
704

A New Reconstruction Method for 3D Buildings from 2D Vector Floor Plan

JunfangZhu1, Hui Zhang2 and Yamei Wen3

1School of Software, Tsinghua University, junfang.zhu@gmail.com
2Tsinghua National Laboratory for Information Science and Technology, huizhang@tsinghua.edu.cn

3Key Laboratory for Information System Security, Ministry of Education, yamei.wen@gmail.com

ABSTRACT

This paper proposes a method to analyze the geometry and semantic information of 2D vector floor
plans, and reconstruct the corresponding 3D building models automatically. First, the Shape-opening
graph (SOG) is introduced to recognize Structural Components (SCs) and describe the relationships
between SCs and openings which are architectural components separating spaces. A priority principle
algorithm is developed to replace openings with wall equivalent lines for the purpose of later loop
searching. Then, we present an odd-even-based edge breaking algorithm to preprocess wall lines in
order to search loops directly and exactly. After that, all the interior-space contours, which are in
fact rooms or aisles, and exterior boundary contour can be obtained. With the hierarchical component
tree presented, the topological relations of the whole building can be obtained. Finally, 3D models
can be generated after extruding loops to the wall height and cutting openings from the walls. A
drawing with several floor plans can also be reconstructed to multi-floor building after aligning their
dimensions. Moreover, the intermediate result after analyzing the 2D floor plan can be the input of
other architectural software to generate 3D models.

Keywords: 3D reconstruction, vector floor plan, space information.

1. INTRODUCTION

2D architectural floor plans are a standard way to
express design by architects and are widely used in
the field of architecture. Fig. 1 is a real 2D vector
architectural floor plan. 3D building models are intu-
itive and also support many applications. Using 3D
building models for fire simulations can give valuable
insight into building usability and safety [8]. Render-
ing on 3D building models makes the building more
realistic. The popularity of navigation through virtual
3D environments is also rapidly growing. However,
creating the 3D model of a set of floor plans man-
ually is nontrivial and requires skill and time [15].
So the conversion of 2D floor plans into 3D models
automatically is of great significance.

A building in real life is usually composed of many
functional spaces, such as rooms, corridors, etc. Func-
tional spaces are separated by walls, and openings
such as doors and windows. Corresponding to the
2D architectural floor plan, functional spaces are pre-
sented by loops which are made up of wall lines and
openings. So, reconstructing a 2D architectural floor
plan to 3D model has three main tasks: 1) recognizing
component symbols such as walls, doors, windows; 2)

loop searching to get space information; 3) extrusion
to get the finally 3D models.

Since vector architectural floor plans from real-
life are in various styles, we assume that a
typical architectural floor plan has the following
characteristics:

• There are only lines, arcs and text existing in
the drawing. Other types of graphic items, such
as POLYLINEs, are converted into lines and arcs
first in our preprocessing automatically.

• Structural Components like walls and openings
like doors can-not be isolated. They must be
connecting to or near to other openings or
Structural Components.

The rest of this paper is organized as follows. Related
work is summarized in Section 2. Section 3 presents
the Shape-opening graph (SOG) to detect walls and
create wall equivalent lines for openings. In Section 4,
we describe loop searching method to get space infor-
mation and build the topological tree. Experimental
results are shown in Section 5. Finally, we conclude
the paper in Section 6.

Computer-Aided Design & Applications, 11(6), 2014, 704–714, http://dx.doi.org/10.1080/16864360.2014.914388
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

mailto:junfang.zhu@gmail.com
mailto:huizhang@tsinghua.edu.cn
mailto:yamei.wen@gmail.com

705

Fig. 1: An example of an architectural floor plan.

