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ABSTRACT 
 

The precision of medical CT data has an important effect on the CT image 
reconstruction precision. In this paper, we present a novel approach for optimizing the 
raw CT data acquired by scanner. The approach can effectively improve the raw CT 
data precision, and consequently, improve the reconstruction precision. The new 
approach is based on the fact that the raw CT data can be regarded as the area 
samples of human density, and the point samples are more accurate than the area 
samples. The new approach transforms the raw area samples to more accurate point 
samples to improve the CT data precision by three steps: 1) establish the mapping 
relationship between area samples and point samples; 2) Segment the raw CT slice into 
different regions based on the human tissue feature; 3) in each segmented region, 
construct quadric spline fitting equation with the mapping relationship to transform 
the area samples to more accurate point samples. Experiments show that the image 
reconstruction with the new data optimized by our method has more details and fewer 
artifacts. 
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1 INTRODUCTION 

Computer tomography (CT) is the gold standard in the diagnosis of large numbers of different disease 
entities. CT produces a volume of data which can be used for 2D or 3D medical reconstruction, in 
order to demonstrate various structures based on their ability to block the X-ray beam. CT allows 
doctors to inspect the inside of body without operating or performing unpleasant examinations. The 
3D virtual human model reconstructed with CT data can help doctor pinpoint lesion sites and plan 
treatment. Moreover, combination of 3D model and virtual reality technology can help doctor simulate 
the surgical plan before operation. Obviously, as an assistant method, the quality of CT image 
reconstruction is very important to clinical diagnosis. Therefore, utilizing the information provided by 
CT data to achieve high precise and realistic reconstruction has become one of the basic problems in 
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medical image processing. Research of the problem has great significance for improving clinical 
diagnosis rate and success rate of operation. 

The CT data is generated by detecting and measuring the strength of X-rays that have passed 
through the human body. Because the densities of body tissues are different, their abilities of 
absorbing X-rays are different. When X-rays pass through a certain body level composed of many 
small cubes with the same volume, known as voxels, the mean attenuation of each voxel, i.e., density 
value, is computed. The density value is called pixel. The pixels are arranged in matrix to form raw CT 
slice [2],[10]. From the generation of CT data, it can be seen that each pixel on raw CT slice is the 
average density of its corresponding voxel, that is, the pixel is area sample, not accurate point sample. 

In recent years, many research results in medical image processing have been developed. [19] 
designs function and derivative reconstruction filters in volume visualization based on the spatial 
reconstruction smoothness and the spatial reconstruction error. [18] compares various interpolation 
methods, e.g., truncated and windowed sinc, nearest neighbor, linear, quadratic, cubic B-spline, cubic, 
Lagrange, and Gaussian, used for medical image generation and processing such as compression or 
resampling. [13] introduces and advocates the use of generalized interpolation in medical imaging, 
which involves a prefiltering step when correctly applied. Compared to traditional interpolations in 
[18], generalized interpolation not only performs better in the context of image transformations, but 
also comes a lower computational cost. [6] presents an objective task-specific framework for 
evaluating interpolation methods, and establishes shape-based and object-based methods in medicine 
for slice interpolation of three-dimensional data sets. [17] develops 2-D, nonseparable, piecewise cubic 
convolution (PCC) for image interpolation, but the 2-D PCC yields small improvements in interpolation 
fidelity over the traditional, separable methods. [16] uses edge information to guide the reconstruction 
of a skeleton image structure and the interpolation that follows. [23] proposes a soft-decision 
interpolation technique to estimate missing pixels in groups rather than one at a time. The technique 
preserves spatial coherence of interpolated images better than traditional interpolations. [3] 
investigates effect of applying different types of wavelet filters belonging to orthogonal and 
biorthogonal families with different orders on the medical image quality in multi-resolution 
framework. [4] introduces 33 topologically different configurations in Marching Cubes algorithm to 
construct topologically correct isosurfaces in surface rendering. [9] completes the algorithm in [4] for 
the ambiguity resolution and for the feasibility of the implementation. [21],[14] respectively introduce 
mesh simplification and image segmentation in Marching Cubes algorithm to improve the efficiency of 
3D medical image reconstruction. [12] presents a shear-warp algorithm that is one of the fastest 
algorithms for volume rendering, but the expressive speed comes at the price of reduced image quality. 
[7],[8] improve the precision of shear-warp algorithm while still maintain reasonable rendering speed. 
[22] proposes a method for direct volume rendering based on segmenting a volume into regions of 
equivalent contour topology and applying separate transfer functions to each region. The method has 
high efficiency and is hardware-accelerated. [1] develops faster and higher quality volume 
visualization techniques for 3D medical imaging by directly processing the sensor data acquired with 
scanner, rather than the image data reconstructed from the sensor data. [15] proposes a regularized 
interpolation method that improves the reconstruction quality by specifying a tradeoff between fidelity 
to the medical image data and robustness to the noise. [20] presents an automatic algorithm for 
surface rendering of a volume consisting of multi-axial cross sections. The 3D images obtained from 
multi-axial volumes are more clinically useful than those obtained from one-axial volumes. 

