tains triangular surface meshes as the definition of the
geometry, has to be converted into the FEM with the
solid/brick elements. This conversion can be achieved by
commercial FE modeling tool HyperMesh. Existing sur-
face mesh information in the STL file is used to create the
solid model of the structure with tetragonal 3D elements
using this tool. This FEM of the lattice structure with 3D
solid elements is then used in Abaqus in order to perform
non-linear FEA with non-linear material properties.

Since 3D STL model is the required format for 3D
printing, these models created in Netfabb can be used
for the manufacturing of the structures using 3D Print-
ing machines. Then, the produced parts can be phys-
ically tested for the validation of the non-linear FEA
results. In addition, the material properties used in FEA
can be determined by the test results. The design pro-
cedure shown in Fig. 3 is implemented for lattice-based
compression block design in the following section.

4. Design of lattice-based compression block

The proposed design and modeling procedure explained
in Section 3 is implemented to the design, modeling,
production and validation of a 20×20×60mm compres-
sion block with lattice cell structures shown in Fig. 3.
Before the design procedure, two different materials pro-
duced by two different additive manufacturing methods
are investigated to determine the strongest material for
the design. Non-linear material properties, which will
be used in the FEA of the structures, are determined
for these materials using reverse engineering. The one
with bettermechanical properties is chosen for the design
of the lattice based compression block. Then, the com-
pression block is modeled with various lattice types and
the one with the highest performance is chosen for the
size optimization. The lattice-based compression block
is optimized using both stress-based and buckling-based
optimization procedures explained in Section 2. The 3D
solid models of the optimized parts are created and non-
linear FEA is performed. FEA results of the optimized
parts are validated by the experimental results.

4.1. Material characterization and selection for the
lattice-based compression block design

The published material properties of the materials used
in 3D printing may not be accurate due to the inherent
layer by layer manufacturing process of the 3D print-
ing machines. Hence, first, the material properties have
to be determined by experiments using the 3D printed
structures. The mechanical properties of two different
materials; Nylon 6 used with Selective Laser Sintering
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(a) (b) (c)

Figure 4. (a) Produced hollow box and physical compression test, (b) FEA of the hollow box, (c) Load vs. Displacement curves obtained
by tests and FEA.

(SLS) and Nylon 12 used with Fused Deposition Mod-
eling (FDM) technique; are estimated and compared in
this section. Since the purpose was merely the charac-
terization of the materials, these AM processes are not
explained in detail. One can refer to Ref. [8] for detailed
descriptions of both AM techniques.

4.1.1. Material properties of Nylon 6
For the estimation of the material properties of Nylon 6
material, a hollow box with 2mm thickness, shown in
Fig. 4(a), is modeled, produced by SLS technique and
physically tested under compression. The load vs exten-
sion curve obtained by the compression test is converted
to stress-strain curve to estimate the Young’s modulus
and elastic-plastic material curve of the material. The
stress values can be simply obtained by dividing the force
by the area of the cross section. The strain is calculated by
dividing the displacement by the length of the structure.
The Young’s modulus is calculated by the linear portion
of the stress-strain curve while the plastic material prop-
erties are obtained with the non-linear portion of the
curve. Then, the non-linear FEA of the hollow box is
conducted using the determined material properties of
Nylon 6 (Fig. 4(b)). The FEA results and experimental
results are compared in Fig. 4(c). The estimated elastic-
ity and yield strength values are found to be less than the
published bulk material properties as given in Table 1.

Table 1. Material properties of NYLON 6.

Properties
Young’s
Modulus Yield Strength

Published Data [13] 1,600 MPa 46 MPa
Reverse Engineering 1,478 MPa 36 MPa

4.1.2. Material properties of Nylon 12
For the estimation of the material properties of Nylon
12 material, tensile test coupons are built in three dif-
ferent directions in FDM process as shown in Fig. 5(a)
to investigate the material properties in each direction.
The tensile tests are conducted (Fig. 5(b)) to obtain ten-
sile load vs. displacement curves of the coupons. The test
results in Fig. 5(c) show that the parts produced along
X and Y axes have similar curves while there is a 10%
difference for the parts produced along Z axis. This dif-
ference is not so distinctive and therefore it is assumed
that the material is isotropic for determining thematerial
properties.