2. RELATED WORK

There are two main formats for the existing archi-
tectural floor plans: digitally scanned format and
vector format. Some early architectural drawings are
drawn on papers. These drawings have been kept and
handed down in the format of raster image. As far
as we know, almost all the existing methods convert
the raster image into vector format first, except [1]
which processed directly on the raster images to ana-
lyze drawing and recognize symbols. Ah-Soon [2,3]
proposed a network-based method to recognize archi-
tectural symbols. Dosch [5,6] presented a system for
the analysis of architectural drawings. They designed
a method for dividing large image into tiles, each of
them being processed and analyzed independently.
Or [12] proposed a highly automated approach to gen-
erate 3D model from a 2D floor plan. It assumed that
two polylines with opposite propagating directions
and in a certain distance should correspond to a wall.
Kishen [11] devised a 3-Phase recognition approach
to generate 3D building from 2D floor plan. They
used clustering technique to group lines into bound-
ing boxes, each representing a potential wall. Park [13]
suggested a method for recognizing main walls based
on extension lines, assuming that a main wall con-
tains an auxiliary dimension line inside it. This kind of
methods rely heavily on the robustness of the vector-
ization algorithm and focus on low-level process, i.e.,
segmentation, detection of arc from scanned draw-
ings. Because all the exiting vectorization methods
are not good enough, these methods usually involves
human interactions.

Since 1990s, architectural drawings produced by
CAD software (e.g. AutoCAD) have become popular,

making the storage, editing and processing of data
much easier than before. Therefore, in this paper we
only focus on the reconstruction of vector architec-
tural floor plans.

So [14] first incorporated automated approaches
to the three streams to accomplish the reconstruc-
tion goal: wall extrusion, object mapping, and ceiling
and floor reconstruction. The processing time has
been shrunk approximately 10% to 15% of the overall
manual tasks, but it still needs a lot of manual work.

Lewis [8] developed a semi-automatic system to
create 3D polyhedral building models from AutoCAD
DXF geometry description format. The system has
utilised room label as seed point to find interior space
contours and replaced each door symbol with two
separate edges. Because of extruding each edge sepa-
rately, the system still needs a few days to accomplish
a building under some sort of human intervention.

Zhi [16] presented an automatic approach to trans-
fer computer-drawn architectural plans into a build-
ing fire evacuation simulator model. The system
assumed that the drawing is a combination of units
and a unit is a combination of loops. They searched
loops using a graph directly in the drawing under suit-
able layers. The limitation is that this system can’t
handle drawings composed of complicated graphical
primitives.

Domínguez [4] presented a method for detecting
the topology of building floors semi-automatically.
The method involves the detection of walls and joint
points amid walls and openings, and the search of
intersection points amid walls. For the representation
of opening with wall segments, it must involve user
interaction and they assumed that doors and windows
are represented by blocks.

Lu developed systems to construct models from
computer-drawn construction structural drawings [9]
and architectural working drawings [10] which have
no labels to indicate component types. Based on the
three types of the most frequently occurring shapes
T, X, L, it detects parallel line-segment pairs as walls
and removes them from the drawing. The remaining
architectural symbols are detected by finding features
that match with predefined patterns.

In this paper, we focus on getting the topological
and semantic information of spaces as well as gen-
erating 3D models after analyzing 2D architectural
floor plans. The hierarchy tree which presents the
relationships among space and architectural compo-
nents is also created for some applications and being
output to other software. We can also construct multi-
floor 3D models after analyzing the 2D architectural
drawing of its floors by matching their axes in the
drawing.

3. COMPONENT SYMBOL RECOGNITION

2D architectural floor plans contain inner spaces such
as rooms and corridors, and the outer contour of

Computer-Aided Design & Applications, 11(6), 2014, 704–714, http://dx.doi.org/10.1080/16864360.2014.914388
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

706

building. Different spaces are separated by walls and
openings. Therefore, after all basic geometric ele-
ments are obtained from vector architectural floor
plans, we first recognize openings such as doors, win-
dows, decorative components such as furniture, and
structural components such as walls before recon-
struction.

3.1. Decorative Symbol Recognition

Definition 1 (Wall Side): The direction of a wall is from
the lower left points to the upper right points of its
wall lines. The left or right side of the wall direction
is called the Wall side.

After openings and decorative components were
recognized by the symbol recognition algorithm
based on key features proposed by Guo [7], more
semantic information of some key symbols, such as
doors, slide doors, windows and bay windows, is ana-
lyzed in order to provide basis for more realistic 3D
models.

The semantic information of door is facing direc-
tion and door-axis. The facing direction can be
obtained from determining its Wall Side while door-
axis can be determined according to the position of
the arc and wall lines beside the door. Fig. 2(a) is a
door symbol. It faces upside and its door-axis is on
the left as Fig. 2(e) shows. Based on the position of
the wall next to the door-axis, a rectangle (red lines
in Fig. 2(e)) to represent the 2D model of the door is
created. The length of the rectangle is the radius of
the arc and the width is a default value.

