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ABSTRACT 

 

A new index is proposed for describing the degree of folding of a planar curve segment.  Based on 

a basic concept from integral geometry, the Curve Folding Index (CFI) of a curve segment is 

defined to be the expected number of intersections that a random line has with the curve.  The CFI 

provides a simple measure to characterize planar curves in terms of the degree of folding, and is 

shown to be invariant under the similitude transformations.  We show by experiments that the CFI 

conforms to the intuitive perception of folding complexity. 
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1. INTRODUCTION 

Planar curves have extensively been studied in 

geometry. Many geometric properties of a curve, either 

local or global, e.g. curvature and length, are 

quantifiable and computable. Yet there are 

characteristics of a curve that is not easy to quantify. For 

example, it is of interest to characterize the degree of 

folding of a curve. We consider in this paper a new 

index to describe the degree of folding of a planar curve 

segment. For brevity, a curve segment will be called a 

curve.  

 

Intuitively, there are many turns and twists in a highly 

folded curve. In contrast, an unfolded or mildly folded 

curve is one that is straightened out and is close to a 

straight line. Human cognition can exploit this 

conceptual information to differentiate and identify a 

curve from another. In applications such as curve 

matching, the degree of folding may serve as a good 

starting point to quickly eliminate some curves from 

considerations. There are also applications of folding 

complexity in 3D space, such as in the studies of protein 

folding [1]. In this case, we may model the backbone 

chain of a protein by a space curve. 

 

Probability distributions obtained from geometric 

properties of objects have been used for 3D shape 

matching [4]. For a curve, the distribution of the number 

of intersections of randomly distributed lines intersecting 

the curve can be extracted. We define the Curve Folding 

Index (CFI) of a 2D curve by the expected number of 

intersection points that a random line has with the 

curve. While the distribution encapsulates a more 

comprehensive view on the degree of folding of a curve, 

the CFI gives a handy single-number index to represent 

the distribution. 

 

2. PRELIMINARIES 

We first review some basic facts from integral     

geometry [5] about lines in 2D plane. Integral geometry 

is the study of the measure of a set of geometric figures 

and is closely related to combinatorial geometry, convex 

geometry, and geometric probability. A basic definition, 

called measure, gives a description for a set of geometric 

entities such as points, lines, chords of curve, etc., which 

is invariant under the group of rigid motions. 

 

Consider a set of straight lines S  in 2E . Each straight 

line G can be represented by its normal          

coordinates ( , )p ψ and the equation of G is 

cos sin 0x y pψ ψ+ − = . The density of S  is given by 

 
dG dp dψ= ∧ , 

 

where ∧  stands for the exterior product of two 

differential forms. The measure of S  is defined by  
 

( )m dG= ∫SS  (1) 

which is invariant under Euclidean transformations in 
2E  up to a constant factor. 
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The density of a set of straight lines intersecting a curve is 

shown [5] to be equal to  

 
sindG ds dθ θ=| | ∧ , 

 

where θ  is the angle between a line G and the tangent 
at a point p, and ds is the differential arc element at  p 

on the curve. For any rectifiable curve C, i.e. a curve of 
finite length, there is 

 

2n dG l=∫ , (2) 

 

where n is the number of intersection points each straight 

line has with the curve C and l is the length of C. This is 
the Cauchy-Crofton formula [2]. Since a straight line 

must either intersect a convex closed curve K at exactly 

two contact points or it does not intersect K at all, we 
have  

 

G K
dG l

∩ ≠∅
=∫  (3) 

 

where K is a convex closed curve of length l. This means 
that the measure of the set of straight lines which 

intersect a convex closed curve equals to the length of 

the curve. Detailed derivation of the above formulas can 

be found in [5, 6]. 

 

Suppose a curve C of length 
C
l  is enclosed by a convex 

closed curve K of length 
K
l . If we consider all lines 

intersecting K, the expected number of intersection 

points of these lines with C would be given by  

 

2
C

K

ln dG
n

l
dG

= =
∫
∫

. (4) 

 

Consider a set L  of N lines that are randomly sampled 

from the set of lines intersecting a convex closed curve K 

that encloses C. Suppose that the length 
K
l  of the curve 

K is known. Let 
K
n  and 

C
n  be the total number of 

intersection points of L  with K and C, respectively. By 

Eq. (2), with integration approximation, we have 

 

2K

K

n
wl

N
≈   and  2C

C

n
wl

N
≈  

 

where w is a constant of proportionality. Therefore, 

C

C K

K

n
l l

n
≈ . 

