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ABSTRACT

In this paper, a rendering method of the laser scanned point clouds of large scale environments is
proposed for supporting an easy and intuitive understanding of the scanned environments. In this
method, an adaptive primitives selection model and hierarchical point representation are used in
the rendering of the scanned environment. Local geometry of the objects are estimated by principal
component analysis, and the graphic primitives for points are adaptively created for effective ren-
dering. View-dependent LOD using point hierarchy and an adaptive primitives selection model are
also achieved for efficient rendering. Some rendering results for point clouds acquired from different
scanning systems are shown and compared with other methods.

Keywords: laser scanning, point clouds, rendering, graphic primitives, LOD.

1. INTRODUCTION

Several types of long-range laser scanners allow us to
easily acquire the point clouds of several large scale
environments such as manufacturing plants, roads,
buildings, bridges, urban areas and cities. Currently,
terrestrial laser scanning (TLS), mobile laser scan-
ning (MLS) and airborne laser scanning system (ALS)
are often used in several fields, and scanned point
clouds are used in wide applications such as measure-
ment, mapping, modeling, forensic investigation, and
several simulations.

Rendering the scanned point clouds is one of
the basic operations in most applications. Rendering
results of the point clouds provide much information
of the scanned environment to the users. However,
as shown in Fig. 1, it is often difficult to understand
the scanned environments or objects by seeing the
point rendering results caused by the gaps between
the points. Splatting [9,10],[12] and surface gener-
ation techniques [1,2] can be used for improving
the quality of rendering results of the point clouds
data. However, they do not work well for the point
clouds of large scale environments, because the point
clouds have extremely non-uniform point densities,
non-uniform spatial distributions, and they represent
various kinds of objects with different scales and
shape complexities.
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In this paper, a rendering method of the laser
scanned point clouds of large scale environments is
proposed for supporting an easy and intuitive under-
standing of the scanned environments. The input of
this method is the point clouds with colors, that
is, each point has RGB values. The method is based
on the adaptive selection of the graphic primitives,
octree-based hierarchical points representation, and
view-dependent LOD for realizing effective and effi-
cient rendering of the laser scanned point clouds.

A basic idea of our method for effective render-
ing is to selectively use graphic primitives suitable for
the object shape. For example, power lines should be
rendered by lines, facades of buildings and road sur-
faces should be represented by planar primitives, and
complicated volumetric objects such as trees should
be rendered by polygons or meshes. In our method,
principal component analysis (PCA) is used to esti-
mate the local shape of point clouds, and points are
classified into three types. According to the classi-
fication results, graphic primitives for rendering are
adaptively generated.

Another basic idea of our method is to per-
form LOD rendering using several types of graphic
primitives for efficient and effective rendering. Effi-
cient rendering is important because the laser
scanned data often includes millions to billions of
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Fig. 1: Point clouds acquired by laser scanning of large scale environments: (a) Point clouds of urban
environments from MMS, and (b) Point clouds of a construction site from TLS.

points. View-dependent LOD is often used in graphic
applications [5,6] for efficient rendering of the com-
plex scenes. In the rendering results based on view-
dependent LOD, points, line segments, quadrilateral
splats, and triangles appear simultaneously.

2. RELATED WORKS

Triangular meshes are often generated from scanned
point clouds, and they are used in the rendering of
scanned data. There are many methods on mesh sur-
face reconstruction from point clouds [1,2]. Using
existing methods, mesh generation may succeed for
uniform and high density point clouds. However, the
challenges for robust generation of correct surfaces
still remain. Especially, it is difficult to generate cor-
rect surfaces from the point clouds of large scale
environments, that have extremely non-uniform point
density and include objects with different classes of
shapes. Fig. 2(a) is an example of mesh generation
from the point clouds of large scale environments.
The mesh is created by free software (Mesh LAB [7]).
In the result, incorrect surfaces between power lines
appear. In our method, the local geometry of the
objects points are estimated from the points, and
meshes are generated only for complex volumetric
objects such as trees. For linear and planar objects,
line segments and plane splats are used for their
representation.