Fig. 2(b) is a slide door symbol. The 2D model of
slide door is two adjoining rectangles which share a
vertex and have two edges on the same line as Fig. 2(f)
shows. The length of each rectangle is half length of
the slide door and the width is half the thickness of
the wall.

Fig. 2(c) is a window symbol. The orientation is
the semantic information of window. We just use two
rectangles to represent window sashes as shown in
Fig. 2(g). The window sashes must be facing the out-
side of the room it’s in. The length of each rectangle

is half length of the window and the width is a default
value.

Fig. 2(d) is a bay window and its 2D model is two
rectangles as Fig. 2(h) shows. The two rectangles are
overlapping with the lines of bay window.

All these semantic rectangles will not be used for
recognizing walls in Section 3 and searching loops
of spaces in Section 4. They are for constructing 3D
models for openings in Section 5.

3.2. Wall Element Identification

After recognizing openings and decorative symbols,
Structural Components are then detected in the
remaining basic geometric elements. In vector floor
plans, Structural Components, such as walls and
beams, are usually presented by two parallel lines
(PP). Because a large number of other parallel lines
such as dimensions exist, detecting two parallel
lines within a certain distance directly in the drawing
cannot be used to identify walls.

Through analysis of PPs, Lu [5] proposed a method
to detect walls by recognizing the three types L, T ,
X at the intersection of walls. Besides these three
types, we find another shape I which is actually a wall
not intersecting with other walls, which means it has
openings on its both sides. The I shape is represented
as a rectangle which is made up of two pairs of PPs
intersecting at the endpoints of each PP line in 2D
floor plans.

Definition 2 (Basic Structural Element): The four
types of wall shapes and openings are defined as Basic
Structural Elements.

In this paper, Between the Basic Structural Ele-
ments there are three relationships:

• Shape and Shape Intersecting (SSI). For shapes
S1 and S2, if there exists a PP which is belong to
both S1 and S2, then S1 and S2 are SSI.

• Shape and Opening Adjacent (SOA). The shape
S and opening O are adjacent if and only
if their distance Dis(S, O) ≤ Ldiagonal. Ldiagonal
is the diagonal length of the bounding box

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Semantic information of key symbols.

Computer-Aided Design & Applications, 11(6), 2014, 704–714, http://dx.doi.org/10.1080/16864360.2014.914388
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

707

of O. Dis(S, O) is defined as: Dis(S, O) =
min{Dis(Li, PCenter)}, Li is the PP line of S, i ranges
from 1 to the number of lines in S, Pcenter is the
center point of the bounding box of O.

• Opening and Opening Adjacent (OOA). Two
openings O1 and O2 are adjacent if and only if
their distance Dis(PCenter1, PCenter2) ≤ Ldiagonal2.
PCenter1 and PCenter2 are the center point of
the bounding box of O1 and O2 respectively,
Ldiagonal2 is the sum of the diagonal length of
the two bounding boxes.

After analyzing a large number of drawings, we
find that each Basic Structural Element must have
one or more neighboring Basic Structural Elements.
That means X, L, T shapes either intersect with other
shapes or be adjacent to openings, and I shape has
openings at its both sides. An opening is adjacent to
shapes or other openings. Based on such basis, open-
ings that have already been recognized can be used to
identify walls.

We introduce the Shape-Opening Graph SOG = (N,
E), where N is a node set and E is an edge set. Nodes in
the graph are one-to-one corresponding to the Basic
Structural Elements and edges present the relation-
ships between Basic Structural Elements. The graph
generation process is the process of identifying PPs as
well as building the topological relationships between
PPs and openings. The outline of the algorithm is:
First, select any of the recognized openings as the
initial node of SOG. Then add nodes that have rela-
tionships with nodes in SOG and create edges between
them. Recursive these two processes until all the
openings are added to SOG.

The shapes in SOG are obtained in the following
method: The three shapes T, L and X can be recog-
nized using the algorithm of Lu [14] and the I shape
can be got from the intersecting PPs as follows: If
there are two PPs, P1 and P2, and the endpoints of
the two lines in P1 are the endpoints of the two lines
in P2, then P1 and P2 form an I shape.

