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ABSTRACT 
 

In this paper we present a novel sensor planning method for achieving efficient measurement and 
reconstruction of freeform object surfaces. Using the modified Bayesian Information Criterion (BIC), 
we first design a model selection strategy to obtain an optimal model structure for the freeform 
surface. Based on the selected model structure, we then determine a set of data points to be 
measured. B-splines are adopted for modeling the free form surface. In order to obtain more 
reliable parameter estimation for the B-spline model, we analyze the uncertainty of the model and 
use the statistical analysis of the Fisher information matrix to optimize the locations of the data 
points needed in the measurements. Using a cloud of data points of a surface acquired by a 3D 
vision system, we implemented the proposed method for reconstructing freeform surfaces. The 
experiment results show that the method is effective and promises useful applications in multi-
sensor measurements including vision guided CMM for reverse engineering.  
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1. INTRODUCTION 

Reconstructing the freeform surface from a set of 
discrete measurement data points is a problem 
important to many areas including reverse engineering, 
metrology, inspection by machine vision, computer 
aided design [1-5]. The first task in the reconstruction of 
a freeform surface is to obtain the measurement data. 
Among the various sensing techniques available, 
mechanical contact probes such as CMM’s (Coordinate 
Measuring Machine) touch probe, and 3D vision 
systems using structure-light [6] are widely used in 
practical applications. CMM with touch-triggered probes 
can provide high measurement accuracy at sub-micron 
level. However, the measurement speed is much lower 
than using a 3D vision system. A vision system can 
acquire thousands of data points over a large spatial 
range in a snapshot. However, the achievable resolution 
is relatively lower, at around mµ200100 − . Therefore, 

in practical applications, using one of the techniques 
means that the user has to suffer from its limitations, e.g. 
the low speed with CMM.  

A way to overcome the limitations of individual 
sensing technique lies in integrating multiple sensors in 
the measurement (Fig. 1). Research efforts have been 
made to achieve this. For example, Nashman et al. [7] 

integrated vision in a touch-probe system, where a video 
camera with a laser triangulation probe and a 3D touch 
probe were used in a CMM. They presented a 
cooperative interaction method for the vision and touch-
probe system that provides sensory feedback to the 
CMM for dimension inspection tasks. Chen and Lin [8] 
presented a vision-aided reverse engineering approach 
(VAREA) to reconstruct free-form surface models from 
physical models, with a CMM equipped with a touch-
triggered probe and a vision system. The VAREA 
integrated computer vision, surface data digitization and 
surface modeling into a single process. The initial vision 
driven surface triangulation process (IVSTP) generated a 
triangular patch by using stereo image detection and a 
constrained Delaunay triangulation method. The 
adaptive model-based digitization process then refined 
the surface reconstruction using measurements from the 
CMM’s touch probe. Since the vision system in VAREA 
used a 3D stereo algorithm to detect 3D surface 
boundaries, only 3D surface boundaries were 
reconstructed and geometrical information about the 
freeform surface could not be retrieved. Recently Shen 
et al [9, 10] presented a multiple-sensor coordinate 
measuring system for automated part localization and 
rapid surface digitization. The multiple-sensor system 
consists of a high precision CMM equipped with touch 
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probe and a 3D active vision system. Their research 
focused on setting up the multiple-sensor system and 
processing the geometrical information from the vision 
system. In these systems, the CMM’s touch probe plays 
the role in accurately digitizing a surface, especially 
when high-precision is desired. How to determine the 
set of measurement data, including the needed number 
of the measurement data points and their locations, for 
accurate reconstruction of freeform surfaces remains 
untouched [11]. 

