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ABSTRACT

In this paper, a step-wise tetrahedral mesh generation method is introduced to solve the adaptive
meshing problems of 3D heterogeneous objects, in which both the material heterogeneity and the
geometric complexity have to be taken into account. In light of that, the proposed meshing strategy
embraces three steps: initial mesh generation, material-oriented refinement, and geometry-oriented
refinement. In the material-oriented refinement, a global refinement algorithm based on optimal
Delaunay triangulation (ODT) is designed to control the mesh adaptation in terms of the material
distribution. Compared to the refinement strategies based on local modifications, the global refine-
ment algorithm takes full advantages of the material heterogeneity information and distributes the
material composition variation over elements as equally as possible. As a result, the number of ele-
ments is reduced to a great extent regarding a given material threshold. Implementations show that
the proposed approach guarantees desirable mesh adaptation as well as high mesh quality.
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1. INTRODUCTION

In recent years, heterogeneous materials have
attracted a lot of attention for their superior prop-
erties over homogeneous materials [14,17,19]. To
design, analyze, and optimize the behavior of hetero-
geneous materials, the finite element method (FEM) as
an effective numerical method has been immensely
utilized [8,13,16]. Although tremendous efforts are
devoted to finite element analysis (FEA) of heteroge-
neous materials in the past two decades, little atten-
tion has been focused on mesh generation, which
is an essential part of the FEA procedure. For the
sake of simplicity, classic mesh generation methods
targeted on homogeneous objects are often directly
applied into the domain of heterogeneous models.
The meshes generated by these traditional methods,
however, either result in poor simulation accura-
cies (as they fail to characterize the material het-
erogeneities) [2], or introduce denser elements than
desired, significantly degrading the computational
efficiency [12]. To solve such problems, specific mesh
generation methods for efficient and robust FEA of
heterogeneous materials are called for.

Zhang et al. [25] proposed an automatic 3D
meshing strategy for heterogeneous objects. An

octree-based isocontouring method is utilized to
construct adaptive and high-quality tetrahedral/
hexahedral meshes that conform to the material
boundaries. Unfortunately, only multiple material
objects (see Fig. 1(a)), which are very primitive in
terms of material heterogeneities, are taken into
account. Cuillière et al. [10] developed an automatic
approach based on the advancing front method to
generate unstructured tetrahedral meshes in the con-
text of composite or heterogeneous geometry. The
obtained meshes, however, are only suitable for FEA
of multiple materials.

Functionally graded materials (FGMs) [18], whose
material heterogeneities vary gradually within the
domain of interest as shown in Fig. 1(b), usually
outperform multiple materials. Therefore, meshing
strategies that concentrate on FGM models warrant
further exploration. To generate efficient meshes on
FGM models, adaptive meshing methods are often
used. Shin [23] proposed an iso-material method to
tackle the adaptive meshing problem of FGM mod-
els. In his work, iso-material contours of an FGM
model are first created, converting continuous mate-
rial distribution into step-wise variation; triangular
mesh is then constructed inside each homogeneous
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(a) (b)

Fig. 1: Heterogeneous material distribution examples: (a) Multiple material model; (b) FGM model.

region formed by adjacent iso-material contours.
More recently, Chiu et al. [9] introduced an adap-
tive meshing method based on quadtree for complex
FGM models. In their work, they proposed to use
a material threshold to evaluate if a quadrant is
homogenous or quasi-homogenous. The subdivision
of the domain was recursively processed until all the
quadrants satisfy the material threshold as well as
the geometric resolution. The obtained quadrants are
then converted to triangular mesh by Delaunay based
methods. One common disadvantage of these two
studies is that the authors have paid duly attention
to 2D FGM objects, yet having not touched on 3D FGM
objects that are more general and complex in practice.