After the SOG is established, each PP in SOG makes
up a wall and the lines of a PP are called wall lines.

Fig. 4(a) is the original architectural floor plan.
Fig. 4(b) shows the recognized shapes and wall lines.
In Fig. 4(b), there are several shapes not intersecting
with others, as the blue shapes shown in Fig. 4(b), our
method can identify them correctly, while they cannot
be handled by the algorithm proposed by Lu [14].

3.3. Wall Equivalent Lines

Because walls are cut off by openings, several recog-
nized PPs may represent the different parts of the
same wall. In order to restore the integrity of the
wall, we introduce the Wall Equivalent Lines (WELs)
to replace openings. A WEL is represented by two par-
allel lines in the position of the opening to connect its
adjoining wall PPs.

Besides an opening has walls at its both sides,
there also exist two or more openings adjoining side
by side in real architectural floor plans, which means,
opening A adjoins opening B, or even B adjoins
another opening C. If there are more than one opening
adjoining, we need to merge them first to take them
as a whole for follow-up processing.

Creating wall equivalent lines for an opening can
be achieved by calculating its nearest PPs. Every open-
ing keeps its nearest PPs in a set NP. If the number of
PPs in the NP set of the opening is greater than 2, extra
operation needs to be carried out by our following
priority-based principles.

1). If the opening is between two parallel PPs
which are in the same line (Fig. 3(a)), create the
wall equivalent lines by extending the two lines
of one PP to the other as shown in Fig. 3(f).

2). If the opening is between two parallel PPs
which are not in the same line (Fig. 3(b)),
the center point of the bounding box of the
opening is first calculated, followed by cre-
ating two parallel edges which are half of

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

P2

P1

Fig. 3: Examples of openings and their surrounding PPs, and the corresponding wall equivalent lines.

Computer-Aided Design & Applications, 11(6), 2014, 704–714, http://dx.doi.org/10.1080/16864360.2014.914388
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

708

(a) (b)

(c)

Fig. 4: Examples of recognized walls and wall equivalent lines.

wall’s thickness away from the center point
and perpendicular to the parallel PPs (Fig. 3(g)).

3). If the opening is between two perpendicular
PPs and the projection of P1 to P2 is in P2
(Fig. 3(c)), extend P1 until it meets P2 (Fig. 3(h)).

4). If the opening is between two perpendicular
PPs whose intersection is in their extended
lines (Fig. 3(d)), extend both of the PPs until
they intersect (Fig. 3(i)).

The wall equivalent lines added are shown in red
in Fig. 3(f)-Fig. 3(j). The priorities of the above sit-
uations are decreasing by the narrating order, that
is, only if there are no PPs satisfying the first type,
the second type could be considered. For example,

Fig. 3(e) satisfies both type 1) and 3), but we handle
it as type 1) just because its priority is higher.

The algorithm of recognizing walls and creating
wall equivalent lines can be described as follows.

The time complexity of recognizing the types
between PPs is O(N2), where N is the number of lines
in the drawing. The time complexity of creating SOG
graph is O(T2), where T is the total number of the wall
shapes and openings in the drawing. The time com-
plexity of creating Wall Equivalent Lines is O(D*W2).
D is the number of openings and W is the number
of wall PPs in the drawing. So the time complexity of
Algorithm 1 is O(N2)+O(T2)+O(D∗W2).

The red lines in Fig. 4(c) are wall equivalent lines
of openings.

Computer-Aided Design & Applications, 11(6), 2014, 704–714, http://dx.doi.org/10.1080/16864360.2014.914388
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

709

Algorithm1: WallRecoAndWallEquivalentLines
Input: recognized opening set OS and shape set SS in the drawing.
Output: all the wall lines.
1: Set every opening in set OS and every shape in set SS unmarked;
2: Select an opening from OS to be the first node of graph SOG;
3: for each unmarked Si in SOG do
4: Find its adjacent openings and adjoining shapes;
5: Create nodes for the found openings and shapes;
6: Create edges between the nodes just created and Si;
7: if Si is an opening and it has shapes adjoining then
8: Add the nearest PPs of its adjacent shapes into the NP of Si;
9: end if
10: while there are openings adjoins
11: if S is an opening and it has another opening O adjacent then
12: Create a new opening node N as the merging result of S and O;
13: Create edges between node N and nodes that S or O connects;
14: Add the NP that S and O own to N ;
15: Delete S and O from SOG;
16: end if
17: Set Si marked;
18: end for
19: for each opening Si in SOG do
20: if Exit two PPs in NP of Si satisfying one of four types between openings and PPs
21: according to the priority then
22: Create wall equivalent lines according to the type;
23: end if
24: end for

