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ABSTRACT 
 

We develop a novel method for fast and automatic identification of characteristic 
contours for measuring girths on digital 3D human models with various stable 
postures. For fast identification, the characteristic contours with salient topology and 
geometric features are selected among the multi-source geodesic iso-contours, which 
are constructed under a new Morse function as using multi-source points to compute 
geodesic distance instead of using solely one source point.  The resulting iso-contours 
are stable in a wide range of postures due to the bending invariance of geodesic 
distance. Based on the characteristic contours, we develop an efficient algorithm to 
extract the contours for girth measurement. We present a number of experiments on 
3D human body samples with variant postures to demonstrate the validity of our 
approach.  
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1 INTRODUCTION 

During the recent two decades 3-D scanning technology makes it possible to obtain digital data of 
a complete description of a human body. Working with the 3-D surface data has the advantage of 
being able to perform repeated measurements without the human subject being present. Therefore 3D 
body scanner has become notable for anthropometry. Within anthropometry measurement, body size 
and shape are the most important in ergonomic design and improvement of comfort in clothing. 
Anthropometry – the study of human body measurement – characterizes human body with linear 
distances between anatomical landmarks or circumferences at predefined locations. Its accuracy of 
traditional manual measurement is mainly affected by the expertise of the tailors.     
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Fruitful approaches to anthropometry measurements on 3D scanning data have been developed. 
However, these approaches have their respective disadvantages. In common, the measurement applies 
only to standard-posed models. Pargas et al. [18] constructed software to provide the user with tools 
to take measurements; the user must identify the landmarks manually by developing macros or short 
program. Much research effort has been applied to locating landmarks automatically. Geisen, et al. [8] 
presented an approach using image processing and neural networks. In order to obtain the traditional 
landmarks, subjects are marked with fiducials which are recorded by a color camera which images 
each three dimensional data point. This method, however, is limited to measuring only a subject’s 
head; moreover it is only semi–automatic approach which needs fiducials pre-marking. The landmarks 
can be also be identified by analyzing the RGB information obtained from CCD cameras [22]. Nurre 
[17] located landmark fiducials based on physical geometry by finding the cusps on every slice of 
discrete points after the data are separated into six regions. Burnsides [5] utilized the Nurre’s 
segmentation method and applied neutral-network method to indentify the 72 landmarks in the 
CAESAR (Civilian American and European Surface Anthropometry Resource) project.  

There are other alternative approaches that attempt to locate landmarks automatically without 
prior marking [3][15], which usually depend on composing specific functions to locate the landmarks. 
Dekker [6] also investigated variant different operators in indentifying salient landmarks. Leong et al 
[12] coupled image processing and computational geometry to extract features from a maker-less 
scanned body. Wang et al [21] employed fuzzy logic to recognize features in unorganized cloud points. 
Unfortunately, most of these methods are limited to locating only branch points. Template method is 
also explored by using predefined templates to indentify landmarks on 3D models [2-4]. Ben et al [4] 
treated the landmarks’ positions as random variables and formulated them as a Markov inference 
problem. Anguelov et al [2][3] used Markov network to embed an instance mesh into template. Their 
limitations are summarized in [15] and [11]. 

Landmark location and surface length are sensitive to posture during scanning, particularly in 
areas of high deformation. Xiao and Siebert [23] segmented body scan data into primary body parts in 
various postures based on geodesic distance. Geodesic distance is invariant under rigid transformation 
and isometric deformation. Inspired by their trial, we develop our algorithm to indentify the 
characteristic contours with salient features based on the multi-source geodesic distance and the 
powerful Voronoi diagram technique. Comparing to the abovementioned method, and also validated 
by our experiments, we believe that our proposed method performs better in the body measurement. 
Our method is robust under large deformation since the body is separated by a group of Voronoi cells 
and the effect of deformation within its Voronoi cell acts only locally.  

In this paper, the semantic definitions of body features are referred from ISO 8559. In the 
following sections, we introduce our approach in two parts: characteristic contours identification and 
the extraction of the contours for girth measurement.  