All the aforementioned methods use the raw CT data for image reconstruction and processing. 
They do not take into account the effect of the precision of the raw CT data per se on the quality of the 
image reconstruction and processing. The raw CT data are area samples in nature, not accurate point 
samples. Using directly these area samples for image reconstruction or processing may loss some 
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details information. Thus, in this paper, we focus on improving the precision of the raw CT data per se. 
By optimizing the raw CT data, i.e., transforming the area samples to more accurate point samples, we 
can efficiently improve the precision of the CT data. When image reconstruction or processing 
algorithms are conducted on the CT data after optimization, the reconstruction and processing 
precisions are naturally improved since the CT data after optimization are more accurate. 

2 NEW PRECISION OPTIMIZATION APPROACH 

We present a novel approach for optimizing the raw CT data precision. The new approach can get more 
accurate approximations of point samples from the area samples on raw CT slice. Using these new 
optimized data with high precision for 2D and 3D reconstruction, the quality will be effectively 
improved. The novel approach first establishes the mapping relationship between area samples and 
point samples, then segments the CT slice into different regions based on human tissue feature, and 
finally, in each segmented region, constructs quadric spline fitting equations based on the mapping 
relationship to transform the area samples to more accurate approximations of point samples. 

2.1 The Mapping Relationship between Area Samples and Point Samples 

All pixels on raw CT slice are area samples. Assuming that there are l  slices of CT data, and n n×  
pixels on each slice, then these 2n l  pixels can be regarded as area samples obtained from a continuous 
human volume space in 2n l  unit cubes (i.e., voxels). In reconstruction, these samples are used to build 
fitting model to approximate the original human volume space. Obviously, the more precise the 
samples are, the higher the approximation accuracy of the fitting model is. Therefore, if precise point 
samples can be got from area samples, and used for reconstruction, the model precision will be 
improved. In fact, it is nearly impossible to get precise point samples from area samples, so we get 
approximations of point samples with high accuracy in our approach. The mapping relationship 
between area samples and point samples is established first. 

In one-dimensional case: As shown in Fig.1, let ( )P x  be a curve, and , 0,1,..., 1iF i n   be n  area 
samples (denoted by blue dot) obtained from ( )P x  with respect to regions 1[ , ]i ix x  , then, according to 

the definition of definite integral, in each region 1[ , ]i ix x  , the definite integral 
  

P(x)dx
xi

xi1

  can be 

evaluated approximately in terms of the area of the rectangle whose length and width is respectively 
the length of 1[ , ]i ix x   and iF , i.e., in terms of the product of the length of 1[ , ]i ix x   and iF . So the 
following relationship is satisfied 

  
P(x)dx  F

i
L

i
,         i  0,1, ...,n 1

xi

xi1

                                               (2.1) 

Where, 1| |i i iL x x  , is the length of the region 1[ , ]i ix x  . We can use ,  0,1,..., 1iP i n   as fitting points 
to get approximate expression of ( )P x , and consequently, establish the mapping relationship between 
area samples iF  and point samples ,  0,1,..., 1iP i n    in Eqn.(2.1). The computed ,  0,1,..., 1iP i n   
from Eqn. (2.1) are the approximations of point samples on the curve ( )P x . 
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Fig. 1: Illustration of the mapping relationship in one-dimensional case. 