 
 
Using a CMM for 3D measurements, only a finite 

number of discrete measurement data can be taken for a 
surface. From the statistical viewpoint, each 
measurement data point contains a certain amount of 
geometrical information about the surface, and the 
quantity of information contained in the set of 
measurement data points depends on the number and 
locations of the measurement points. Considering the 
lengthy time needed in using a CMM to take a large 
number of measurement data points, we should select 
the locations of the data points to achieve an optimal 
measurement and reconstruction. Unfortunately, the 
current practice in using CMM mostly adopts random 
data point setting on a surface. In such a case, each data 
point has an equal probability of being picked for the 
measurement. For example, Woo et al. presented a 
sampling strategy based on the Hammersley sequence 
to determine the number of discrete sample points and 
their locations on a machined surface [12]. Lee [13] 
proposed a feature based method, which integrates 
Hammersley sequence and a stratified sampling 
method, to derive the sampling strategy for various 
surfaces such as circular, cone, cylindrical, rectangular 
and spherical surface.  

Unlike objects composed of simple geometric 
primitives, such as planes, lines, spheres and cylinders, 
freeform surfaces have no obvious features. Therefore, 
they are more difficult to define and model 
mathematically than simple geometric objects. In most 
cases, freeform surfaces are represented by the 
parametric equations such as Coons patches, B-splines 
and NURBS (non-uniform rational B-splines). A 
fundamental question then arises: can we find the 
parametric model to represent an unknown freeform 
surface and then select a minimal set of discrete 
measurement points to obtain these parameters, while 
controlling the uncertainty of model parameters within a 
specified tolerance. Here, uncertainty describes the 
tolerance range within which the unknown true surface 
lies with some confidence level.  The lower the 
uncertainty of the model, the better the reconstructed 
surface is. In this paper, we propose a method that 
allows for optimal measurements and reconstruction of 
freeform surfaces. Two issues need to be addressed 
here. The first is how to select the model structure using 
a cloud of low-precision data acquired by a 3D vision 
sensor. We use B-splines to represent a freeform surface 
and present a modified BIC criterion for selecting an 
optimal model structure for surface representation. The 
second is how to determine the locations of a set of 
measurement data points for high-precision 
measurements e.g. by CMM’s touch probe. We analyze 
the uncertainty of the B-spline model, and use the 
statistical analysis of the Fisher information matrix to 
optimize the locations of the measurement data points to 
minimize the uncertainty of the B-spline model. 

The rest of this paper is organized as follows. Section 
2 describes the B-splines approximation and model 
selection for 3D reconstruction of freeform surface. In 
Section 3, the uncertainty of the B-spline surface is 
analyzed. Section 4 presents the optimization of the 
locations of measurement data points. Section 6 gives 
some experimental results in reconstructing the freeform 
surfaces of some real objects. Finally, conclusions of the 
work are given in section 6. 
 
2. B-SPLINE APPROXIMATION AND MODEL 
SELECTION 
 
2.1 B-spline Approximation 
A B-spline surface is defined by the following equation: 
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where nuand nv are the number of control points in u 
and v directions; Φij, with i=0, 1, …, nu-1 and j=0, 1,…, 
nv-1 are the n=nu×nv control points; Bi,p(u) for i=0, 1, …, 
nu-1 and Bj,q(v) for j=0, 1,…, nv-1 are the normalized B-
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spline of degree p and q for the u and v directions, 
respectively. The normalized B-spline Bi,p(u) and Bj,q(v) 
are defined over the knot vectors u=[u0,u1,…,un+p] and 
v=[v0,v1,…, vn+q]. 

Assume that (xk, yk, zk) is the coordinates of a 
measurement point rk on the surface, and (uk, vk) is the 
location parameters of rk . Let us further assume that the 
degrees of p and q and the complete knot vectors u and 
v for surface fitting are also determined. By introducing 
the measurement point rk with the corresponding 
location parameters in Eqn.(1), we have 
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where (xij, yij, zij) are the coordinates of the B-spline 
surface control points Φij. Eqn.(2) can be expressed as 
linear combination of the control points in the B-spline 
representation. If a total of m points on the surface are 
considered, we can obtain the least square estimation of 
Φ=[ΦTx, ΦTy, ΦTz]T of B-spline parameters can then be 
given as: 
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where X=[x1,x2, …, xm]

T, Y=[y1,y2, …, ym]
T and 

Z=[z1,z2, …, zm]
T, the parameters of B-spline model can 

be represented respectively by 
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,   
[BTB]-1BT is the pseudo-inverse matrix of B. B is a 
matrix consisting of the tensor products of the B-spline 
basis functions corresponding to each of the m 
measurement points on the surface 
 





















=

−−−−

−

−

1,11,10,1

1,11,10,1

1,01,00,0

nmmm

n

n

BBB

BBB

BBB

L

MLMM

L

L

B  

 

and 

 

  ]...,,,[]))()(([ 1,1,0,

1

0

1

0,, −
−
=

−
= =⋅ nkkk

n

i

n

jkqjkpi BBBvBuB uv . 