4. LOOP SEARCH TO GET SPACE INFORMATION

4.1. Preprocessing for Loop Searching

Definition 3 (InnerPoint): If a wall line meets another
one at a non-endpoint, this intersecting vertex is
called InnerPoint.

If searching loops directly among the wall lines
and WELs, different types of loops may be detected:
loops of functional spaces (rooms, corridors, outer
contour), wall contour (redundant loops) and loops
with no semantic information (error loops). But some
loops, which should be searched, couldn’t be found
out. For example, in Fig. 4(c), the left red loop presents
a room. The left green loop is a wall contour which is
redundant. The outer contour of the building couldn’t
be found because of the dangling edge.

In order to ensure that all the searched loops have
semantic meaning, e.g. each loop is a functional space,
we preprocess the wall lines and wall equivalent lines
got in Section 3 if the intersections of them are not

their endpoints (see Fig. 5) or there exists dangling
wall lines which means the degree of one endpoint of
a wall line is 1 as Fig. 6 shows. After the preprocess-
ing, the edges and vertices satisfy the following two
conditions:

• Adjacent edges only intersect at their start or
end points.

• The degree of each vertex is 2, i.e. every vertex
connects two edges.

In order to remove the InnerPoint, we propose an
odd-even-based method to break wall lines. For the
case of odd InterPoint(s), as shown in Fig. 5(a), if wall
line W1 intersects with other wall lines at P1 and
E1, line segment P1E1 should be deleted in order to
eliminate the InnerPoint P1, as Fig. 5(b) shows. If the
number of interPoints in a wall line WL is n and n
is odd, the number of walls crossing WL is (n + 1)/2.
n/2 walls have two InnerPoints in WL and one wall

(a)

One InnerPoint

(b)

Breaking result for (a)

(c)

Two InnerPoints

(d)

Breaking result for (c)

P1
W4E1
W2

W3 W1
W4

W2

W1W3
P2

P1

Fig. 5: Examples of preprocess for loop searching.

Computer-Aided Design & Applications, 11(6), 2014, 704–714, http://dx.doi.org/10.1080/16864360.2014.914388
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

710

(a) (b)

Fig. 6: An example of dangling wall line.

has an InnerPoint wall thickness away from one of the
endpoints.

For the case of even InterPoint(s), as shown in
Fig. 5(c), if wall line W1 intersects with wall line W2
and W4 at the InnerPoints P1 and P2, line segment
P1P2 should be deleted and wall line W1 is separated
into two wall lines, as Fig. 5(d) shows. If the number
of interPoints in a wall line WL is n and n is even, the
number of walls crossing WL can be n/2 or n/2 + 1.
The former one means that all the walls crossing WL
has two interPoints in WL. The latter one means that
besides n/2-1 number of walls having two interPoints
with WL, there are also two walls crossing WL with one
interPoint.

For each wall line, the interPoints array VR is
first calculated. According to the number of VR, we
implement the Algorithm 2.

The time complexity of Algorithm 2 is O(L2), where
L is the number of wall lines in the drawing.

If the degree of one endpoint of a wall line is 1
as Fig. 6(a) shows, we create a wall-thickness edge to
connect the two wall lines, as the green line shown
in Fig. 6(b). Fig. 7(a) is the preprocessing result of
Fig. 4(c).

4.2. Searching Loop

After preprocessing, there are two kinds of loops in
the floor plan: inner loop, which indicates spaces,

typically rooms and corridors, and the outer contour.
Because the degree of each vertex is 2, using any ver-
tex that has not been traversed as the first vertex,
travelling in the counterclockwise direction, all the
loops can be obtained. The loop containing the mini-
mum value of x or y is the outer loop. Fig. 7(b) shows
an example of searched loops. The red loop is the
outer loop and the blue loops are the inner loops. The
time complexity of searching loops is O(L).