Point-based rendering is useful to render the
objects based on points [9,10],[12]. In the method,
graphic primitives are defined at each point individ-
ually and used in rendering. For example, splatting
defines finite disks or ellipses in object space and

renders them in image-space by projecting them onto
a screen. Some filters such as EWA (Elliptical Weighted
Average) are used for blending, which provide natural
rendering results without aliasing. Gap (hole)-free ren-
dering is also achieved by controlling the parameters
of the splats. However, there is a limit for represent-
ing several types of geometries using similar splats.
Moreover, most techniques require normal at each
point, but correct normal estimation from the point
clouds of large scale environments is difficult. Fig. 2(b)
is an example of splatting using ellipsoids. Many
undesired splats can be seen on the wired objects and
the portion where correct normal estimation is diffi-
cult. In our method, quadrilateral splats are used for
representing planar objects, on which the normals are
stably estimated. Nakagawa [8] developed an excel-
lent point-based rendering method for LiDAR point
cloud data. In the method, points are first projected
onto the panorama space, such as spheres, taking
into account the occlusions from the viewpoints, and
the rendering images are created by interpolating the
gaps between the points. The method is useful for get-
ting rendering results of point clouds without gaps,
but incorrect interpolation sometimes occurs after
the large translations of the viewpoint. In our method,
the pre-defined rendering model in the object space
is used, therefore the quality of the results does not
depend on the viewpoints.

LOD techniques have been used in several appli-
cations, not only rendering, but also CAD/CAM/CAE
and graphic applications [4-6],[10,11]. They achieve
efficient applications of the geometric models by
appropriately reducing the number of elements of
the models. Wand et al. [11] proposed a method
for efficient rendering and editing of massive point

Fig. 2: Mesh generation and splatting for the point clouds of urban areas: (a) Point clouds and meshes, and

(b) Point clouds and splats.
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clouds using octree. Realtime editing for billions of
points are realized. Our LOD method is based on
Wand’s methods, and the adaptive primitive selection
model and its LOD are integrated into the octree-
based LOD.

3. POINT CLOUD RENDERING USING ADAPTIVE
PRIMITIVE SELECTION MODEL AND LOD

3.1. Overview of Our Method

Fig. 3 shows the overview of our method. In our
method, two models are generated for rendering; An
adaptive primitive selection model is used for render-
ing closer views, and a point hierarchy model is used
in rendering distant views.

The adaptive primitive selection (APS) model is
used for realizing effective rendering of the point
clouds of the laser-scanned environments. The model
is created by point classification, segmentation and
adaptive graphic primitives creation (Fig. 3(a), Al,
A2). The model consists of three types of prim-
itives: straight line segments, quadrilateral splats,
and triangular meshes. The line segments are used
for representing thin linear objects such as power
lines. Planar surfaces such as roads and walls of
buildings are represented by the quadrilateral splats.
Other complex volumetric objects such as trees and
cars are represented by the triangular meshes. By

(a)

Classified Points
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using adaptively selected graphic primitives, the gaps
between the points are filled in the object space,
and the objects are appropriately represented in the
rendering results.

Efficient rendering is also realized using LOD tech-
niques. In our rendering, original or down sampled
points are used in distant views of the scanned envi-
ronments. Therefore, the point hierarchy is created by
using the octree and random point sampling (Fig. 3(a),
A3). For the LOD in the close views, simplified ver-
sions of the APS model are also created (Fig. 3(a), A2).
In the rendering phase, view-dependent LOD, accord-
ing to the distance from the viewpoint, is performed
using an octree associated with point hierarchy and
APS models (Fig. 3, A4). As shown in Fig. 3(b), down
sampled points, original points, simplified APS mod-
els and original APS models are switched in the
rendering phase according to the distance from the
viewpoints.

3.2. Adaptive Primitives Selection Model Creation

3.2.1. Point classification and segmentation using
PCA and region growing

For selecting graphic primitives suitable for object

shape at each point, the local shape (point dis-

tributions) of point clouds are first recognized by

principal component analysis (PCA). In this process,
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Fig. 3: The proposed rendering method of point clouds data of large scale environments.
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Fig. 4: Point classification: (a) Results of PCA, and (b) Results of region growing after PCA.
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Fig. 5: Rendering primitive generation for 1DD and 2DD points: (a) Line segments for 1DD points, and

(b) Quadrilateral splat for 2DD points.