To the best of our knowledge, there exist few
systematic meshing strategies that focus on the
mesh problems of 3D FGM models although some
researchers claim that their 2D adaptive meshing
method can be easily extended to 3D cases. We argue
that this kind of claim is not necessarily valid. First, it
is significantly more difficult to generate high-quality
3D meshes (tetrahedral meshes) than its 2D coun-
terpart (triangular meshes). For instance, the regular
tetrahedron does not tile 3D volume, while the equi-
lateral triangle tiles the 2D plane; unlike the triangular
mesh, even well-spaced vertices can create degener-
ate tetrahedra (e.g. slivers) in the tetrahedral mesh.
Second, the consumption of computational resource
on mesh generation of 3D FGM models is exces-
sively larger than the 2D cases. As the dimension
of FGM models changes from 2D to 3D, the growth
of the computational cost (including CPU time and
memory) is barely linear but often involves steep
nonlinear increases. As a result, effective mesh gen-
eration methods for 3D FGM models call for further
examination.

In this paper, we propose an adaptive tetrahedral
mesh generation method for general 3D heterogeneous
models. In order to tackle the material heterogene-
ity and the geometric complexity respectively, we

separate the proposed meshing strategy into three
steps, which are initial mesh generation, material-
oriented refinement, and geometry-oriented refine-
ment. In the material-oriented refinement, a global
mesh adaptation algorithm based on optimal Delau-
nay triangulation (ODT) [7] is developed to control the
mesh adaptation in terms of the continuously varying
material heterogeneity. Rather than the local adap-
tive meshing algorithm proposed in [9], the global
adaptive meshing algorithm equalizes the material
composition variation within each element and thus
reduce the number of element to a great extent in
terms of a given material threshold [9]. In addition,
the use of ODT greatly improves the mesh quality.

In the remaining of this paper, we describe the
algorithm details of the adaptive meshing strategy
in Section 2. In Section 3, two examples are used
to demonstrate the efficiency of the proposed adap-
tive meshing method. Finally, conclusion is drawn in
Section 4.

2. ADAPTIVE MESHING STRATEGY

In adaptive meshes of homogeneous objects, denser
elements are usually generated in the boundary area
to conform to the geometric resolution, while coarser
elements are created in the interior to save computa-
tional resources. However, for heterogeneous objects
where two or more different material ingredients
exist, this observation is not true anymore. Besides
the geometric resolution, the length scale associated
with the material heterogeneity in each finite ele-
ment also has a great impact on the accuracy of FEA
solutions [20]. In other words, the adaptive meshing
of heterogeneous models is determined by both the
material heterogeneity and the geometric complexity.
Regarding that, we propose an adaptive tetrahedral
mesh generation method, which naturally includes a
three-step meshing process: the first step is initial
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mesh generation, the latter one is material-oriented
refinement and the third one is geometry-oriented
refinement.

Given a 3D heterogeneous model, an initial mesh
is firstly constructed by using the Delaunay-based
tetrahedral mesh generation method. The material-
oriented refinement is then executed on the initial
mesh. In this refinement, a global mesh adaptation
method based on ODT is applied. The refinement pro-
cess is recursively processed until the mesh satisfies
a predefined material threshold. Next, a geometry-
oriented refinement is further processed in order to
tackle the geometric facilities of the heterogeneous
model. This refinement process terminates when a
set geometric resolution is satisfied. Fig. 2 shows the
high-level pseudo-code of this adaptive meshing strat-
egy, the great details of which will be presented in the
following subsections.

Fig. 2: The pseudo-code of the adaptive meshing
strategy for 3D heterogeneous objects.

2.1. Input

The input to the adaptive meshing algorithm includes
two parts: heterogeneous model and meshing criteria.

2.1.1. Heterogeneous model

In this paper, the heterogeneous model that we
mainly investigate is the analytic heterogeneous
model [26], which has been widely utilized in hetero-
geneous solid modeling. In an analytic heterogeneous
model, the geometry of the domain is represented
by boundary representation (B-Rep) and the material
distribution is represented with explicit analytic func-
tions. Given an arbitrary point (x, y, z) in the Cartesian
coordinate system, for instance, the volume fraction
of the ith material ingredient at this point can be
written as Vi = fi(x, y, z) [26]. Accordingly, the mate-
rial compositions at this point can be represented as
a vector of volume fractions, i.e.