 
2.2 Model Selection 
It is known that for a given set of measurement data, 
there exists a model of optimal complexity that has the 
smallest prediction/generalization errors for further data. 
For a B-spline surface, the complexity of the B-spline 
model is related to the number of its control point 
(parameter) in u and v directions [14]. If the B-spline 
model is too complicated, the approximated B-spline 
surface will tend to over-fit noisy measurement data. If 
the model is too simple, then it will not be able to fit the 
measurement data, causing the approximation results to 
become under-fitted. In general, both over- and under-
fitted approximation will have poor generalization 
capability. Therefore, the problem of finding an 
appropriate model, referred to as model selection, is 
important for achieving a high level of generalization 
capability. The problem of model selection has been 
studied from various standpoints including information 
statistics [15], Bayesian statistics [16,17] and structural 
risk minimization [18]. The Bayesian approach is 
perhaps the most general and powerful method. Taking 
the Bayes rules as an axiom, one can calculate exactly 
the posterior probability of each model. The problem 
with Bayesian approach lies in the fact that the 
calculation of these posterior probabilities involves large 
number of integrations over the parameter space of each 
model. Usually this is not possible analytically and 
therefore approximations have to be taken. In fact, all of 
the other model selection criteria, such as the non-
Bayesian BIC, can be viewed as approximations to the 
Bayesian method. BIC (Bayesian Information Criterion), 
often known as Schwarz criterion, maximizes 
 

)ln():(2 mnLBIC −= rΦ                                          (4) 

 
where L(Φ:r) is the likelihood function for the parameter 
Φ of the B-spline model, r is the set of data point, n is 
the number of control points. It can be seen that BIC has 
two terms. The first corresponds to the goodness of the 
fit, whereas the second corresponds to the penalty term 
for the dimensionality of the model. The higher the 
dimension of the model, the heavier the penalty.   



 86 

   Consider the likelihood function of the parameter of B-
spline model. The pdf p(r|Φ) of the surface can be 
factorized into x, y, and z components as 
 

)|()|()|()|( zyx pppp ΦZΦYΦXΦr ⋅⋅=             (5) 

 
The residual error sequence is assumed to be zero mean 
and white Gaussian with variance σ2. Considering the x 
component, we have the likelihood function as follows  
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with σ2
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The likelihood function for component y and z can be 
obtained in a similar way. Therefore, we can obtain the 
following BIC criterion for selecting the B-spline model: 
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where m is the number of data points. As the first two 
terms in equation (8) measure the prediction accuracy of 
the B-spline model, the BIC criterion will increase as the 
complexity of the model increases. In contrast, the 
second termwill decrease and act as a penalty for using 
additional parameters to model the data. However, since 

the predicted 

2ˆ
kfσ ( f = x, y, z) depends only on the 

training data sampled for model estimation, they are 
insensitive when under-fitting or over-fitting occurs. In 
equation (8), only the second term prevents the 
occurrence of over-fitting. In fact, an honest estimate of 

2

kfσ  ( f = x, y, z) should be based on a re-sampling 
procedure. Here, we can divide the available data into a 
training sample and a prediction sample. The training 
sample is used only for model estimation, whereas the 
prediction sample is used only for estimating the 

prediction data noise 

2

kfσ  ( f = x, y, z). In fact, if the 
model ΦΦΦΦk fitted to the training data is valid, then the 

estimated variance 

2ˆ
kfσ ( f = x, y, z) from the prediction 

sample should also be a valid estimate of the data noise. 