4.3. Semantic Analysis of Space

Definition 4 (Adjacent Space): If two spaces have
a common wall and they can be accessed through
a door, they are Adjacent Spaces. For example, in
Fig. 7(b), the Adjacent Spaces of inner space S1 are
S2, S3, S4, S5, S6, S8.

Definition 5 (Space Distance): For two spaces S1
and S2, their Space Distance SD = SD1 + SD2. SD1 is
the distance between the center point of S1 and their
common door. SD2 is the distance between the center
point of S2 and the door. Specially, if a space A has
a door to outside, its distance to outside area is the
distance between the center point of A and the door.

With the text in the drawing, we can get the seman-
tic meaning of each space like parlor, dining room
and bedroom. A hierarchical component tree is estab-
lished to describe the topological relations of the
building and the root is the building itself. The second
layer of the tree is semantic spaces, such as rooms
and corridors, and the outer contour. Each space con-
tains a pointer pointing to its Adjacent Spaces. The
third layer of the tree is walls and openings. Each wall
contains the openings in it.

The hierarchy tree is useful in many applications.
It can be saved and put to other software such as

(a) (b)

Preprocessing result Loop searching result

Fig. 7: The result of preprocessing and loop searching.

Computer-Aided Design & Applications, 11(6), 2014, 704–714, http://dx.doi.org/10.1080/16864360.2014.914388
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

711

Algorithm 2: OddEvenBreakingEdge.
Input: WL: wall lines in floor plan F.
Output: WL: wall lines in floor plan F after processing.
1: for each wli in WL do
2: Compute the interPoints array VR in wli;
3: Compute the wall thickness t of the wall which wli belongs to;
4: if (the number of VR is even) then
5: for each vri in VR do
6: if there exists a vertex vrj t away from vri then
7: Create an edge e from vri to the endpoint near it
8: Create an edge d from vri to the other point;
9: Add e, d into WL;
10: Delete wli from WE;
11: Delete from vri, vrj from VR;
12: OddEvenBreakingEdge();
13: else
14: if distance between vri and one endpoint ep is t then
15: Create an edge e from vri to the other endpoint;
16: Add e into WL;
17: Delete wli from WL;
18: Delete from vri from VR;
19: OddEvenBreakingEdge();
20: else
21: for each vri in VR do
22: if distance between vri and one endpoint ep is t then
23: Create an edge from vri to the other endpoint;
24: Add e into WL;
25: Delete wli from WL;
26: Delete from vri from VR;
27: OddEvenBreakingEdge();

REVIT to construct 3D models. It also can be used
to generate target path for fire evacuation system. To
find the shortest path from an inner space to out-
side, a travel-graph TG = (N, E) is created, where N is
a node set and E is an edge set. Each node presents
an inner space or the outside area. If two spaces are
Adjacent Spaces, an edge is created between the two
corresponding nodes. The weight of each edge is the
Space Distance of the two spaces. The nearest path
from an inner space to the outer area can be obtained
using the Dijkstra algorithm.

5. 3D EXTRUSION AND EXPERIMENTAL RESULTS

5.1. Single Floor Extrusion

The final 3D model can be obtained by the following
steps:

(1) Extruding the outer loop to the wall height to
form the original 3D model.

(2) Cutting the inner loops from above 3D model.
(3) Building the floor according to the inner loops.
(3) Cutting openings from the model.
(4) Building the 3D models of doors, slide doors,

windows, bay windows as follows:

• The 3D model of door is created by extrud-
ing its 2D rectangle loop model from the
bottom of the space to the default height of
door.

• The 3D model of slide door is created by
extruding its 2D rectangle loop model from
the bottom of the space to the default height
of slide door.

• The 3D model of window is created by
extruding its two 2D rectangle loops from
the window base to the window ceil.

• The 3D model of bay window is created by
extruding its outer loop and minus the inner
loop.

Fig. 8(a) is the wall extrusion result. Fig. 8(b) is the
3D model after cutting openings. Fig. 8(c) is the final
model of the Fig. 4(a). Fig. 9(a) is a bigger floor plan
and Fig. 9(b) is its corresponding 3D model.