2  CHARACTERISTIC CONTOURS IDENTIFICATION 

Characteristic contours with topology and geometric features are chosen from the multisource 
geodesic iso-contours computed on a multisource geodesic distance field.  Firstly, the multisource 
geodesic distance field is computed by presetting 5 source points which are the extreme points on the 
head, hands, and feet of a 3D human model. Secondly, iso-contours, Voronoi diagrams and the 1D tree 
skeleton are constructed by an interpolating–manner method. The tree skeleton curve is obtained by 
connecting the barycenters of iso-contours according to the Reeb graph. Voronoi diagrams separate 
the body model into 5 major parts: arms, legs and torso-and-head segments, which provide the 
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topology of the human 3D model. Finally, the characteristic contours are identified through our 
defined topology and geometric features. An example is shown in Fig. 1.  

In the following subsections, we first review the method of computing geodesic distance with 
multiple sources and introduce our novel method to construct the iso-contours and Voronoi diagrams 
on triangulated meshes. For details of skeleton extracting, references can be made from our previous 
work [14].  

 

   
(a) (b) (c) 

 

 

     
(d) (e) (f) 

 
Fig. 1: (a) Geodesic distance field (b) Iso-contours (c) Voronoi diagrams (d) Critical iso-contours in Reeb 
Graph(Bold) (e) 1D Tree Skeleton (f) Characteristic contours. 

2.1  Computing Multi-Source Geodesic Distance 

Firstly we retrospect the implementation in [20] of the MMP algorithm [16] to establish the exact 
geodesic metric on a triangulated two–manifold surface M. The surface M studied in this paper 
comprises compact piecewise flat surfaces. The Hopf–Rinow theorem [9] and its adaption to general 
piecewise flat surfaces [1] ensure that a minimal geodesic exists between any two points. Denote the 
topology of a triangular mesh surface M by (V, E, F), where V, E, F, are the vertex, edge and face sets, 
respectively. 

The MMP algorithm [16] establishes a distance function vD on M such that for any point  p  M, 

denote ( )vD q as the exact geodesic distance from q to v on M. The MMP algorithm partitions, the whole 

bunch of the faces in   F  M into a 2D subdivision structure. To establish this structure, the following 
property is used. Inside every triangle in M, the geodesics must be straight lines. When crossing a 
triangle edge e, a geodesic must also be a straight line if the previous triangle is unfolded along e into 
the plane containing the next triangle (Fig. 2(b)).The vertices through which geodesics pass are named 
pseudo-sources. Singular vertices are defined for those whose total surrounding angle is larger than 
or equal to 2π. 
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From the triangles containing one or multiple sources p, a set of initial visibility wedges (VWs) are 
emitted. These VWs are propagated (Fig. 2(a)) until the whole bunch of the edges on the 2-manifold 
are covered. The different cases during the VW propagation are shown in Fig. 2(a). The pseudo-source 
of each VW can only be a singular vertex. To store the VW information in the local plane defined by 
each triangle, a 8-tuple 0 1 0 1( , , , , , , , )nv ptb b d d Id Id  is used in our approach (Fig.2(c)), denote 0b and 1b as 

parameters measuring the distance along the edge, the 2D unfolded position of the nearest pseudo-
source s is encoded by its distances 0d  and 1d  to the endpoints 0b and 1b , respectively, nvId and ptId  are 

the identifiers of s and the original point site p, respectively,  indicates the side of edge on which s 
lies, and   is the length of the geodesic path from nvs Id back to the site ptp Id . While VW 

propagates, new wedges may intersect some existing wedges. Any two intersected wedge 

0 1 0 1( , , , , ), 1,2i i i i ib b d d i   are updated by solving the equation below with unknown w (Fig. 2(d)): 

1 2 1 2 1 2 2 2 2 2( . ) ( . ) ( . ) ( . )w s x s y w s x s y         

Given one source point 1p , the VW propagation builds a 2D subdivision structure 1 2( , ,..., )nD D D on 

M that satisfies 1
n
i iD ∪ M  and , , , 1,2,...,i jD D i j i j n     .Each subdivision iD  has a corresponding 

( )nvId i  that is stored as a local 2D projection inv  on each iD . Given an arbitrary target position q on M, 

the geodesic path between p and q is computed as follows. 