If the variance 

2ˆ
kfσ  ( f = x, y, z) found from the 

prediction sample becomes unexpectedly large, we have 
grounds for believing that the candidate model fits the 
data badly. It is seen that the data noise k f ( f = x, y, z) 

estimated from the prediction sample is more sensitive to 
the quality of the model than the one directly estimated 

from the training sample, as the 

2ˆ
kfσ  ( f = x, y, z) 

estimated from the prediction sample also has the 
capability of detecting the occurrence of under-fitting or 
over-fitting. 
 
3. UNCERTAINTY OF B-SPLINE MODEL 
The parameter estimation in Eqn.(3) produces estimated 
values of the parameters. The degree of approximation 
of B-spline model is related to a number of factors, 
including the accuracy of the measurements and 
uncertainty in the B-spline model. It should be noted that 
all measurement data are contaminated by noise, and it 
is impossible to find an exact solution for the model. 
Let’s assume that all measurement errors in the three 
coordinate components are randomly and independently 
sampled from a normal distribution with zero mean and 

variance 
2σ . Eqn.(3) gives the maximum likelihood of 

the estimate Φ̂ of the true model Φ . The estimated 

parameter errors ΦΦ ˆ− are distributed as multi-variable 
normal distribution with zero mean and covariance 
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The presence of random errors in the inverse solution is 
an indication of its inherent uncertainty in the B-spline 
model parameters. Considering the following quadratic 
form 
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that defines the shape of the normal parameter error 
distribution. In fact, the quadratic form defines a hyper-
ellipsoid on which the true model must lie. We do not 
know the position of this surface as we do not know the 

value of Φ . However, we know the range within which 

the unknown true Φ value lies with a confidence interval. 
For a confidence level γ, we can find from the 

distribution a number 

2
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the hyper-ellipsoid 
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The true model will be contained in the above ellipsoid 
which is referred to as the ellipsoid of confidence. The 
ellipsoid of confidence gives us a useful visual image of 

the uncertainty of parameter Φ of the B-spline surface. 

In Eqn.(9)-(11), M is also known as the Fisher 
information matrix which characterizes the uncertainty in 
the estimated parameters. Therefore, the problem of 
selecting optimal set of measurement data for high-
precision measurement for CMM is to find the locations 
of the measurement data points for which the estimation 
uncertainty is minimized in some sense. Various criteria 
exist for optimizing the Fisher information matrix to 
achieve minimum estimation errors. The major criteria 
includes Cond(M), Trace(M) (A-optimality), the 
maximum eigenvalue of M-1 (E-optimality), and Det(M) 
(D-optimality) [19]. From the standpoint of Shannon 
entropy, these criteria measure the amount of 
information contained in the probability distribution 
representing the parameter errors. Thus, ensuring that 
the important and necessary information in the B-spline 
model is embodied in the measurement data set is the 
primary concern in selecting optimal set of measurement 
data for high-precision measurements for CMM. Here 
the optimal criterion adopted is the D-optimality, or the 
determinant criterion, for which the determinant of the 
Fisher information matrix |M| is to be maximized. 
Geometrically, The volume of the ellipsoid is inversely 
proportional to the square root of the determinant |M|. 
A large |M| corresponds to a small volume of the model 
parameter space, indicating that the true parameters are 
well localized and that the knowledge or information we 
have about them is highly reliable [20]. Here, we define 
|M| as the uncertainty measurement for the estimated 
parameter vector Φ. 
 
4 OPTIMIZING MEASUREMENTS 
 
As the uncertainty of a B-spline model is dependent on 
the number and locations as well as the variance of the 
measurement data, the sensing strategy plays a critical 
role in the measurement and reconstruction results. A 
sensing strategy should be able to determine the number 
of measurement data to sample and the locations to take 
the measurements, while maintaining the uncertainty of 
the reconstructed B-spline model sufficiently low. 
 
4.1 Determining the Number of Measurement 
Data 
 
Since the reconstruction of a freeform surface is based 
on the measurements at discrete points to be sensed by a 
CMM’s touch probe, these discrete points must contain 
sufficient information that allows the freeform surface to 
be reconstructed. However, the number of measurement 

data has to be limited, to achieve a reasonable speed in 
the measurement process. From the statistical point of 
view, the number of measurement data should be at 
least ten times the number of the parameters in the B-
spline model to make the B-spline regression analysis 
statistically meaningful. For example, for a bi-cubic B-
spline model with h×l B-spline basic functions, the 
number of parameters is (h+3)×(l+3). Therefore, at 
least 10×(h+3)×(l+3) measurement data are required. 
 