5.2. Multi-Floor Model Reconstruction

The 3D structure of a building can be obtained by
analyzing the 2D architectural drawings of its floors.
Every floor is aligned to the first floor by matching
their axes in the drawing. An axis has one axis line

Computer-Aided Design & Applications, 11(6), 2014, 704–714, http://dx.doi.org/10.1080/16864360.2014.914388
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

712

(a) (b)

(c) (d)

-

Fig. 8: Example of the final 3D model.

(b)(a)

Fig. 9: A bigger example.

Computer-Aided Design & Applications, 11(6), 2014, 704–714, http://dx.doi.org/10.1080/16864360.2014.914388
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

713

Fig. 10: A drawing with several floor plans.

connected to a circle with text, e.g. Axis (line, circle,
text).

There are four types of axes:

• Horizontal-left: The line of the axis is horizon-
tal and the text of the axis is on the left of the
drawing.

• Horizontal-right: The line of the axis is horizon-
tal and the text of the axis is on the right of the
drawing.

• Vertical-up: The line of the axis is vertical and
the text of the axis is on the upside of the
drawing.

• Vertical-down: The line of the axis is vertical and
the text of the axis is under the drawing.

Definition 6 (Equal Axes): Two axes in different floor
plans are equal axes if and only if they are of the same
type and their texts are the same.

To align more than one floor plan is to match the
Equal Axes in these floor plans. Take two floors as
the example, the steps of aligning floor F2 to F1 is as
follows:

(1) Find all the axes of each floor plan.
(2) Determine the type of each axis.
(3) Select a horizontal axis h1 in F1, find its equal

axis h2 in F2.
(4) Select a vertical axis v1 in F1, find its equal axis

v2 in F2.
(5) Move (x2-x1, y2-y1) for F2 to F1, where y1 and

y2 are the y coordinate values of h1 and h2, x1
and x2 are the x coordinate values of v1 and v2.

The time complexity of matching different floors
is O(N2). Fig. 10 is a 2D drawing with four floor plans.
Fig. 8(d) is the corresponding 3D model.

6. CONCLUSION

In this paper, we present a method to analyze 2D
architectural floor plans, get the topological and
semantic information of spaces and reconstruct the
corresponding 3D models.

The reconstruction process is very fast and it can
reconstruct a floor plan containing thousands of geo-
metric primitives in several minutes because of using

the loop extruding method rather than extruding each
wall separately. Second, the 3D reconstructed model
contains not only geological but also semantic infor-
mation, the comprehensive structure information of
buildings can help the research of other related work.
Moreover, the topological information of the whole
building are generated using a tree. The topologi-
cal tree can be put to other architectural software
such as REVIT to generate 3D models. Finally, multi-
storey building can make the overall structure of the
building more clearly unfolded.

As we analyzed in the earlier section, the
time complexity of reconstructing a floor plan is
O(N2)+O(T2)+O(D*W2)+O(L2)+O(N2) <O(N2)+O(N2)
+D*O(N2)+O(N2)+O(N2) = (D + 4)* O(N2). Because D
is usually a much smaller number than N (usually
100*D <N), so the time complexity of reconstructing
a floor plan is O(N2). The working space needed for
the reconstruction is O(N2).

Many existing methods need semantic informa-
tion in the drawing when recognizing architectural
components such as walls [8], in [4] the openings
should be in blocks. Instead, our method can handle
drawings without any additional information when
recognizing walls in Section 3.2. After recognition of
components, the 3D extrusion using loop extrusion
method is faster than many of the existing algorithm,
such as [8] who extruded each wall respectively. The
time complexity of extra loop searching step is O(W),
which is much smaller than extrusion and bollean
operation.

Further research includes recognizing isolated
walls not adjacent with any components, handling
drawings with columns and beams, improving the effi-
ciency of the algorithm and matching different floors
with no axes.

ACKNOWLEDGEMENTS

This work was supported by the 973 Program of China
(2010CB328001), the National Nature Science Founda-
tion of China (61373070, 61035002), the 863 Program
of China (2012AA040902) and Tsinghua University
Initiative Scientific Research Program (2012Z02170).