 

This gives us a combinatorial way of computing the 

length of a curve C. The extension to this idea to 
computing surface area is presented in [3]. 

 

3. THE 2D CURVE FOLDING INDEX 

We give the definition for the 2D Curve Folding Index, 

which provides a quantitative description of the degree 

of folding for a 2D curve.   

 

Definition: Given a curve C in 2E , the Curve Folding 

Index (CFI) of C, denoted by fi(C), is defined as the 

expected number of intersections with C of all straight 

lines intersecting C, i.e.  

( )

G C

n dG
fi C

dG
∩ ≠∅

=
∫
∫

. 

 

The CFI of a 2D curve is invariant under Euclidean 

transformations due to the same property possessed by 

the measure of a set of straight lines. We also have the 

following  

 

Proposition 1 The CFI of a curve is invariant under 

uniform scaling. 

 

PROOF.  Let C be a curve of length 
C
l . Let C′  be a 

scaled copy of C obtained by uniform scaling of factor k 

such that its length is 
C C
l k l′ = , where 0k >  is a 

constant. Let 
C

H  of length 
CH
l  be the closed boundary 

curve of the convex hull of C and let 
C

H ′  of length CH
l

′
 

be the closed boundary curve of the convex hull of C′ . 
The measure of lines intersecting C is equal to the 

measure of lines intersecting 
C

H , and therefore 

 

C
C

H
G C G H

dG dG l
∩ ≠∅ ∩ ≠∅

= =∫ ∫ , 

 

where the second equality follows from Eq. (3). 

Similarly, we have 
CHG C

dG l
′′∩ ≠∅

=∫ . Also, by Eq. (2), 

we have 2
C C
n dG l=∫  and 2

C C
n dG l′ ′=∫ . Hence,  
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2 2
( )

2
                                  ( )

C C

C

C C C

H H
G C

C C

H
G C

n dG l k l
fi C

l k ldG

l n dG
fi C

l dG

′

′ ′

′∩ ≠∅

∩ ≠∅

′ = = =

= = = ,

∫
∫

∫
∫

        

 

i.e. the CFI of a curve is invariant under uniform scaling.  

 

Hence, the CFI of a curve is invariant under the 

similitude transformations, i.e. Euclidean transformations 

together with uniform scaling.  

 

Since 0n =  for any line G without an intersection with 

C, the CFI is different from n  of Eq. (4) in that the 

index ignores those straight lines not intersecting the 

curve under consideration; otherwise, its value would 

only depend on the curve length. 

 

Intuitively, the CFI of a curve C gives the expected 
number of intersections that a straight line segment may 

have with C by considering only those lines that are in 

contact with C.  In general, the CFI of a highly tangled 
curve would be greater than the CFI of a less tangled 

curve; and in particular, the CFI of a straight line is 1 and 

that of a convex closed curve is 2. 

 

4. COMPUTING THE INDEX 

To compute the CFI of a 2D curve, we use a similar 

method to that for computing the curve length as 

described in section 2. Given a 2D curve C, the 

algorithm for computing fi(C) is as follows:  
 

1. Determine a bounding circle B that encloses C. 

 The role of B is to assist in generating a set of 

lines which intersect the curve C. 

2. Generate a set L  of N random lines that intersect 

the bounding circle B. 

 The lines in L  sample the set L  of all lines 

intersecting B.   

3. Compute the number of lines ( n′ ) in L  that 

intersect C and the total number of intersections 

( n ) of these lines with C. 

4. Compute the CFI of the curve C. By integration 

approximation, the CFI of the curve C is given by 

( )
n

fi C
n

≈
′
. 

 

It is crucial that the set L  of N lines is a good sampling 

of the set L  of all lines intersecting the bounding circle 

B, so as to ensure that the computed CFI is invariant 
under the similitude transformations. The approximation 

error introduced in the last step of the algorithm depends 

not only on the number of lines intersecting C (and 

therefore the number of lines generated in L ), but also 

on whether the lines in L  are evenly distributed. In our 

testing, we employ the chord model [7] in which a 

random line is defined by its two end points which are 

uniformly distributed points on a circle B. Therefore, all 

these lines are guaranteed to intersect the circle B and 
they are shown to be uniformly distributed [7]. 