variance-covariance matrix for neighbor points of
each point i is created, and eigen analysis is then per-
formed. As a result, three eigen values A!, 15,20 >
AL >2%) and corresponding eigen vectors el,el,el,
are obtained. Because the magnitude of each eigen
value is related to the variances of neighbor points
of the point i along the corresponding eigen vector,
if the distribution of the neighbor points of point
i is liner (1D), )Li becomes larger than the others
(> 2L ~al). If the distribution is planar (2D), A}
and A} become larger than the other (Al ~ 1} > 1)
Therefore, the dimension of local point distribution
can be evaluated using the dimensionality feature
d; = argde{lyz,g}max(s[’;) [3], where st =2l —)L, sl =
AL =2k, sl = aal, o is a coefficient to recognize 3D dis-
tributions exaggeratingly, and « = 10 was set experi-
mentally. According to the d;, each point i is classified
into either 1DD (1 dimension distribution) point (d; =
1), 2DD point (d; = 2), and 3DD point (d; = 3). For each
2DD point, e} is stored as normal n; of point i.

Fig. 4(a) shows a result of the point classification of
the MLS point cloud. Most of the points are classified
correctly, but misclassification can be seen near the
boundary of the objects as indicated by yellow arrows
in Fig. 4(a). Scan lines clearly appear around regions
far from the scanner, and in such regions, points on
a plane are classified as 1DD points as indicated by a
red arrow in Fig. 4(a). To modify these misclassifica-
tions, reclassification by region growing is performed
in our method. In this process, a point i which has a
maximum s, is selected as a seed of a region. Then,
a plane is defined by the position p; and normal n;
of the seed point i. The region grows from the seed
by adding neighbor points into the region, which are
lying on the plane. The points in the resulting regions

are reclassified as 2DD points. Fig. 4(b) is the result of
the reclassification of points using region growing. It
can see that the points are classified more accurately.

After the point classification, segments are cre-
ated. For 2DD points, points in the same region
after region growing construct a segment. For 1DD
and 3DD points, points with the same classifica-
tion results are gathered by Euclidean distance-based
clustering, and segments, each of which consist of
the points with the same classification results, are
created.

3.2.2. Primitives generation

For segments of 1DD points, sequences of the straight
line segments are generated as the graphic primi-
tives. As shown in Fig. 5(a), the sequences are created
by connecting two neighboring points along the e}
obtained by the PCA. Triangular meshes are generated
for segments of 3DD points. In our implementation,
a ball pivoting algorithm [2] is used. A quadrilat-
eral splat is created for each 2DD point so that it
fills the gap between the neighbor points. For defin-
ing corner points of the splat, four neighbor points
on a tangent plane are first found by searching for
the closest points along el and e}. Then, as shown
in Fig. 5(b), normalized difference vectors between
neighbor points scaled by the distance between the
point i and neighbor points are calculated and used
for defining corner points of the splat.

3.2.3. LOD model generation

For LOD rendering, a simplified model consisting
of smaller numbers of primitives is created. The
sequence of line segments for 1DD points are
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Fig. 6: LOD generation for quadrilateral splats.

simplified by merging two neighboring points. The
triangular mesh for 3DD points is simplified by a tra-
ditional mesh simplification algorithm. In our imple-
mentation, vertex clustering [6] based on quadric
error metric [4] is used.

A hierarchical clustering-like approach is used
for simplifying a set of quadrilateral splats for 2DD
points. As shown in Fig. 6(a), the 2DD points on
a plane are first projected onto the plane. Then, a
quadtree is created on the plane and the points are
partitioned. Finally, coarse splats are created from
leaf cells in the tree.

A coarse splat in a cell is created following proce-
dure: points in the cell are first clustered if the point
density in the cell is larger than a threshold r; and
differences between the maximum and minimum RGB
values of the points in the cell are smaller than a
threshold z.. For clustered points, four corner points
of the coarse splat are obtained as arg; min(u; + vj),
arg; min(u; — vy, arg; max(u; + v;), arg; max(u; — vj),
where u; and v; are the coordinates of the points of
splats on a 2D plane, as shown in Fig. 6(b). Thus,
the coarse splat is included in the convex hull of the
clustered points. Finally, splats which the new coarse
splat includes completely are removed. By iterating
this process from leaf to root of the quadtree, LOD
representation of splats are obtained.