 
In two-dimensional case: let ( , )P x y  be a surface, and , , 0,1,..., 1ijF i j n   are 2n  area samples 

obtained from ( , )P x y  with respect to regions ijA , then the following relationship is satisfied 

  

P(x,y)dx dy

A
ij

  F
ij

S
ij
,    i, j  0,1, ...n 1                                                 (2.2) 

Where ijS  is the area of ijA . Similarly, ( , )P x y in Eqn. (2.2) can be approximately represented by fitting 

points ,  , 0,1,..., 1ijP i j n  . By establishing mapping relationship between point samples ijP  and area 

samples ,  , 0,1,..., 1ijF i j n   as shown in Eqn. (2.2), we can get approximations of point samples on 

surface ( , )P x y . 

In three-dimensional case: let ( , , )P x y z be a space body, and ,  , , 0,1,..., 1ijkF i j k n  are 3n  area 

samples obtained from ( , , )P x y z  with respect to regions ijk , then the following relationship is satisfied 

  

P(x,y,z)dx dydz


ijk

  F
ijk

V
ijk

,   i, j,k  0,1,...n 1                                    (2.3) 

Where ijkV  is the volume of ijk . Similarly, ( , , )P x y z in Eqn. (2.3) can be approximately represented by 

fitting points ,  , , 0,1,..., 1ijkP i j k n  . Then, the mapping relationship between area samples ijkF  and 

point samples ijkP  is built. The computed ,  , , 0,1,..., 1ijkP i j k n   are approximations of point samples 

on the space body ( , , )P x y z . 

2.2 CT Slice Segmentation 

As discussed as above mapping relationship, we can get more accurate approximations of point samples 
on the original scene by constructing fitting curve/surface/volume to approximate the original scene. 
Due to the complexity of human anatomical structure as well as the irregularity and diversity of tissue 
organ, it is unreasonable to use the same curve/surface to fit data in different regions of raw CT slice. So, 
in our approach, we first segment the raw CT slice based on human tissue features, that is, divide the raw 
CT slices into different tissue regions. Then, in different regions, we fit the corresponding CT data 
respectively.  

To segment the slice, the edges of the slice should be detected. There are many edge detection 
algorithms with various operators [5],[11]. It is important to note that slice segmentation in our approach 
aims at providing reasonable regions for latter fitting, not requires very accurate estimation of edge 
location. So we use Sobel operator to detect the edges of the CT slice. The Sobel operator, which is easier 
to calculate and less sensitive to noise, can produce better edge detection result with more accurate edge 
direction. The Sobel operator calculates the gradient of the image intensity at each pixel, if the magnitude 

( )P x  

ix  1ix   

iF  
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of the gradient vector achieves extremum, then the pixel is at the edge. The magnitude of gradient vector 
at pixel ( , )x y can be computed by 

2 2
x yM s s                                                               (2.4) 

Where xs  and ys  are the partial derivatives which can be implemented using two 3 3  convolution 

masks -  one for horizontal changes, the other for vertical changes (as shown in Fig.2).  
 

 
 

Fig. 2: Convolution masks:  (a) Horizontal Convolution, (b) Vertical Convolution. 
 

In our approach, the two convolution masks are convolved with the raw CT slice, and the gradient 
magnitude at each pixel is calculated using Eqn. (2.4). The resulted magnitude is compared with 
threshold, respectively. If the magnitude is greater than the threshold, then the corresponding pixel is 
at the edge of the CT slice and denoted as 1, otherwise as 0. All the 0 and 1 form the edge image. By 
searching the edge image, we can get different regions on raw CT slice.  

As shown in Fig.3 (a), there are l  raw slices in CT data field, each (denoted by blue) parallels to xy-
plane and has 2n  pixels. Obviously, the CT data field can also be regarded as formed by n slices, each 
(denoted by red) parallels to yz-plane and has nl  pixels, which we call X-CT slice in our approach to 
distinguish from the raw CT slice. The kth CT slice and the jth X-CT slice are shown in Fig.3 (b) and (c), 
respectively. With the requirement of latter spline fitting, we not only segment each CT slice with Sobel 
operator to get edge image (e.g., Fig.3 (d) is the edge image of the CT slice in Fig.3 (b)), but also segment 
each X-CT slice to get edge image. 