The data of the sample produced along Y axis is con-
verted to stress-strain curve to estimate the elasticity
modulus and elastic-plastic material curve. The Young’s
modulus is determined by the linear portion of the stress-
strain curve. The plastic strain data is obtained by the rest
of the data by the true stress-strain calculation. Fig. 5(c)
shows that the experimental and FEA results match well
along Y and X axis but different from the ones produced

(a) (b) (C)

Figure 5. (a) Building directions in FDMprocess, (b) Tensile test and FEAmodel (c) Load vs. Displacement curves of tensile tests and FEA.
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(a) (b) (c)

Figure 6. (a) Models of the compression block with periodic octet cell (b) Dimensions of compression blockmodeledwith octet cell and
FEM of lattice structures, (c) Physical compression test.

along Z axis since the material properties are estimated
using the data of the part produced along Y axis.

The estimated elasticity and yield strength values are
found to be less than the published bulk material proper-
ties as given in Table 2.

Table 2. Material properties of NYLON 12.

Properties
Young’s
Modulus Yield Strength

Published Data [7] 1310 MPa 44 MPa
Reverse Engineering 1,030 MPa 30 MPa

4.1.3. Comparison ofmechanical performance for
Nylon 6 and Nylon 12

The mechanical performances of these two materi-
als are compared for a 20× 20× 60mm compres-
sion block modeled with periodic octet unit-cell with
20× 20× 20mmdimensions in three different cross sec-
tional sizes:Onewith 2mmradius for each strutmember;
one with 2mm radius and cut faces on the surfaces; and

onewith 1.5mmwith cut faces on the surfaces (Fig. 6(a)).
The modeling procedure explained in Section 3 is used
for FE modeling with 3D solid mesh and non-linear
FEA (Fig. 6(b)). The models are loaded with an applied
displacement perpendicular to the top surface, while
the base of the model was constrained in the loading
direction. This combination of applied displacement and
constraints simulates the conditions of the mechanical
characterization, with the only notable difference being
the friction between the sample and the patterns in the
mechanical tests. The total reaction force of all nodes
from the bottom surface was computed. The purpose
of the numerical modeling was to show that numerical
methods can be used to predict the compression behav-
ior of complex lattice structures; hence it is possible to
use these methods to optimize cellular structures for any
given application.

The lattice structures are also built by SLS and FDM
processeswith correspondingmaterials and the compres-
sion tests are conducted at for two different materials
(Fig. 6(c)). The load vs displacement results of the tests

(a) (b)

Figure 7. (a) Load vs Deformation curves for structures with Nylon 6 (b) Produced structures by SLS.



COMPUTER-AIDED DESIGN & APPLICATIONS 57

(a) (b)

Figure 8. (a) Load vs Deformation curves for structures with Nylon 12 (b) Produced structures by FDM.

(a) (b)

Figure 9. (a) 5 different lattice types, (b) Non-linear FEA results in compression.

are compared with FEA results in Fig. 7 for Nylon 6 and
in Fig. 8 for Nylon 12.

As can be seen in Fig. 7 and Fig. 8, the isotropic mate-
rial properties predicted for both materials provide FEA
results that show good agreement with the test results.
Due to the differences in building directions with FDM
process, the parts produced by Nylon 12 material failed
earlier than the FEA results as seen in Fig. 8. On the
other hand, for the parts build by SLS process, even the
nonlinear portion of the curves obtained by FEA with
isotropic material properties agree well with the exper-
imental results as seen in Fig. 7. Hence, the isotropic
material properties that were predicted in the previous
section can be used for the simulations of the lattice struc-
tures. In addition, it is observed that the parts produced
by SLS with Nylon 6 material take higher compressive
loads than the ones built by FDM with Nylon 12 mate-
rial. From the test results, the largest load on the parts
produced byNylon 6 is about 3800Nwhile it is 2400N for
Nylon 12. Since Nylon 6 has higher strength at the same

compression displacement thanNylon 12it can be chosen
as the material that is used in the optimization process of
lattice based compression block.