1) Find the subdivision cell qD containing q. Set, l qD D , r q . 

2) Connect r and the 2D position of lnv  by a line l, in the plane defined by lD . 

3) If lnv p , find the intersection x of the ray l with the boundary of lD ; otherwise stop. 

4) Find the adjacent subdivision  jD  of lD  along the intersection x . Set l jD D , r x . Go back to 

(2). 
 

 
(a) Three cases in visibility wedge(VW) propagation 

 
                                (b)VW in Flatten Triangle strips          (c) Encoding VW in a local plane 
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(d) Updating the intersecting VWs 

Fig. 2: Geodesic paths encoding with visibility wedge propagation. 
 

  
(a) (b) 

Fig. 3: (a) The existence of singular points in an iso-contour. For closed surfaces, the hole shown in 
the figure can be a polygonal obstacle such as a prism with sufficient height. (b) The iso-contours of 
a single source point on an eight model. The maximal geodesic distance on manifold is normalized 
to 1 and the iso-contour with value 0.5 is shown in red color which consists of three distinct closed 
curves connecting at the singular points. 

 

  
(a) (b) 

Fig. 4: (a) The existence of break points in a bisector. (b) Voronoi diagrams with random sampled 
source points on a genus 0 model and genus>0 model. 

 

2.2 Computing Iso-contours and Voronoi Diagrams 

An iso-contour of a site is defined as the trace of all the points whose distances to the site have a 
same specific value. The bisectors are traces of the points that are equidistant to the only two sites on 
the surface. All Voronoi cells are bounded mutually exclusive or semi-exclusive by bisectors, which 
construct the Voronoi diagrams as a result. The earlier simple interpolation methods for computing 
bisectors and iso-contours all assume that a bisector or iso-contour inside any triangular face is at 
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most one line segment. This causes serious errors when the mesh density is coarse. The correct iso-
contour or bisector may require a “turning” point inside a triangular face.  

Innovatively, we introduce the singular points on iso-contours which are defined as the locations 
where the nearest pseudo-source is changing from one to another. The schematic diagram (Fig. 3(a)) 
indicates that the prism with sufficient height affects the iso-contours in a 2D plane and the existence 
of singular points. The iso-contours at the singular points can have 0C  or 1C continuity. An example 

of a genus-2 model with ten iso-contours is shown in Fig. 3(b). It clearly shows that the tangent 
discontinuities at the singular points and an iso-contour can be separated into three disjointed closed 
segments.  

For computing the bisectors, the break points are defined by us as the locations at which the 
nearest pseudo-source is changing along the bisector from one side of a source point. Schematic 
diagram Fig. 4(a) shows the prism with sufficient height affecting the bisector in a 2D plane. A bisector 
consists of hyperbolic and line segments between breakpoints. The bisector is 0C continuous at break 

points. Examples in Fig. 4(b) demonstrate the computed Voronoi diagrams on 3D models with 
different genus. 

By introducing the singular points and break points, we can compute the complete iso-contours 
and bisectors. The remaining segments on the iso-contours except singular points and those on the 
bisectors (except breakpoints) are curves obtained by interpolation inside triangle faces. 

2.3  Characteristic Contours Selection 

Prior to our identification, merging and trimming of several nodes of the 1D skeleton are 
performed such as that multiple saddle nodes at the hands are merged together. The achieved neat 
and simple 1D tree skeleton serves for the procedures afterwards. The set  contains the whole bunch 
of the iso-contours only corresponding to the nodes in the obtained neat 1D skeleton.  