2.3 Quadric Spline Fitting 

2.3.1 Fitting idea 

As described in section 1, each pixel corresponds to a voxel during CT scanning and is an area sample. 
As shown in Fig.3 (a), Let the density function of human body be ( , , )D x y z , and pixels in the CT data 

field be ,  , 0,1,..., 1, 0,1,..., 1ijkF i j n k l    , then ijkF  can be regarded as the area sample of ( , , )D x y z  in 

voxel. Assuming that the cube in Fig.4 is the voxel corresponding to pixel ijkF  in Fig.3 (b), P is the voxel 

center, the line L  passes P and is perpendicular to yz-plane, the section S  passes P  and parallels 
to xy-plane. Then, based on the mapping relationship in Eqn.(2.3), ijkF  satisfies the following equation 

  

D(x,y,z)dxdydz


ijk

  F
ijk

V
ijk

,       i, j  0,1,...,n1,  k  0,1,...,l 1  

Where 
 
ijk  is the voxel, ijkV  is the volume of ijk . Let the coordinate of pixel ijkF  be ( , , )i j kx y z , then 

  

ijk  {(x,y, z) | x
i

1

2

 x  x
i

1

2

,  y
j

1

2

 y  y
j 

1

2

,  z
k

1

2

 z  z
k 

1

2

}  . The center of voxel ijk  is ( , , )i j kx y z . 
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Fig. 3:  Illustration of CT slice segmentation. The first row: (a) The CT data field, (b) The kth CT slice; 
The second row: (c) The jth X-CT slice, (d) The edge image of the kth CT slice. 
 

 
 

Fig. 4: The voxel 
 
ijk  corresponding to the area sample ijkF . 

 
For simplicity, let voxel be unit cube, then, the above equation equals to  

  

D(x,y, z)
x

i
1

2

x
i

1

2y
j

1

2

y
j 

1

2  dx dy dz  F
ijk

z
k

1

2

z
k

1

2 ,     i, j  0,1, ...,n 1,  k  0,1,...,l 1                       (2.5)  

( , , )D x y z  in Eqn.(2.5) can be approximately represented by 3-dimensional quadric polynomial 
( , , )P x y z , which is constructed by fitting points ,  , 0,1,..., 1, 0,1,..., 1ijkP i j n k l     as follows 
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  

P(x,y,z)  
i
(x)

j
(y)

k
(z)P

ijk
i0

n1


j 0

n1


k0

l1

  

Substitute the above expression to Eqn.(2.5), we can get 

  

i(x)j (y)k (z)Pijk
i0

n1


j 0

n1


k 0

l 1


x

i
1

2

x
i

1

2y
j

1

2

y
j 

1

2  dx dy dz  Fijk
z

k
1

2

z
k 

1

2 ,     i, j  0,1,...,n 1,  k  0,1, ...,l 1      (2.6) 

Eqn. (2.6) shows the relationship between area samples ijkF  and fitting points ,  , 0,1,..., 1,ijkP i j n   

0,1,..., 1k l  . Here, ijkP  is the desired approximation of point sample at the voxel center ( , , )i j kx y z . 

Obviously, ijkP  can be obtained by solving Eqn. (2.6).  Eqn. (2.6) includes 2n l  unknown variables, and its 

solving process involves in large calculation and poor stability. Therefore, we decompose the solving 
process of the equation in Eqn. (2.6) to reduce calculation and improve stability. Let  

  

U
ij
(x,y,k)  

i
(x)

j
(y)P

ijk
i0

n1


j 0

n1


x

i
1

2

x
i

1

2y
j

1

2

y
j 

1

2 dxdy,  i, j  0,1, ...,n 1                           (2.7) 

where, 0,1,..., 1k l  . Then, Eqn. (2.6) can be expressed as 

1
2

1
2

1

0

( ) ( , , ) ,  0,1,..., 1k

k

lz

k ij ijk
z k

z U x y k dz F k l







                                                (2.8) 

where, , 0,..., 1i j n  . It can be seen that, the equation including 2n l  unknown variables in Eqn. (2.6) is 
decomposed into 2n  equations in Eqn. (2.8), each equation includes l  unknown variables. Obviously, 
each equation in Eqn. (2.8) reflects the mapping relationship in one-dimensional case as shown in Eqn. 
(2.1). Here,  ijkF  can be regarded as area samples obtained from a curve along z-axis of the CT data field, 

and the curve can be approximated with a quadric polynomial curve constructed by the fitting points 
( , , ),  0,..., 1ijU x y k k l  . Solving the equation can get ( , , )ijU x y k  from ijkF . In Fig.4, the solving process of 

the equation equals to getting the average density of section S , i.e., the obtained ( , , )ijU x y k  is  the 

average density of S . Similarly, let 

  