4.2. Lattice type selection

For the purpose of determining the best lattice layout,
the compression block with 20×20×60mm dimensions
is modeled with five different unit cell types as shown
in Fig. 9(a). Each unit cell in the periodic lattice struc-
tures has 20×20×20mmdimensions with 1.5mm radius
for each member in the cells. 3D solid FE models of the
structures are prepared and simulated via non-linear FEA
the estimated non-linear material properties of Nylon
6 to explore the performance of the structures in com-
pression. Since the volume of the structure changes with
the type of lattice structure the load per volume vs dis-
placement results are shown in Figure 9(b) for a better
comparison. It is seen that OctetFramed structure has
the highest load carrying capacity in compression.Hence,
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(a) (b)

Figure 10. (a) FE modeling of compression block with OctetFramed lattice type using beam elements. (b) Four design variables r1-r4
determined in the optimization procedure.

Octet Framed is used in the optimization procedure as
the lattice type to be optimized.

4.3. Stress-based optimization of
octetframed-based compression block

The compression block is modeled by the OctetFramed
lattice type using beam elements (Fig. 10(a)) for the
stress-based optimization given by Eqs. (2.6)-(2.10).
There are 4 design variables determined (i.e. radii of
members) as shown in Fig. 10(b), since the symmetry
of the struts is used to reduce the number of design
variables. The optimization is conducted under three dif-
ferent loading conditions as shown in Fig. 10(a); FC rep-
resents the compression load,MB represents the bending,
andMT represents the torsion. In addition, the combina-
tion of all three loading types is also used as the loading
condition to obtain the optimum radii of the members of
lattice structure.

The lower and upper bounds of the design variables
required for Eq. (2.10) are determined as rlb =0.01mm
and rub =4mm, respectively. The maximum volume
(Vmax) required for Eq. (2.8) is calculated using Eq. (2.11)
when all radii are rub = 4mm. The volume fraction in
Eq. (2.8) is initiated from 0.05. If there is no feasible
design found, it is increased with 0.05 increments until
finding a solution satisfying the constraints. The allow-
able stress required in Eq. (2.9) is set to the yield stress
of Nylon 6material determined by reverse engineering. 1
(i.e. Sallow =36MPa in Tab. 1).

Two different optimizationmethods are implemented:
• First, “Exhaustive search” method is utilized for

the optimization. The values for each design vari-
able is generated with 0.1mm increment between
rlb =0.01mm and rub =4mm. In this method, the FE
simulations are performed with each possible combi-
nation of the design variables and the results are eval-
uated after all simulations are done. But attempting

to simulate all possible combinations requires a very
high number of simulations. Hence, exhaustive search
method increases the optimization time dramatically.
On the other hand, it gives the global optimum since
all possible combinations are evaluated.

• Since an exhaustive search is computationally too
expensive, a gradient-bsed optimization method,
namely “active-set” method [11] is also utilized. This
algorithm enables converging to the optimal design
point quickly. However, it can result in diverging from
the optimal design and/or converging to local opti-
mum design. Therefore, it may not provide the global
optimum every time.
The results of the optimized structures for different

loading conditions are listed in Fig. 11. It is seen that
an optimal solution is obtained when Vol_Frac is 0.05
in compression and bending but in torsion the optimal
solution exists whenVol_Frac is 0.1. In combined loading
conditions, on the other hand,Vol_Frac is 0.15 in exhaus-
tive search and it is 0.2 with the active-set method. As
seen in Fig. 11, the displacement and stress values of the
structures found by “Exhaustive Search” are lower than
the ones found by the active-set method. As mentioned
before, the reason is active-set method converges to local
optimum point while exhaustive search finds the global
optimum solution.

The results of the optimized structures in Fig. 11 show
that the vertical frame members in the lattice structure
are more important in compression and bending since
the other members have very small radius values. In tor-
sion, on the other hand, diagonal frame members are
more critical. The inner diagonal members and horizon-
talmembers have the least effect on the performance. The
optimized parts under the combination of compression,
bending and torsion have both the vertical and diago-
nal frame members in exhaustive search method. While
creating the 3D models of the optimized structures as
shown at the bottom of Fig. 11, each member which has
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Figure 11. Optimized parts and results in different loading conditions.

(a) (b) (c)

Figure 12. (a) 3D geometric models of the optimized structures (b) 3D Printed structures (c) Load per Volume vs Displacement results
from FEA and compression test.

a radius equal to the lower bound (i.e. rlb =0.01mm), are
removed from the structure.