3.2.4. Adaptive neighbors search radius
determination

In the PCA, region growing, and splat generation, a
neighbor search is required. kd-tree is often used for
an efficient neighbors search and we also use it in our
implementation. However, the numbers of reported
points for a constant search range differ by loca-
tions in the point clouds with extremely non-uniform
point densities. This causes inefficient data process-
ing because the computational time of the search and

the following processing often depends on the num-
ber of reported points. Fig. 7(a) shows a histogram
of the numbers of reported neighbor points from a
constant-range search for the point cloud acquired
by MLS. The histogram shows that the numbers of
reported points using a constant search range quite
differ by location.

To solve this problem, we determine the search
range adaptively by location according to the point
density. First, a uniform grid covering the given point
clouds is created, and the number of points ny in the
cell k is calculated. Then, search radius ry for points
in the cell k to obtain the N points is determined by
Eq. (3.1),

e — #\/nﬂk’ (# nﬂk < Vmax> 3.1)
Ve = Fmax (ﬁ nﬂk > Vmax)

where, [ is the side length of the cell, rmax upper limit
of search radius. Eq. (1) is derived from an assumption
that the local point distribution is nearly planar and
uniform in the cell.

ry becomes quite large for some cells which
include few points only near its boundary. To solve
this problem, shifted uniform grid is created, and
another r; is calculated using the new cell. At each
point, smaller r, is used for the neighbor search.
Fig. 7(b) shows a histogram of reported neighbor
points using adaptive search range ry.

3.3. Point Hierarchy Generation

For the distant view of the scanned environments,
a hierarchy of the point clouds is created by adap-
tive space subdivision using the octree and down
sampling in each octree cell similar to the method
described in [11]. The cell of the root node is an axis-
aligned bounding cube of the given point clouds. The
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Fig. 7: Histograms of the numbers of searched neighbor points: (a) Fixed search radius (0.5 m), and (b) Adaptive

search radius (The number of target points is 50).

cell is uniformly subdivided and sub cells of the child
nodes are created. In each cell, down sampled points
are stored. The uniform grid is generated in the cell,
and a down sampled point is randomly selected from
the points in each cell of the grid. The subdivision
and down sampled points creation are repeated until
the number of points in the cell becomes less than a
certain number.

3.4. View Dependent LOD

Using the octree, view-dependent LOD is performed.
To switch the LOD of adaptive primitives selection
(APS) models using the octree, each segment in the
APS model is associated with the cells which include
the points of the segment.

When the viewpoint is far from the scene, down
sampled points stored in the octree nodes are used
in rendering. To determine the octree nodes for ren-
dering, a depth-first search is done during rendering.
The nodes satisfying the condition s/d. < §; are found
by the search, and down sampled points in the inner
nodes or original points in the leaf nodes are used in
rendering. Where s is the side length of the grid cell
for down sampling, d, is the distance from viewpoint
to barycenter of the points of each octree node ¢, and
81 is a threshold.

As the viewpoint is moved closer and closer to
the point clouds, the d. becomes smaller. If the d.
of leaf node c¢ used in rendering becomes smaller
than a given threshold §,, the segments of the coarse
APS model associated with the node c are rendered

instead of points. Similarly, segments of the original
APS model are rendered for closer nodes. As a result,
original points, down sampled points and the seg-
ments with line segments, splats, and meshes with
different resolutions appear in the resulting rendered
scene simultaneously.

4. RESULTS AND EVALUATIONS

Our method was applied to some point clouds
acquired by different scanning systems. Information
of point clouds, the numbers of graphic primitives
used in adaptive primitives selection models, and
computation times are summarized in Tab. 1. The
method was implemented on a PC with Intel Core i7
2.93GHz, 8GB RAM, and GeForce GTX 470 graphics
board using OpenGL for rendering.

Fig. 8 shows the rendering results of the point
clouds acquired by different laser scanning systems.
From left to right, point clouds of urban area from a
MLS system, a construction site from a TLS system,
and urban area from other MLS system are shown.
Upper figures are the rendering results using only
points, and the bottoms are the results using our
method. Using our method, the gaps between the
points are filled and an intuitive and easy understand-
ing of the scanned environments is realized.