V
i
(x, j,k)  

i
(x)P

ijk
i0

n1


x

i
1

2

x
i

1

2 dx,      i  0,1, ...,n 1                                        (2.9) 

where, 0,1,..., 1, 0,1,..., 1j n k l    . Then, Eqn. (2.7) can be expressed as 

 

  


j
(y)V

i
(x, j,k)

j 0

n1


y

j
1

2

y
j

1

2 dy U
ij
(x,y,k),    j  0,1, ...,n 1                                   (2.10) 

where,   i  0,1, ...,n 1,k  0,1, ...,l 1 , and ( , , )ijU x y k  has been obtained by Eqn. (2.8). From Eqn. (2.10), it 

can be seen that, the equation including 2n  unknown variables in Eqn. (2.7) is decomposed into n  
equation, each with n  unknown variables. Similarly, each equation can be regarded as a curve along y-
axis of the CT data field, which reflects the mapping relationship between area sample ( , , )ijU x y k  and 

point sample ( , , )iV x j k . Solving the equations can get ( , , )iV x j k . In Fig.4, the result of solving the equation 

is equivalent to getting the average density of Line L . 
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Similarly, assuming that ( , , )iV x j k  has been obtained in Eqn. (2.10), then Eqn. (2.9) can be expressed 
as 

  


i
(x)P

ijk
i0

n1


x

i
1

2

x
i

1

2 dx V
i
(x, j,k),     i  0,1,...,n 1                                    (2.11) 

where,   j  0,1, ...,n 1,k  0,1, ...,l 1 . Each equation in Eqn. (2.11) has n  unknown variables, and can be 
regarded as a curve along x-axis of the CT data field, which establishes the mapping relationship 
between area samples  ( , , )iV x j k  and fitting points ijkP . Solving the equations, we can get ,  , 0,1,ijkP i j   

  ...,n 1,k  0,1, ...,l 1 , which are the desired approximations of point sample at the center of  the 
voxels. In Fig.4, the result of solving the equation is equivalent to getting approximation of sample 
value at center P . 

As described as above, by constructing a quadric fitting curve on each queue (along z-axis), each 
column (along y-axis) and each line (along x-axis) of the CT data field, more accurate approximations 
of point samples can be got. In our approach, quadric spline is used as the fitting curve for its simple 
expression, convenient calculation, and good fitting precision. It is important to note that, in section 
2.2, CT slices and X-CT slices have been segmented into different regions. Thus, different quadric 
spline should be adopted to fit the pixels on the same line (or column, or queue) but in different 
segmented regions. For example, in Fig.3 (d), the pixels denoted by blue and red are on the same line 
but in different regions formed by segmenting CT slice, different quadric splines should be 
constructed to fit the blue and red pixels, respectively. Therefore, the basic idea of quadric spline 
fitting is: assuming ijkF  is in the region rA  formed by segmenting CT slices, as well as in the region sA  

formed by segmenting X-CT slices. First, constructing quadric spline on each queue in the region sA , 
then, constructing quadric spline on each line and each column in the region rA , after the fitting 
process, more accurate approximations of point samples can be obtained from area samples ijkF . 

2.3.2 Fitting steps 

The kth CT slice and the jth X-CT slice are shown in Fig.3 (b) and (c), respectively. Supposing that the 
pixels on the kth CT slice are ,  , 0,1,..., 1ijkF i j n  , and each pixel coordinate is ( , , )i j kx y z , that is, the 

center of  the square area corresponding to pixel is ( , , )i j kx y z . Obviously, pixel ijkF  is also on the jth X-

CT slice. The desired approximation of point sample at ( , , )i j kx y z  is denoted by ,  , 0,1,..., 1,ijkP i j n   

0,1,..., 1k l  . Obviously, the fitting sequence along x, y and z-axis has no effect on the results. So the 
steps of obtaining ,  , 0,1,..., 1, 0,..., 1ijkP i j n k l     are as follows: 

Step 1.  Each CT slice is processed in the following same way (take the kth CT slice for example). 
1) Detect the edges of the kth CT slice with Sobel operator to get edge image kM . 