M = [V1, V2, . . . , Vk], 0 ≤ Vi ≤ 1,
k∑

i=1

Vi = 1 (2.1)

where k denotes the number of material constituents
of the analytic heterogeneous model and the volume
fractions are constrained to sum up to unity. In this
paper, we mainly focus on the two-phase heteroge-
neous models (k = 2) that are often studied in the
literature and utilized in real applications. As a result,
it is sufficient to use the volume fraction of one alter-
native material constituent to represent the overall
material distribution because of the unity property. In
the following sections, by material composition func-
tion, we mean the volume fraction function of one
individual material constituent.

2.1.2. Meshing criteria

As mentioned above, the adaptive meshing process on
heterogeneous objects is determined by the material
distribution as well as the geometric complexity, the
meshing criteria are therefore composed of a material
threshold and a geometric resolution (or approxi-
mation error). Since the latter one has been widely
described in the literature, we mainly introduce the
material threshold in what follows.

We consider an element T is bad when it fails to
satisfy a predefined material threshold, δ0, i.e. δ(T ) >

δ0. Here, δ(T ) denotes the material composition varia-
tion within the element T. In this paper, the definition
of δ(T ) is consistent with the one in [9], thus we have

δ(T ) = max(δij), ∀ij, i �= j, j ∈ 1, 2, . . . , m (2.2)

where m is the number of sample points (e.g. the
vertices of T ) and δij is the magnitude of material
composition difference between two arbitrary sample
points, Pi and Pj, i.e.

δij = ‖Mi − Mj‖ (2.3)

where Mi denotes the material compositions of Pi.

2.2. Initial Mesh Generation

The initial mesh (I-Mesh) is constructed by Delaunay-
based methods [21,24]. The I-Mesh is a Delaunay
mesh of all the feature vertices (corners) of the input
domain, the minimal number of sample points on
surface patches and sharp edges (ceases) [24], and a
small set of interior points if necessary. In this step,
no material heterogeneity information is involved.

2.3. Material-oriented Refinement

Since the I-Mesh is only a coarse mesh and far away
from desirable, the material-oriented refinement is
consequently executed, aiming to generate a mesh
that is validated in terms of the material threshold,
δ0. In this step, a global refinement algorithm based
on ODT is proposed to control the mesh adaptation.
To keep this paper as self-contained as possible, we
first briefly introduce the concept of ODT.
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2.3.1. Optimal Delaunay triangulation

An ODT is a triangulation that minimizes the inter-
polation error for the isotropic function ||x||2 with
a given set of vertices. The concept of ODT is first
proposed by Chen and Xu [7], based on which, Chen
[6] then developed a mesh smoothing technique to
improve the quality of triangular mesh. Alliez et al.
[1] and Tournois et al. [24], in addition, extended
Chen’s method to 3D cases, proposing high-quality
tetrahedral mesh generation methods.

In ODT based meshing methods, the high-quality
meshes are achieved by minimizing the following
quadratic energy [1]:

EODT = 1
n + 1

∑
i=1..N

∫
�i

‖x − xi‖2dx (2.4)

where n is the dimension of the domain of interest, N
is the number of vertices, and �i is the 1-ring neigh-
borhood of vertex xi [1]. In the process of energy
minimization, each vertex is recursively moved to
an optimal position within its 1-ring neighborhood
[1], i.e.

x∗ = 1
|�i |

∑
Tj∈�i

|Tj |cj (2.5)

where cj is the circumcenter of the tetrahedron (trian-
gle in 2D cases) Tj , |Tj | and |�i | are the volume (area
in 2D cases) of Tj and �i , respectively. More generally,
the above equation for 3D cases can be written as:

x∗ = 1∑
Tk∈�i

|Tk |
μ3(gk)

∑
Tj∈�i

|Tj |
μ3(gj)

cj (2.6)

where μ is a sizing field, and μ(gj) approximately rep-
resents the locally desired size of the tetrahedron Tj ,
in which gj is the centroid of Tj .

The merits of ODT-based mesh generation meth-
ods are that they guarantee high mesh quality and
can easily control the mesh gradation corresponding
to a sizing field μ. Inspired by these properties, we
creatively apply the concept of ODT into the field of
adaptive meshing of heterogeneous models by con-
necting the sizing filed μ to the material composition
functions.