 

5. DISCUSSIONS 

In this section, we show how the CFI and the intersection 

distribution are used to describe the degree of folding of 

various curves.  

 

Fig. 1 shows four curves with different degrees of 

tangling. The CFI and the intersection distributions are 

also given alongside with the corresponding curves. In 

computing the CFI of each curve presented here, a total 

of 100,000 random and uniformly distributed chords of 

a bounding circle are generated. From the figures, we 

see that the CFI generally reflects the degree of folding of 

a curve:  the CFI of a highly folded curve is greater than 

the CFI of a mildly folded one. However, it should be 

noted that although the CFI is a useful indicator to 

characterize the distribution of intersection points, there 

are other statistical characteristics about the distribution, 

e.g. variance, that a single index may not represent. For 

example, consider two curves C and C′  of the same 
length. Then by Eq. (2), the total number of intersections 

that they have with all the lines in the plane would be the 

same. Now, if the perimeters of the convex hulls of the 

two curves are also of the same length, it is easy to show 

by Eq. (3) that the measures of the lines intersecting the 

two curves are the same as well. In this case, the two 

curves have the same CFI, no matter how different the 

degrees of folding they may possess within their convex 

hulls (Fig. 2). This example shows that while the CFI 

allows us to have a glance at the degree of the curve 

folding, a better understanding can be gained by a 

detailed analysis of the intersection distribution. 

 

More properties of a curve are revealed by its 

intersection distribution. In Fig. 3(a) and (b), we have 

two similar curves with the only difference that one is a 

close curve and the other one is open. The intersection 

distributions of the two curves are quite different in that 

the frequencies of the odd number of intersections are all 

zero for the close curve. It indeed reveals the fact that a 
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(c) (d) 

Fig. 1. Intersection distributions and CFI of different curves. The CFI in general reflects the degree of curve folding. 
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(a) (b) 

Fig. 2. The two curves in (a) and (b) are of the same length and the perimeters of their convex hulls are also of the 

same length.  The CFI of the two curves are theoretically the same. 

 

 

line must intersect a close curve at an even number of 

contact points. Moreover, the percentage of lines with 

only one intersection suggests that there is a significant 

portion of the curve that is open or stays loose from the 

rest of the curve (Fig. 3(c) and (d)). Also, the maximum 

number of intersections that a line can have with a curve 

may also tell the complexity of the curve folding. 

Therefore, the CFI and the intersection distribution can 

be used together to effectively characterize the degree of 

folding of a curve, depending on what level of detail one 

would like to attain in describing the folding complexity. 

 

6. CONCLUSION 

In this paper, we have presented a novel method to 

describe the degree of folding of a given planar curve 

quantitatively. The 2D Curve Folding Index (CFI) is 

based on the theory of integral geometry and is shown to 

be invariant under similitude transformations, i.e. 
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(c) (d) 

Fig. 3. Curve properties revealed by the intersection distributions; (a) & (b): open vs. closed curves. For a closed 

curve, there is no line with odd numbers of intersections with the curve; (c) & (d): open portion of the curve in (d) is 

indicated by having more lines intersecting the curve at only one point in the distribution. 

 

 

Euclidean transformations as well as uniform scaling. 

This provides with us a simple and convenient tool to 

characterize a curve based on its degree of folding. 

 

The CFI of a curve is defined to be the expected number 

of intersections that a random line has with the curve. It 

may be computed by generating random chords of a 

bounding circle of the curve and calculating the expected 

number of intersections that the curve may have with 

those lines intersecting the curve. It is shown that the 

intersection distribution of the curve obtained by the 

above method demonstrates distinguishable properties of 

the curve's folding complexity. 

 

There are more problems about the description and 

analysis of the degree of curve folding in the three 

dimensional space, e.g. in protein folding problems by 

representing the backbone chain with a 3D space curve. 

Therefore, an extension of the CFI to three dimensional 

space is a problem for further research. Also, it would be 

interesting to study the relationship of the CFI with the 

integral of the curvature of a planar curve.  
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