2) Construct quadric spline on each line of the kth CT slice, i.e. along x-axis of the CT data field, to 
establish the mapping relationship between area samples and point samples. In the spline fitting process, 
edge image kM  is checked. If the pixels are on the same line but in different segmented regions, different 
quadric splines should be adopted to fit them (the fitting details are described in section 3). Take pixels 
on the ith line for example, a quadric spline 1rP  is constructed to fit the ones in region 1rA , and another 

quadric spline 2rP  is constructed to fit the ones in 2rA , and so on. After fitting, the transition values
 

Pijk  

at ( , , )i j kx y z  on the kth CT slice can be got from ijkF , where, , 0,1,..., 1i j n  . 
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3) Using 
  

P
ijk

,  i, j  0,1,...,n 1  obtained in 2) as area samples, construct quadric spline on each 

column of the kth CT slice, i.e., along y-axis of the CT data field. Similarly, edge image kM  is checked in 
the spline fitting process, and different quadric splines should be adopted if the pixels are on the same 
column but in different segmented regions. After fitting, the transition values

 
Pijk  at ( , , )i j kx y z  on the kth 

CT slice can be got from 
  

P
ijk

,  i, j  0,1,...,n 1 . 

Step 2.  Each X-CT slice is processed in the following same way (take the jth X-CT slice for example). 
1) Detect the edges of the jth X-CT slice to get edge image jM . 

2) Construct quadric spline on each queue of the jth X-CT slice, i.e., along z-axis of the CT data 
field. In the spline fitting process, edge image jM  is checked, and different quadric splines should be 

adopted if the pixels are on the same queue but in different segmented regions. After fitting, ijkP  at 

( , , )i j kx y z  on the jth X-CT slice can be got from 
  

P
ijk

,  i  0,1,...,n 1,k  0,1,...,l 1 . 

ijkP  obtained during the above process is the desired more accurate approximation of point 

sample at ( , , )i j kx y z , where,   i, j  0,1,...,n 1,k  0,1,...,l 1 . 

The principle and process of quadric spline fitting on each line, each column, and each queue are 
the same. So, in the following section, we only describe the details in quadric spline fitting on a line. 

3 THE LINE QUADRIC SPLINE FITTING 

3.1 Basic Idea 

Take the ith line on the kth CT slice for example. We only discuss the process of fitting the pixels on the ith 
line as well as in the segmented region rA  (as shown in Fig.3 (d)). The process of fitting other pixels on 
the ith line is the same. Assuming there are t  pixels on the ith line as well as in rA  and the area samples 

are 0 1, ,...,ijk tF i s s  . By adopting quadric spline to establish the mapping relationship between area 

samples and point samples, we can get approximations of point sample at 0 1( , , ), ,...,i j k tx y z i s s  . These 

approximations will be used in the latter quadric spline fitting on each column and each queue. 
Obviously, all the y and z-axis of the pixels on the ith line are the same, and the mapping relationship is in 
one-dimensional case. For convenience of description, the area sample (i.e., pixel) on the ith line as well as 
in rA  is denoted as , 0,1,..., 1iT i t  , and its x  coordinates is denoted as ix . 1 1

2 2
[ , ]i ix x   is the unit region 

centered at ix . The approximations of point sample at ix  is denoted as ,  0,1,..., 1iP i t  . The basic idea 
of obtaining iP  from , 0,1,..., 1iT i t   is as follows: 

1. Construct a quadric spline ( )P x  using ,  0,1,..., 1iP i t  . 

2. Based on the mapping relationship in Eqn. (2.1), integrate ( )P x  on each region 1 1
2 2

[ , ]i ix x  , and 

make the integral equal to product of iT  and the length of 1 1
2 2

[ , ],  0,1,..., 1i ix x i t    . These integral 

equations establish the relations among iP , iM  and , 0,1,..., 1iT i t  . Where, iM  is the second 
derivative of ( )P x  at ix , respectively. 
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3. Combine the relations among iP , iM  and , 0,1,..., 1iT i t  with the continuity conditions and 
boundary conditions of ( )P x , in order to get the M -continuity equations of ( )P x . Solving the M -
continuity equations can get , 0,1,..., 1iM i t  , and then, get ,  0,1,..., 1iP i t  . 