Topologic characteristic contours are identified based on the Reeb graph.  A point in a Reeb graph 
represents a level-set curve on a manifold defined by a function M. When M has no degenerate critical 
points on the manifold, it is a Morse function. In the past study, the height of the model and the 
geodesic distance from one source point are used as a Morse function. As a new Morse function, 
multi-source geodesic distance is computed for 3D body prototypes. The Reeb graph can be efficiently 
constructed by tracing the changes in the number of closed curves in each iso-contour (Fig. 1(b)). 
Moreover, the 1D tree skeleton could be also obtained (Fig. 1(e)). The critical points in the graph 
represent the critical level sets (illustrated by solid curves in Fig. 1(d)).  When applied to human model, 
the critical points are meaningful. The saddle points naturally correspond to the armpits and the groin 
of the human body. Their corresponding contours estimate the elbow contours, chest contours, and 
thigh contours (black curves in Fig. 1(f)). 

Geometric characteristic contours are defined based on the circumference. We denote the 
circumference for a contour iC    as a function ( , , )id i kf C R  . The iR denotes the Voronoi cells. 

Voronoi diagram (Fig. 2(c)) divides the 3D body model into 5 Voronoi cells: arm ( 1R -left arm, 2R -right 

arm), legs ( 3R -left leg, 4R -right leg), and torso-and-head ( 5R ). Each iso-contour belongs to one 

unique Voronoi cell. For each iso-contour, the average geodesic distance ( )avg idd C  is calculated from all 

the points on the contour to its nearest source point. The whole bunch of iso-contours within every 
Voronoi cell is sorted by ( )avg idd C in ascending order. We useθ to present the index of the ascending 

sequence such as 
  
davg(1)  davg (2)...  davg (n ) . 
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Experientially, the contours in the arm region with the smallest circumferences enclose the wrist. 
In an identical manner, the iso-contours in the leg region with the smallest circumferences enclose the 
ankle as well.   

  
Cid *  arg mini1,2,3,4 f (Cid ,Ri ,k )  

Characteristic contours at the buttock are locally maximum enclosing curves. The buttock 
contours may be smaller than the chest contours.  However the buttock characteristic contours are 
locally extreme inside the region near the boundary between the legs part and head-torso part.  

  
C

d
*  argmax

i5
f (C

id
,R,

k
) , 

  
R

U
 R

3
R

4
 R

5
, ,| R R

U
|   

The contours at the knees are locally minimum enclosing curves within the region which is the 
half length of the total leg’s length approximately. In our experiments we set m = 2.  

  
Cid *  arg mini5 f (Cid ,Ri ,k ), m,| k m | median(j ), j  1,2, ..n  

3 EXTRACTION OF CONTOURS FOR GIRTH MEASUREMENT. 

The characteristic contours are in general non-planar. Any contour for girth measure should be 
restricted to a 2D plane which mimics the measurement by an experienced tailor. It is preferable to 
obtain the intersection curves as contours for measurement between a 2D plane and the 3D model. 
The determination of the right 2D plane P is through the process of projecting the characteristic 
contours by Principal Components Analysis (PCA) or robust PCA.   

The widely used PCA is referred to as a dimensionality reduction algorithm. In our situation, the 
contours are 3 dimension data. The 2-dimensional space can be determined by the eigenvectors of the 
covariance matrix of data, which correspond to the larger two eigenvalues. The largest two eigenvalues 
are retained according to the practical assumption that anatomical lines are 2 dimensional. The 
eigenvectors corresponding to the two largest eigenvalues construct the projection plane. The 
eigenvector corresponding to the smallest eigenvalue represents the normal PCAN  orthogonal to the 

projection plane.  In the classical PCA approach, the first component corresponds to the direction in 
which the projected observations have the largest variance. The second component is then orthogonal 
to the first and again maximizes the variance of the data. However, the projection plane (denoted by 
green color in Fig. 5) by using PCA deviates from the protuberance of the elbow characteristic contour 
(blue curve in Fig. 5) since PCA is sensitive to outliers (Fig. 5). The further utilization of robust PCA 
(ROBPCA) is a candidate solution. The ROBPCA method [10] combines ideas of projection pursuit (PP) 
[13] and robust covariance estimation. The PP part is used for the initial dimension reduction.  Some 
ideal base on minimum covariance determinant (MCD) [19] estimator is applied.  The normal ROBPCAN  

based on using ROBPCA could be achieved. The projection plane by ROBPCA (red curve in Fig. 5) is 
more robust to outliers and coincides with the elbow characteristic contour tightly.  