REFERENCES

[1] Ahmed, S.; Liwicki, M.; Weber, M.; Dengel, A.:
Improved Automatic Analysis of Architectural

Computer-Aided Design & Applications, 11(6), 2014, 704–714, http://dx.doi.org/10.1080/16864360.2014.914388
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

714

Floor Plans, International Conference on Docu-
ment Analysis and Recognition (ICDAR), 2011,
864–869.

[2] Ah-Soon, C.; Tombre, K: Network-based
recognition of architectural symbols, Advances
in Pattern Recognition, 1451, 1998, 252–
261.

[3] Ah-Soon, C.; Tombre, K.; Razdan, A.: Varia-
tions on the analysis of architectural drawings,
Proceedings of 4th International Conference
Document Analysis Recognition, 29(1), 1997,
20–30.

[4] Domınguez B.; Garcıa, A.L.; Feito, F.R.: Semi-
automatic detection of floor topology from
CAD architectural drawings, Computer-Aided
Design, 44(5), 2012, 367–378.

[5] Dosch, P.; Masini, G: Reconstruction of the 3D
Structure of a Building from the 2D Drawings
of its Floors, Proceedings of the Fifth Interna-
tional Conference on Document Analysis and
Recognition, 2005, 487–490.

[6] Dosch, P.; Tombre, K; Ah-Soon, C., Masini, G: A
complete system for the analysis of architec-
tural drawings, International Journal on Doc-
ument Analysis and Recognition, 3(2), 2000,
102–116.

[7] Guo, T.; Zhang, H.; Wen, Y: An Improved
Example-Driven Symbol Recognition Approach
in Engineering Drawings., Computers & Graph-
ics, 36(7), 2012, 835–845.

[8] Lewis, R.; Sequin, C: Generation of 3D build-
ing models from 2D architectural plans,
Computer-Aided Design, 30(10), 1998, 765–
779.

[9] Lu, T.; Tai, C.L.: Su, F.; Cai, S: A new recognition
model for electronic architectural drawings,

Computer-Aided Design, 37(10), 2005, 1053–
1069.

[10] Lu, T.; Yang, H.; Yang, R.; Cai, S.: Automatic
Analysis and Integration of Architectural Draw-
ings, Document Analysis and Recognition, 9(1),
2007, 31–47.

[11] Kishen Moloo, R.; jmal Sheik Dawood, M.;
Salmaan Auleear, A.: 3-Phase Recognition
Approach to Pseudo 3D Building Generation
from 2D Floor Plan, International Journal of
Computer Graphics & Animation, 1(2), 2011,
13–27.

[12] Or, S.; Wong, K.H.; Yu, Y.; Chang, M.M.; Kong,
H.: Highly automatic approach to architectural
floor plan image understanding and model gen-
eration, Proc. Vision, Modeling, and Visualiza-
tion, IOS Press, 2005, 723–734.

[13] Park, J.; Kwon, Y.B.: Main wall recognition
of architectural drawings using dimension
extension line, Graphics Recognition, Recent
Advances and Perspectives, LNCS 3088, 2004,
116–127.

[14] So, C.; Baciu, G.; Sun, H.: Reconstruction of 3D
virtual buildings from 2D architectural floor
plans, Proceedings of the ACM symposium
on Virtual reality software and technology,
6754(2), 1998, 17–23.

[15] Yin, X.; Wonka, P.; Razdan, A.: Generating 3d
building models from architectural drawings: A
survey, Computer Graphics and Applications,
29(1), 2009, 20–30.

[16] Zhi, G.S.; Lo, S.M.; Fang, Z.: A graph-based
algorithm for extracting units and loops from
architectural floor plans for a building evac-
uation model, Computer-Aided Design, 35(1),
2003, 1–14.

Computer-Aided Design & Applications, 11(6), 2014, 704–714, http://dx.doi.org/10.1080/16864360.2014.914388
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

	INTRODUCTION
	RELATED WORK
	COMPONENT SYMBOL RECOGNITION
	Decorative Symbol Recognition
	Wall Element Identification
	Wall Equivalent Lines

	LOOP SEARCH TO GET SPACE INFORMATION
	Preprocessing for Loop Searching
	Searching Loop
	Semantic Analysis of Space

	3D EXTRUSION AND EXPERIMENTAL RESULTS
	Single Floor Extrusion
	Multi-Floor Model Reconstruction

	CONCLUSION
	Acknowledgements
	References