Fig. 9 shows the comparison of the rendering
results from different methods. In the results of splat-
ting shown in Fig. 9(a), unnatural splats can be seen
at the region where the normal estimation is diffi-
cult, edges are not represented appropriately, and the

Adaptive primitive
selection model

Processing time of model

Point clouds  #points  #line segments #splats #triangles in mesh generation [sec]
Fig. 8(a) 1.6M 15.3K 1.28M 134.4K 385
Fig. 8(b) 1.4M 1.1K 1.3M 53.7K 179
Fig. 8(c) 1.0M 9.6K 859.0K 83.4K 328

Tab. 1: Point clouds and APS models.
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Fig. 11: Rendering results of MMS point clouds at different viewpoints.

gaps are still remaining on the facade of the building.
Fig. 9(b) shows the rendering result using triangu-
lar meshes. Meshes are appropriately generated in
high point density regions, however the mesh are not
appropriately generated at the coarse region. Also, the
gaps between the closer power lines are filled incor-
rectly. Fig. 9(c) shows our rendering results. Our splat
generation method provides the rendering results
without the gaps between points, and surfaces are
created at coarse point regions with the help of the
point classification by the PCA and splat generation
by evaluating the distances to the neighbor points.
The problems of Fig. 9(a) and Fig. 9(b) are solved,
however, some undesired splats and line segments
appeared. One of the reasons is the incorrect point
classification and inconsideration of the boundary of
the shape. More robust point classification is required
for reducing such primitives.

Fig. 10 shows other comparison results. Fig. 10(d)-
(f) are the enlarged views of Fig. 10(a)-(c). In the results
of splatting and mesh shown in Fig. 10(d) and (e),
undesired splats and meshes connecting with two
electric wires are generated. In our results shown in

#line #triangles
Data #points segments #splats in mesh
Fig. 11(a) 126.3K 0 0 0
Fig. 11(b) 638.7K 1.2K 24.3K 1.9K
Fig. 11(c) 1,080.8K 2.3K 324.3K 24.2K
Fig. 11(d) 857.8K 3.5K 443.7K 42.1K

Tab. 2: The numbers of rendered graphic primitives.

Fig. 10(f), such primitives are not generated, because
the line segments are used for rendering each line
according to the results of point classification by eval-
uating local point sets. However, in the Fig. 10(f), some
unnatural short line segments can be seen. A robust
segmentation method is also required for improving
the accuracy of primitive generation and getting more
natural views.

Fig. 11 shows rendering results of a point
cloud data at the different viewpoints. In distant
views, the down-sampled points are rendered. As

Fig. 12: Original adaptive primitive selection model and LOD model: (a) Original APS model, and (b) View-

dependent LOD model.
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the viewpoint becomes closer to the scene, original
points, simplified and original APS model are grad-
ually used in rendering. The numbers of graphic
primitives are shown in Tab. 2. FPS of original APS
model and all points were 1.6 and 9.0 respectively.
Using LOD method, FPS were from 3 for the clos-
est view to 60 for the distant view. Keeping FPS by
limiting the maximum number of graphic primitives
may be useful for maintaining the FPS. Fig. 12 shows
rendering results of original APS model and LOD
model for same data and viewpoints. The numbers
of splats, line segments, and triangles are 1.3M, 1.2K,
and 53.7K in the original model shown in Fig. 12(a),
and 505.6K(38%), 159(13%), 11.3K(21%) in the model
from view-dependent LOD shown in Fig. 12(b). Similar
rendering result to the original one are obtained from
simplified LOD model.

Processing times for rendering model genera-
tion are summarized in Tab. 1. For constant search
radius (0.5m), the processing times of PCA, region
growing and splat generations were 72s, 160s, and
633s respectively (averages of the ones for three
data shown in Fig. 8). On the other hand, by using
adaptive search range determination method (N =
50) described in section 3.2.4, the processing times
became 29s, 25s and 26s respectively, and processing
times of processes with neighbor search were reduced
to 10% in average.

5. CONCLUSIONS

In this paper, a rendering method of the point clouds
for supporting easier and intuitive understanding of
the laser scanned environments was proposed. In our
method, an adaptive primitive selection model is cre-
ated according to the results of point classification
by PCA and region growing. The model consists of
line segments for linear objects, splats for planar
objects and mesh for the others. A simplified version
of the model is also created and used in LOD for a
closer view of the scanned environments. For distant
views, point hierarchy based on the octree is used
in LOD rendering. Some rendering results for point
clouds acquired by different scanning systems are
shown and it was confirmed that our method provides
better rendering results for easier and intuitive under-
standing of the scanned environments compared with
splatting, mesh based rendering and only point ren-
dering. Future work includes blending the splats and
aligning the splats depending on the shape and color
boundaries for getting more natural views.
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