3.2 Specific Steps 

Step 1. Supposing that the first and the second derivative at ix  are im  and iM , respectively, where, 

0,1,..., 1i t  , then a quadric spline ( )P x  is constructed in the interval 0 1[ , ]tx x  . Let ( )P x  be denoted as 

( )iP x  on the short interval 1 1
2 2

[ , ],  0,1,..., 1i ix x i t    , then  

21
( ) ( ) ( ) ,    0,1, , 1

2i i i i i iP x P m x x M x x i t      L  

Step 2. Integrate ( )P x  on each region 1 1
2 2

[ , ],  0,1,..., 1i ix x i t    , respectively. Here, 1 1
2 2

[ , ]i ix x   is unit 

region. Then 

  

P(x)dx  P
i
(x)dx 

x
i

1

2

x
i

1

2 P
i


1

48x
i

1

2

x
i

1

2 M
i
,    i  0,1, ...,t 1                                  (3.1) 

Based on the mapping relationship between area samples and point samples in Eqn. (2.1), we get 

  

P(x)dx 
x

i
1

2

x
i

1

2 T
i
,     i  0,1, ...,t 1                                                            (3.2) 

From Eqns.(3.1)-(3.2), we can get the relations among iP , iM  and , 0,1,..., 1iT i t   as follows 

  
P

i
 T

i


1

24
M

i
,     i  0,1,...,t 1                                                           (3.3) 

Step 3. According to the quadric spline property, ( )P x  satisfies the following continuity conditions 

  
Pi (xi 1

2

)  Pi1(xi 1
2

),   Pi(xi 1
2

)  Pi1(xi 1
2

),         i  1, 2, ...,t 2                            (3.4) 

From Eqn.(3.4), M - continuity equations of ( )P x  can be got 

  
M

i1
 6M

i
 M

i1
 8(P

i1
 2P

i
 P

i1
),      i  1,2,...,t  2                                  (3.5) 

From Eqns.(3.3) and (3.5), we get 

  
M

i1
 4M

i
 M

i1
 6(T

i1
2T

i
T

i1
),     i  1, 2,...,t 2                                    (3.6) 

Based on imitation of manual lofting, the boundary conditions are given as follows 

  
4M

0
 M

1
 6(T

1
 2T

0
)  ,        M

t2
 4M

t 1
 6(T

t 2
 2T

t1
)                            (3.7) 

Eqns.(3.6) and (3.7) constitute the complete M -continuity equations of ( )P x  whose matrix expression 
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  

4 1
1 4 1
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

                                                   (3.8) 

Where,
  
d

0
 6(T

1
 2T

0
),  d

t1
 6(T

t2
 2T

t 1
),  d

i
 6(T

i1
 2T

i
T

i1
),  i  1,2, ..., t  2 . Solve Eqn.(3.8) to 

obtain iM , then substitute iM  to Eqn.(3.3) to obtain ,  0,1,..., 1iP i t  . 

The coefficient matrix in Eqn. (3.8) is strictly diagonally dominant, so its inverse matrix is easy to 
solve. This will reduce computational complexity. 

4 EXPERIMENTS 

We have conducted our new approach on a variety of raw CT data. To measure the performance of our 
new approach, we visualize the raw CT data and the new optimized CT data generated by our approach, 
and compare the visualization quality. Specifically, for a given raw CT data, we first optimize it with our 
new approach to get the new CT data, then, apply the same image reconstruction or processing algorithm 
on the raw CT data and the new CT data respectively, finally, compare the precise of two reconstruction 
results. The reconstruction quality reflects the CT data precision. Obviously, the data, which generates 
the reconstruction result with more details and high quality, is more precise. To make the measure 
objective, we apply several different image reconstruction algorithms on a given raw CT data and its 
optimization result-the new data, and compare the reconstruction quality for each algorithm. 
 

 
 

Fig. 5: Visual comparison of reconstructed results with lung CT data before and after optimization. The 
first row: (a) the reconstructed result with SSD using the raw data, (b) the reconstructed result with SSD 
using the new data. The second row: (c) the reconstructed result with MIP using the raw data, and (d) 
the reconstructed result with MIP using the new data. 
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Fig.5 shows the comparison of 3D reconstructed results generated by different reconstruction 
algorithms based on the CT data before and after optimization with our approach. The data consist of 
140 lung CT slices whose resolution is 512×512. For convenience of description, the 140 raw CT slices 
before optimization are named raw data, and the data obtained by optimizing the raw CT data with our 
approach are named new data. Fig.5 (a) and (b) are the reconstructed results with SSD (Shaded Surface 
Display) method. Here, we use the classical marching cubes algorithm in [9] as the SSD method. The data 
used for reconstruction in Fig.5 (a) and (b) are different. Fig.5 (a) uses the raw data, and Fig.5 (b) uses the 
new data, but all other parameters in SSD are the same in Fig.5 (a) and (b).  Fig.5 (c) and (d) are the 
reconstructed results with MIP (Maximum Intensity Projection) method. Fig.5 (c) uses the raw data, and 
Fig.5 (d) uses the new data. All other parameters in MIP are the same in Fig.5 (c) and (d). 