From the anthropometric view, the contours for measurement incline to be perpendicular to the 
skeleton, which is equivalent to prefer the smaller angle between the normal of the plane where the 
contour locates and the tangent of the skeleton. However the skeleton is discontinuous and does not 
have tangent at the skeleton node as it is constructed by connecting the skeleton nodes by line 
segments. As it is seen in Fig. 6, to avoid the discontinuity we interpolate a polynomial curve through 
the skeleton node itself and another two adjacent nodes. Denote skelT the tangent of the polynomial 

curve segment. Denote 
 

1
, 

2
the angle between the tangent skelT and the normal PCAN and ROBPCAN  

respectively. Between the projection planes achieved by PCA and robust PCA, the one with a smaller 
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 
  {

1
,

2
} is chosen.  The resulting contour for measurement is the intersection curve between that 

projection plane and the triangulated model. 
 

 
 

Fig. 5: Projected closed curves by PCA and 
ROBPCA. 

Fig. 6: The angles between the tangent of the 
skeleton curve and the normals of the 

projection planes. 

4  EXPERIMENTS 

We tested the proposed algorithms on triangulated surfaces of 3 different TMPoser models in 10 
different postures which are designed to simulate a real human body. Several methods are employed 
to check the consistence of the contours for measurement with variant postures quantitatively. 

4.1 Circumference 

Identifying the landmarks for the purpose of apparel design and manufacture is often utilized to 
finally calibrate. Therefore circumferences are extremely important features for clothing. We 
calibrated the circumferences of the contours for measurement. The experiment results indicate that 
the circumferences are consistent with different postures (Fig. 7). The circumference’s standard 
deviation on the thigh and chest contours is larger than the standard deviation of contours on other 
body parts. The thigh circumferences, wrist circumferences, elbow circumferences, knee 
circumferences, and ankle circumferences have negligible differences between the right side and left 
side, coinciding well with the symmetry of human body. 
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(a) (b) 

 
(c) 

Fig. 7: (a) circumferences of male 3D models (b) circumferences of female 3D models (c) 
circumferences of child 3D models. 

 

 
Fig. 8: Left is the bounding box on man’s chest contours. Right is the contours after rotating the 
bounding box (the longer edge of the bounding box coincides with the X axis). 

 

4.2  Polar Radius Consistency 

We also explored the polar radius consistency on the contours with representable shapes like 
chest contours and buttock contours. The adjustment of the position and angle is needed to make 
individual contours for measurements with different postures coincide with each other maximally. We 
used the bounding box [7] to enclose the contours and then adjust the angle and position of the 
bounding box (Fig. 8).  We also resample on the contours ranged from [0,2π] with 100 segments.  

Fig. 9 shows the results of some hip contours. Fig. 10 shows the results of chest contours .The 
standard deviation of chest contours is lower than 0.6cm for all the tested 3D human body models.  
The standard deviation of buttock contours is smaller than 1.8cm for male and female 3D models (Fig. 
9(b) and (d)). The standard deviation of buttock contours is beneath 0.4cm for child 3D models (Fig. 
9(f)). The maximum standard deviation occurs when the contours’ spike shifts which belongs to Pose 
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10 of man and woman 3D model.  As demonstrated in the figure, the result ascribe to the one leg 
lifting posture is obviously different from other postures, which leads to the shape change of the 
buttock contours. The unit of polar plot is centimeter (cm). 