4.2 Optimizing the Locations of Measurement 
Data  
Since |M| is dependent not only on the number of 
measurement data, but also on the locations of 
measurement data, we should also optimize the locations 
of the measurement data to maximize |M|. The spatial 
locations of the measurement data on the freeform 
surface then constitute the design variables. Each 
candidate measurement data point can vary its location 
within a specified surface. Thus, the location of a 
measurement data point is represented by two 
parameter variables (u, v) for surface parameterization. 
The coordinate (x, y, z) of the measurement data can be 
obtained from the parameter variables (u, v) with 
appropriate coordinate transformations. Thus, optimizing 
the locations of measurement data points for minimizing 
the uncertainty of a B-spline model can be stated as 
follows: 

||max , M
kk vu  

Subject to: (uk, vk)∈[0,1],  k=0,1,…m-1.                  (12) 
 
The problem is essentially a combinatory optimization 
problem. Since the objective function |M| is non-
smooth and nonlinear, the existence of the derivations at 
all points is not guaranteed. This makes the optimization 
difficult if using a standard optimization method. To 
simplify the problem, the |M| can be evaluated with an 
existing discrete D-optimal design method called 
Fedorov exchange algorithm. This algorithm implements 
an efficient neighborhood search for the maximum 
determinant of the Fisher information matrix M. 

Consider the incremental form of |M|. Each 
additional measurement data incrementally update M, 
so that after k+1 measurements, its value becomes 

k
T
kkk HHMM +=+ )()1(

.  
The corresponding determinant of M then is 
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 is the basis 
function vector evaluated at location (uk+1,vk+1).  
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   If a point is to be removed from the set of sample 
points, all the addition and subtraction signs in Eqn.(13) 
are reversed. To evaluate |M| by Fedorov exchange 
algorithm, each point in the set of measurement data is 
considered for exchange with each of the available 
candidate point. The pair of points chosen to exchange 
is the pair that maximizes the increase in the determinant 
of M. This process is repeated until no further increase in 
the determinant can be obtained by the exchange. 

If we denote the point to be added by H+, and the 
point to be replaced by H-, then by exchanging the pair 
of H+ and H-, the new determinant is 
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It is obvious from Eqns.(14) and (15) that it is critical 

for Fedorov exchange algorithm to find a candidate 
point to replace a point in the current measurement data 

set in turn, which maximizes 
),( −+Δ HH
.  

In this work, we use simulated annealing algorithm to 
search the candidate point. Simulated annealing (SA) is 
a random search algorithm that is popular for solving 
both continuous and discrete global optimization 
problem. The optimal procedure using discrete SA 
algorithm for optimization of the locations of the 
measurement data point can be stated briefly as follows: 

Step 1. Select a measurement point rk(uk,vk)∈ S, 

k=0,1,…m-1 from the set of sample points. 
Step 2. Generate a candidate point rc(uc,vc) ∈ S 

according to a specified generator. 
Step 3.  Set 
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where p is the probability of accepting p when 

0),( <Δ −+ HH
. For simplicity, the probability p is set 

as constraint. 
   Step 4. Repeat Step 2 and 3 until the stopping 
criterion is satisfied. 
    Step 5. Select another measurement data point from 
the sample set, and repeat step 1 to 4 until all 
measurement data in the selected measurement are 
exchanged. 
 
5. EXPERIMENTS 
To demonstrate the effectiveness of the proposed sensor 
planning strategy for reconstructing freeform surfaces, 
two experiments are conducted. In the current 

implementation, uniform cubic B-spline model is used to 
represent these surfaces. 