It can be seen from the comparisons in Fig.5 that, when the same reconstruction algorithm is 
respectively conducted on the raw data and the new data, the 3D reconstructed image based on the 
new data is better. It demonstrates that the precision of the CT data per se is improved after 
optimization, and consequently, the detail information of the 3D image reconstructed on the 
optimized data increases evidently. Some improved details are marked by small circles in Fig.5. 
Additionally, some artifacts in image are eliminated. For example, the artifacts denoted by yellow 
rectangles in Fig.5 (a) are eliminated in Fig.5 (b). Fig.5 shows that our approach has high precision 
because the precision of the reconstruction with the new data are significantly improved. 

 

 
 

Fig. 6: Visual comparison of reconstructed results based on different groups of CT data. The first row: 
(a) and (b) are the results of reconstructing 90 slices of lung CT data with SSD method. (a) is the 
reconstruction on the raw data, and (b) is the reconstruction on the new data optimized by our 
approach. The second row: (c) and (d) are the results of reconstructing 100 slices of head CT data with 
VRT method. (c) is the reconstruction on the raw data, and (d) is the reconstruction on the new data 
optimized by our approach. 
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Fig. 6 shows the comparison of 3D reconstructed results generated by different reconstruction 
algorithms based on different CT data. The data in Fig.6 (a) and (b) consist of 90 lung CT slices whose 
resolution is 512× 512, and the same SSD method as in Fig.5 is used for reconstruction. Fig.6 (a) uses 
the raw data and Fig.6 (b) uses the new data obtained by optimizing the raw data. The data in Fig.6 (c) 
and (d) consist of 100 head CT slices whose resolution is 512×512, and VRT (Volume Rendering 
Technology) method is used for reconstruction. Here, we use the shear-warp algorithm in [7] as the 
VRT method. Fig.6 (c) uses the raw data and Fig.6 (d) uses the new data. Some improved details are 
marked by small circles in Fig.6. It can be seen that, the precision of 3D reconstruction with the new 
data is much higher than that with the raw data, demonstrating that our approach has high 
optimization precision. 

Fig.7 shows visual comparison of 3D images reconstructed respectively on the CT data before and 
after optimization with our approach. Here, we use the algorithm in [8] for volume rendering. The data 
in Fig.7 (a) and (b) consist of 110 lung CT slices whose resolution is 512× 512. Fig.7 (a) is the result 
reconstructed on the raw data, and Fig.7 (b) is the result reconstructed on the new data obtained by 
optimizing the raw data. The data in Fig.7 (c) and (d) consist of 80 head CT slices whose resolution is 
512× 512. Fig.7 (c) is the result reconstructed on the raw data, and Fig.7 (d) is the result reconstructed 
on the new data. It can be seen from these comparisons that, when the same algorithm is used for 3D 
reconstruction, the reconstruction quality on the new data optimized by our approach is better (some 
improved details are marked by small circles), demonstrating the efficiency of our approach for 
improving the CT data precision. 

 

 
 

Fig. 7: Visual comparison of 3D images reconstructed on the CT data before and after optimization. (a) 
The result reconstructed on the lung raw data, (b) The result reconstructed on the new data obtained 
by optimizing the lung raw data, (c) The result reconstructed on the head raw data, and (d) The result 
reconstructed on the new data obtained by optimizing the head raw data. 

5 CONCLUSIONS 

Based on the fact that the raw CT data acquired with scanner can be regarded as area samples, we 
present a new approach for optimizing CT data precision in this paper. The new approach transforms 
these area samples to more accurate approximations of point samples to improve the precision of the 
CT data per se. Utilization of these new optimized CT data for 2D rendering or 3D reconstruction can 
improve the reconstruction quality, and reduce the reconstruction errors. Additionally, in single-layer 
showing, it only needs to conduct quadric spline fitting on each line and each column of the CT slice as 
do as in the step1 of our approach, and then use the new optimized data to render. When 3D volume 
rendering or surface rendering is needed, it should conduct the whole fitting procedure, in order to 
achieve better reconstruction precision. 
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