 

 

(a) (b) (c) 

(d) (e) (f) 
Fig. 9: (a) Plot of ten buttock contours on male 3D models. (b) Plot of ten buttock contours on 
female 3D models. (c) Plot of ten buttock contours on child 3D models. (d) Polar plot of buttock 
contours’ standard deviation on male 3D models. (e) Polar plot of buttock contours’ standard 
deviation on female 3D models. (f) Polar plot of buttock contours’ standard deviation on child 3D 
models.  

 

 
(a) (b) (c) 
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(d) (e) (f) 
Fig. 10: (a) Plot of ten chest contours on male 3D models. (b) Plot of ten chest contours on female 3D 
models (c) Plot of ten chest contours on child 3D models. (d)  Polar plot of chest contours’ standard 
deviation on male 3D models.  (e) Polar plot of chest contours’ standard deviation on female 3D 
models. (f) Polar plot of chest contours’ standard deviation on child 3D models.  

 

4.3 Hausdorff Distance 

Hausdorff distance is the maximum minimum distance. It is defined as follows: 

( , ) max( ( , ), ( , ))Hausdorffd A B d A B d B A
 

  

( , ) max (min ( , ))a A b Bd A B d a b


   

Hausdorff distance could be used to calibrate the integrity of the contours to match up with each 
other. We calculate the Hausdorff distance of resampled contours from one to the others. Box plots of 
the results are given in Fig. 11.  The first column denotes the Hausdorff distances of hips which 
belong to male, female, and child (from top to down) models respectively. The second column depicts 
the Hausdorff distances of chest which belong to male, female and child (from top to down) models 
respectively. The first 5 postures of male, woman, child are squatting (Fig. 12–14). The last 5 postures 
are standing straight. As seen from the first column of the box plot (Fig 10), the box size of the last 5 
postures is larger than that of the first 5 postures. The medians of the last 5 postures are larger than 
that of the first 5 postures. The test results validate that the influence of the variant postures on the 
targeted Hausdorff distance of chest is minimum. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 11: (a) Hausdorff distance boxplot of male models’ buttock (b) Hausdorff distance boxplot of 
male models’ chest (c) Hausdorff distance boxplot of female models’ buttock (d) Hausdorff distance 
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boxplot of female models’ chest (e) Hausdorff distance boxplot of child’s buttock (f) Hausdorff 
distance boxplot of child’s chest. 
 

5 CONCLUSIONS  

We have developed a novel method for estimating anthropometric parameters on various postures 
of a human 3D model.  The method is based on the multi-source geodesic field. The Iso-contours and 
Voronoi diagram could be exacted from this field.  Segmentation and Reeb graph could be achieved by 
Voronoi diagram. We used topologic feature and geometric feature locally on the segmented 
subregions to indentify the characteristic iso-contours fast and automatically. Optimized PCA and 
Robust PCA are applied to the captured 3D characteristic iso-contours to achieve their planar 
counterparts for the measurement.  In the experiments, we apply our methods to representative 3D 
human body models with different postures. We test the circumference, the standard deviation of 
polar radius, and the Hausdorff distance. The results demonstrate that the contours for measurement 
are consistent with each other. 

In the future, the application of contours at other locations will be explored by our method. In 
addition, real human body scan data will be collected for correlation purpose and further research.   
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Fig. 12: First row and third row are the results of characteristic contours on 3D male models. 
Topologic characteristic contours are masked by black color. Geometric characteristic contours are 
colored by red. Second row and fourth row indicate the contours for measurement. 
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Fig. 13: First row and third row are the results of characteristic contours on 3D female models. 
Topologic characteristic contours are masked by black color. Geometric characteristic contours are 
colored by red. Second row and fourth row indicate the contours for measurement. 
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Fig. 14: First row and third row are the results of characteristic contours on 3D child models. 
Topologic characteristic contours are masked by black color. Geometric characteristic contours are 
colored by red. Second row and fourth row indicate the contours for measurement. 
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