The first example we chose for experiment is to 
reconstruct the surface of a computer. To reconstruct the 
freeform surface, the first thing is to determine the 
control point number nu and nv in the u and v parameter 
directions. A 3D vision system was used to acquire a 
cloud of data points on the mouse surface.  The vision 
system consisting of a laser stripe projector and CCD 
camera measures 3D coordinates based triangulation. 
Then, we used our modified BIC Criterion to select B-
spline model structure (nu and nv ) to represent the 
freeform surface. 

To demonstrate the effectiveness of the modified BIC 
criterion, we compared it with the BIC and cross 
validation (CV) methods respectively. The two following 
performance indices were used: 

1) model complexity, which refers to the number d 
(d=nu×nv) of control points of a B-spline model 
determined by a given model selection criterion. 
    2) estimation accuracy, which is defined as the MSE 
(mean square error) between the actual data points and 
the regression estimate chosen by a given model 
selection method. 

In this section, we use box plots of the MSE and model 
complexity of each method to test the performance of 
different model selection methods. The experiments with 
different sample sizes were designed to observe the 
differences between the different model selection 
methods. For each sample size, the sample points were 
selected randomly from the ‘data cloud’ acquired by the 
3D vision system, and then used to determine the 
structure of the B-spline model with a different selection 
criterion. The above selection process was repeated 100 
times. The comparison results are presented in box plots 
which give the empirical distribution of the comparison 
based on 100 iterations in the model selection. 
Evaluation results with a set of 300 are shown as a box 
plot. 
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Fig. 2. Results of Model selection with 300 training samples and 
200 prediction samples. 

 
By our method, a model structure with 5 control 

points in both u and v directions (totally 25 parameters 
to be estimated) was selected as the optimal model 
structure. The minimal set of 250 measurement data was 
used to estimate these parameters. As discussed in 
section 3, high uncertainty in the estimated parameters 

indicates that the estimated values of Φ̂  can deviate 

significantly from the true values of Φ . In other words, 
the lower the uncertainty in the estimated parameters, 

the more reliable the estimation Φ̂  is.  
By our method, a model structure with 5 control 

points in both u and v directions (totally 25 parameters 
to be estimated) was selected as the optimal model 
structure. The minimal set of 250 measurement data was 
used to estimate these parameters. As discussed in 
section 3, high uncertainty in the estimated parameters 

indicates that the estimated values of Φ̂  can deviate 

significantly from the true values of Φ .  
Next, we employed the Fedorov exchange algorithm 

to optimize the locations of the measurement data. we 
use the log(|M|) as the indicator of the uncertainty in a 
B-spline model. The larger the log(|M|), the lower the 
uncertainty. The locations after the optimization are 
shown in figure 3. Here an interesting phenomenon to 
note on the optimized locations of the measurement data 
is that after optimization, the measurement data are 
located in the neighbor of each model parameter. These 
relocations allow for more reliable model estimation in 
the parameterization field. The coordinates (x, y, z) of 
the measurement data can be mapped from the 
parameter variables (u, v) with appropriate coordinate 
transformations. 

 

 

 
Fig. 3. The locations of the measurement data after optimization 

 
 
It is observed that after optimization of the locations of 
the measurement data, the uncertainty of the B-spline 
model is significantly reduced compared with using 
random locations in the measurement data. The 
uncertainty of a B-spline model can also be reduced by 
increasing the sample size. To achieve the same level of 
uncertainty in the B-spline model with random locations 
in the measurement data, about 310 more measurement 
data would be needed in the sample set. This allows a 
much more reliable model estimation to be obtained by 
optimizing the locations of the measurement data point 
to be sensed by CMM’s touch probe without increasing 
the number of measurements to be taken. 

 
 
Fig. 4. The uncertainty of the B-spline models before and after 
optimization 
 

     From the experiments, we observed that in the 
parameterization fields, the locations of the measurement 
data points are related to the structure of the B-spline 

After 

Optimization 
Before 

Optimization 
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model. For a uniform cubic B-spline model, the control 
points are distributed uniformly in the u and v directions, 
giving rise to some clusters in which the measurement 
data points are located. Therefore, we infer that the 
structure of a B-spline model determines the locations of 
the measurements and the model structure represents 
the geometrical feature of a surface which can be 
extracted from the cloud of data acquired by a vision 
system.  
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