Although the main purpose is to improve the per-
formance of the lattice structure under performance, we
also expect it to withstand the torsional and bending
moments. Therefore, the optimized structures obtained
in combination of three different loading conditions, cir-
cled in Fig. 11, are our interest. In order to compare the
performance of these optimized structures with the ini-
tial structure with 1.5mm radius for each member, solid
FE models of these structures are created as shown in
Fig. 12(a) and non-linear FEA is carried out with non-
linearmaterial properties ofNylon 6. These structures are
also built by SLS process as shown in Fig. 12(b) and the

FEA results are validated with physical compression test
results in Fig. 12(c).

As seen in Fig. 12(c), the optimized structures have
higher load carrying capacities than the initial Octet-
Framed structure with 1.5mm radius for each mem-
ber. The optimized structure with “Exhaustive Search”
method has a higher load carrying capacity than the
one optimizedwith active-setmethod. This validates that
active-set method is trapped in local optima and there-
fore load carrying performance is lower. On the other
hand, the optimization time with exhaustive search is
about 35 hours while it is about 20 minutes with the
actives-set method. Although there is a performance
loss, by using an efficient optimization procedure such
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as active-set method, the optimization time is greatly
decreased.

4.4. Buckling-based optimization

When thin wall hollow structures are compressed,
depending on width-to-thickness (w/t) ratio local buck-
ling can be seen before yielding. Hence, buckling should
be taken into consideration in the optimization of the
lattice structures. Before the optimization of the lattice
structure with buckling criteria, 20×20×60mm com-
pression block is modeled as a hollow box with 1mm and
2mm thickness values in order to observe the buckling
failure behavior of the structures with thin walls Eigen-
value buckling analysis in Abaqus is used to determine
the critical load that causes buckling for these structures.
The structures are loaded by a downward unit force as
shown in Fig. 13(a).

(a) (b) (c)

Figure 13. (a) Loading and boundary conditions for eigenvalue
buckling analysis, (b) Buckling load of hollow box, (c) Buckling
load of optimized OctetFramed-based structure.

The resulting first eigenvalue, obtained by the linear
buckling analysis, represents the critical buckling load of
the structure. In addition, the yielding load values for
both hollow boxes are calculated by multiplying the yield
stress of Nylon 6 material (Sy =36MPa) by the cross-
sectional areas of hollow boxes. The yielding load values
and the critical buckling load values are listed in Tab. 3
for comparison.

Table 3. Comparison of buckling and yielding loads for hollow
box structures.

Hollow Buckling Yielding
box Load Load Conclusion

t = 1mm 1191N 2736N Buckling before
yielding

t = 2mm 9559N 9216N Buckling after yielding

As seen in Tab. 3, buckling occurs before yielding
for the hollow box with 1mm thickness, while yielding
occurs before buckling for the hollow box with 2mm
thickness. Hence, it can be concluded that there is room

to improve the buckling performance of hollow box with
1mm thickness by using lattice-based cellular structures
at the same volume. On the other hand, there is no need
to consider the buckling for the hollow box with 2mm
thickness since yielding occurs prior to buckling.

Therefore, the compression block is again modeled
by the OctetFramed lattice type as shown in Fig. 10(a)),
using beam elements for the buckling-based optimiza-
tion with Eqs. (2.14)-(2.17). Similar to the stress-based
optimization, there are 4 design variables as shown in
Figure 10(b), since the symmetry of the struts is used
to reduce the number of design variables. For eigen-
value buckling analysis, only a unit compression load
(i.e. F=1N in Fig. 13(a)) is applied on the structure.
In Eq. 2.16, the allowable volume (Vallow) is set to the
volume of the hollow box with 1mm thickness (i.e.
Vallow =4560 mm3) since the purpose is to improve the
buckling performance of the hollow box using lattice
cells. The lattice structure is optimized and the critical
buckling load (Fb) results of hollow box and optimized
OctetFramed-based structure are compared in Fig. 13(b)
and Fig. 13(c), respectively. As can be seen the buckling
load of the structure at the same volume is increased
from 1191N to 1807N by utilizing the optimization of
lattice based structures. This result proves that buckling-
based optimization can improve the performance of the
structure when buckling occurs prior to yielding.