2.3.2. The sizing field related to the material
composition function

In adaptive meshing of heterogeneous models, we aim
to generate denser elements in the field where mate-
rial composition changes fast, and create relatively
coarse elements in the area where material compo-
sition changes slowly. In light of that, the sizing field
should be inversely proportional to the material com-
position changing rate (or the gradient of material

composition function), i.e.

μ = C
|∇f | (2.7)

where ∇f is the gradient of the material composition
function f , and C is a constant related to the material
threshold, δ0.

2.3.3. Global refinement algorithm

Having established the sizing field associated with the
material distributions, we now illustrate the global
refinement algorithm based on ODT. Fig. 3 shows
the flowchart of this algorithm, to which several
important steps are listed as below.

Fig. 3: The flowchart of the material-oriented refine-
ment.

(i) Apply a mesh refinement onto the I-Mesh,
inserting a Steiner point into every tetrahedron
that does not satisfy a set material thresh-
old, δ0.

(ii) Optimize the mesh obtained in Step (i) by using
the ODT-based mesh smoothing coupled with
the sizing field μ shown in Eqn. (2.7).

(iii) Evaluate the validity of the mesh generated in
Step (ii) in terms of the material threshold, δ0.

(iv) If the material composition variation of an
arbitrary tetrahedron T is lower than the mate-
rial threshold, δ0, terminate the refinement
algorithm and output the obtained mesh (or
M-Mesh); otherwise, return to step (i).

It is not difficult to notice that the mesh smooth-
ing based on ODT is iteratively executed in the
global refinement process. Through this way, the
material composition variations over elements are
distributed as equally as possible. Meanwhile, high-
quality meshes are guaranteed.
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2.4. Geometry-oriented Refinement

Notably, only material heterogeneity information is
taken into account in the material-oriented refine-
ment. This might cause problems whenever coarse
elements are generated near curved boundaries of the
domain where finer elements are expected to account
for the geometric facilities. To solve this problem,
the geometry-oriented refinement is applied. The
geometry-oriented refinement (see Fig. 4) is guided by
a surface or crease approximation error [3]. A Delau-
nay refinement [21,22] is firstly processed on the M-
Mesh, followed by a Laplacian mesh smoothing [4,11].
It should be noted that only those newly inserted
vertices are allowed to move during the Laplacian
meshing smoothing. Otherwise, the material variation
within tetrahedra will be changed and might exceed
the material threshold. We call the finally obtained
mesh in this step, G-Mesh.

Fig. 4: The flowchart of geometry-oriented refine-
ment.

3. IMPLEMENTATION DETAILS

We have implemented the proposed algorithm suc-
cessfully by using the non-commercial library, CGAL
[5]. In this section, two case studies are presented to
show the efficacy of the proposed adaptive tetrahe-
dral mesh generation method.

3.1. Case study I: Analytic Heterogeneous Model
with Exponential Function-based Material
Distribution

Figure 5 depicts the heterogeneous model of case
study I, in which the material composition function is
an exponential function. Fig. 6 shows the I-Mesh gen-
erated on this heterogeneous model. Since a limited
number of vertices are inserted, this mesh is far from
desirable and needs further refinement.

Fig. 7 shows the M-Mesh after the material-oriented
refinement with respect to a set material threshold,
δ0 = 0.1. Notice that denser elements are generated

Fig. 5: The geometric description and the material
composition function of an analytic heterogeneous
model in case study I. Here d is the Euclidean distance
from an arbitrary point P to the reference point O, and
α is a constant coefficient.

Fig. 6: The I-Mesh generated on the analytic hetero-
geneous model of case study I. Left: view of the I-Mesh;
right: cut view of the I-Mesh.

in the center of the domain where material compo-
sition changes fast (see the volume fraction function
in Fig. 5) and relatively coarse elements are created in
boundary area where material composition changes
slowly. In addition, this mesh satisfies the material
threshold and the material composition variation of
its most elements obviously concentrates to the inter-
val [0.05, 0.1] (see the left top of Fig. 7). We can also
note from Tab. 1 that the average material compo-
sition variation is 0.0724, which is very close to the
material threshold 0.1. In this sense, the material-
oriented refinement algorithm indeed distributes the
material composition variation as equally as possi-
ble. Except the mesh adaptation, high-quality mesh is
also guaranteed since all the dihedral angles are con-
strained into the interval [10.91, 163.80] (see the left
bottom of Fig. 7).