4.5. Energy absorption of optimized structures

In previous section, it is shown that yielding is the
first criteria for 2mm hollow box. Hence, its perfor-
mance is compared with the performances of the struc-
tures obtained by stress-based optimization shown in
Fig. 14(a). For this purpose, the non-linear FEA of initial
OctetFramed-based structure, the optimized structures
with stress-based optimization given in Fig. 12(a) and
hollow box with 2mm are carried out and load/volume
vs displacement curves are compared with physical com-
pression test results in Fig. 14(b). The energy absorption
of these structures is measured by numerically calculat-
ing the area under the load vs displacement curves. A
numerical method, namely Trapezoidal rule [5], is used
for the calculation of the area under the curve. When the
domain is discretized into N equally spaced regions, the
trapezoidal rule for the non-uniform grid is given by

a∫

b

f (x)dx ≈ 1
2

N∑
k=1

(xk+1 − xk)(f (xk+1) + f (xk)) (4.1)

where a and b are the first and last values on x coordi-
nate (i.e a= x1, b= xN+1).
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(a) (b)

Figure 14. (a) 3D geometries of ➀ not optimized OctetFramed-based structure with 1.5mm radius for each member, ➋ and ➌ opti-
mized OctetFramed-based structures with stress-based optimization, ➃ hollow box with 2mm thickness. (b) FEA and test results of
these structures in compression.

Energy absorption is calculated for the area between
zero and the displacement corresponding to the max-
imum load/volume value from the experimental data.
Since the volumes of the structures are different, a com-
parison of the performances of the structures can be
made by dividing the energy absorption value by volume
(or per weight) as shown in Tab. 4.

Table 4. Energy Absorption values of the structures tested under
compression.

Structure Energy Absorption (J)
Energy Absorption/Volume

(J/mm3)

➀ 9036 0.86
➋ 38585 3.09
➌ 50006 3.07
➃ 17843 2.07

The results in Fig. 14(b) show that the maximum
load/volume is obtained for the hollow box structure.
However, the hollow box reaches the highest load very
quickly at about 3mm (Fig. 14(b)) then plastically
deformed and fails. Although the optimized structures
(➋ and ➌) have lower maximum load/volume values
than the hollow box, they reach their maximum load at
larger displacements (at 7mm and 9mm, respectively)
than the hollow box. Hence, the optimized structures
absorb more energy per volume than the hollow box and
the initial not optimized lattice structure (Tab. 1). The
experimental energy absorption results show that the lat-
tice structure optimization procedure improves the load
carrying performance of the compression block and pro-
vides very efficient optimized lattice structures in terms
of energy absorption under compressive loads.

5. Conclusion

In this paper, we have proposed an integrated framework
for the design of lattice-based cellular structures for light
weight applications. In this framework, an efficient opti-
mization procedure has been incorporated with a novel
FE modelling technique with solid elements to facili-
tate the non-linear analysis of cellular structures. The
framework incorporates the physical experimental data
with the proposed design and modeling procedure for
material and performance characterization of additively
manufactured lattice structures. The effectiveness of the
proposed methodology has been demonstrated with the
design of a compression block with periodic lattice cells
to improve its load carrying performance for light weight
applications. Specifically, isotropic material properties of
two different materials used in two different 3D printing
processes (i.e. Nylon 6 in SLS andNylon 12 in FDM) have
been predicted. The applicability of the proposed model-
ing technique with solid elements has also been shown
to be effective by validating the non-linear simulation
results with the physical compression test results. The
experiments of the compression block modeled by peri-
odic octet-based lattice cells has shown that the predicted
isotropic material properties provide enough accuracy
for the simulations to use for the non-linear analysis of
the compression block.

OctetFramed-based unit cell has been determined to
be the one that has the highest load carrying perfor-
mance among various types of unit cell types based on
the non-linear simulations. The load carrying perfor-
mance of the lattice structures has been improved by
using the proposed optimization procedure. The energy
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absorption results obtained by the compression tests
has proven that the proposed methodology provides
improved designs that have larger energy absorption per-
formance than the not optimized lattice structure and
the hollow box. Overall, this study has illustrated that
an effective design of lattice-based cellular structures
for light weight applications can be achieved by consid-
ering yield and buckling failure criteria as well as the
energy absorption of structures. The future work will be
done for the application of the presented method for the
design of real components from industry. Thus, possible
applications of lattice-based cellular structures produced
by additive manufacturing can be found in automotive
industry.
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