From Fig. 7, we can observe that the M-Mesh
does not approximate the geometry of the hetero-
geneous model well for coarse elements are gener-
ated in the boundary area. To solve such a problem,
the geometry-oriented refinement is further applied.
Fig. 8 shows the G-Mesh after the geometry-oriented
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Fig. 7: The M-Mesh generated on the analytic heterogeneous model of case study I. Left top: the distribution of
material composition variation over the M-Mesh; left bottom: the distribution of dihedral angles over the M-Mesh;
middle: view of the M-Mesh; right: cut view of the M-Mesh.

Material Variation Dihedral Angle

Np Nf Nt Min. Max. Avg. Min. Max.

I-Mesh 160 632 447
M-Mesh 2616 856 14356 0.0199 0.0998 0.0724 10.91 163.80
G-Mesh 14840 16430 63911 0.0020 0.0998 0.0301 10.01 164.07

Tab. 1: Statistics related to the meshes depicted in Fig. 6, Fig. 7 and Fig. 8. Here Np,
Nf, and Nt denote the number of vertices, facets, and tetrahedra respectively.

 

Fig. 8: The G-Mesh generated on the analytic heterogeneous model of case study I. Left top: the distribution of
material composition variation over the G-Mesh; left bottom: the distribution of dihedral angles over the G-Mesh;
middle: view of the G-Mesh; right: cut view of the G-Mesh.

refinement. Notice that finer elements are constructed
in the boundary area to conform to the geometric res-
olution. Although the mesh has been revised, the dis-
tribution of material composition variation still satis-
fies the material threshold (see the left top of Fig. 8)
since the vertices that belong to the M-Mesh are not

allowed to move during the geometry-oriented refine-
ment. As a large number of elements are generated
in the boundary area where the material compo-
sition varies slowly, the average material composi-
tion variation decreases from 0.0724 to 0.0301 (see
Tab. 1)
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Fig. 9: The geometric description and the material
composition function of the analytic heterogeneous
model in case study II. Here H and R are the height
and the radius of the cylinder, respectively.

3.2. Case study II: Analytic Heterogeneous Model
with Power Function-based Material
Distribution

Figure 9 depicts the analytic heterogeneous model of
case study II. Different from case study I, the material
composition of this heterogeneous model is a power
function. Other than this, the implementation details
of the adaptive meshing algorithm are the same in
both cases, therefore we only show here the final
mesh, G-Mesh, for the sake of simplicity.

Figure 10 shows the G-Mesh with respect to a set
material threshold δ0 = 0.1. Notice that denser ele-
ments are generated in the top area where material
composition changes fast (refer to the volume frac-
tion function in Fig. 9), as well as in the boundary
area to precisely approximate the geometric facilities.
We can also note that the material composition vari-
ations are distributed as equally as possible over the
elements since most of them concentrate to the inter-
val [0.05, 0.1] (see the left top of Fig. 10). In addition,

high-quality mesh is achieved for all dihedral angles
are constrained into the interval [15.07, 157.16] (see
the left bottom of Fig. 10).

4. CONCLUSION

The contribution of this study includes:

• Developing an adaptive tetrahedral mesh gener-
ation method of 3D FGMs.

• Demonstrating a step-wise meshing strategy to
control the mesh adaptation in terms of the
material heterogeneity and the geometric com-
plexity, respectively.

• Introducing a global mesh adaptation algorithm
based on ODT to tackle the continuously varying
material heterogeneity. Rather than those local
adaptive meshing algorithms, the global adap-
tive meshing algorithm equalizes the material
composition variation within each element and
thus reduces the number of element to a great
extent in terms of a given material threshold.

• Providing great potentials for accurate and effi-
cient FEA simulations of heterogeneous materi-
als.

One weakness of this study is that only analytic
heterogeneous models are investigated. In the future,
we are going to extend the proposed method to other
more complex heterogeneous models, such as the
heterogeneous feature tree (HFT) based model [15],
in which the heterogeneous material distributions
cannot be directly represented by analytic functions.
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