
 719

Efficient Degree Elevation and Knot Insertion for B-spline Curves using

Derivatives

Qi-Xing Huang1, Shi-Min Hu1 and Ralph R Martin2

1Tsinghua University, Beijing, huangqx@cg.tsinghua.edu.cn

2Tsinghua University, Beijing, shimin@tsinghua.edu.cn
3Cardiff University, Ralph.Martin@cs.cardiff.ac.uk

ABSTRACT

This paper presents a new algorithm for raising the degree of a B-spline curve which can also insert

new knots at the same time. The new algorithm is faster than existing algorithms, and is much

easier to understand and to implement. The new control points are computed using the following

three simple steps: computing derivatives from control points, resampling the knot vector, and

computing new control points from derivatives. Comparisons with previous methods and examples

are given.

Keywords: B-splines, elevation, knot insertion

1. INTRODUCTION

Several algorithms have been published for raising the

degree of B-spline curves [3,7-10]. The fastest of these is

the algorithm by Prautzsch and Piper [9]; a simpler and

easier-to-understand algorithm is the one by Piegl and

Tiller [10]. The latter converts the B-spline curve to

Bezier form, raises the degree of each Bezier curve, and

then rejoins the Bezier curves to give the new B-spline

curve. Liu[7] gives another degree elevation algorithm,

which has the benefits of being fast and simple. It simply

computes the new control points via a series of knot

insertions followed by a series of knot deletions.

As is well-known, polynomial curve is uniquely

determined by its value and the values of its derivatives

at given point. Because B-spline curves are piecewise

polynomial curves, they share similar property, i.e., each

curve segment over knot interval [1,i it t +] is determined

by the value and derivatives of the curve at the knot it .

We have previously used this property for knot

adjustment of B-splines [14].

Various papers [5,13,15] give rapid algorithms for the

computation of the derivatives of an arbitrary order B-

Spline, and demonstrate that knot refinement algorithms

based on the above observation are an order of

magnitude faster than the well-known Oslo algorithm [2].

In this paper, we develop new efficient degree elevation

algorithm based on derivatives. While existing

algorithms only work for clamped B-spline curves, our

new algorithm also handles the case of unclamped B-

spline curves. Comparisons between our new algorithm

and existing ones are made, showing that our algorithm

is more efficient, and is also easy to understand and

implement. In Section 2, various B-spline formulae are

stated. Section 3 describes our new algorithms.

Comparisons and examples are given in Section 4. A

conclusion Section closes the paper.

2. B-SPLINE FORMULAE

Here we summarize various relevant B-spline formulae

and define our notation. Parametric B-spline curve of

order k is defined by linear combination of B-spline basis

functions as follows:

, 1 1

0

() (), ,
n

i i k k n

i

P t PN t t t t− +
=

= ≤ ≤∑

(1)

where the iP are control points forming a control polygon,

and , (), 0,...,i kN t i n= , are the B-spline basis

functions of order k defined on the knot

vector 0 1 1[,..., , ,..., , ,...,]k k n n n kT t t t t t t− + += .

We could explicitly require that i k it t+ > : if i k it t+ = ,

 720

this leads to , () 0i kN t = , resulting in a B-spline curve

which splits into two separate B-spline curves. However,

there is no need to impose this condition, and Equation

(1) is still valid with this choice of knot vector. This fact is

important because the (-)thk p derivative of a B-spline

curve may not satisfy the condition that i p it t+ > , but it

is still convenient to treat it as a single B-spline curve.

As some knots with consecutive subscripts may be equal,

for the sake of convenience, we rewrite the knot vector

in another form as follows:

1

1

0 -2 0 1 1

-1 -1 2

 [,..., , , ,..., ,...,

 ,..., , , ,...,] (2)

S

k

z

S S S n n k

z

T t t u u u

u u u t t

−

+ +

=
14243

14243

where 0 2 0 2 ... , ...k S n n kt t u u t t− + +≤ ≤ ≤ ≤ ≤ ≤ ,

and 0,...,{ }i i Su = is a strictly increasing sequence,

with 1,..., -1{ }i i Sz = being positive integers giving the

multiplicities of each of the knots:

1 ; 1, 2,..., -1iz k i S≤ ≤ = . The multiplicity of each

iu is iz .

Let
() ()lP t denote the

thl derivative of ()P t . Then

-
()

, -

0

()= ()
n l

l l

i i l k l

i

P t P N t+
=
∑ where , - ()i l k lN t+ are the

B-spline basis functions defined over the knot vector

given by Equation (2), and the
l

iP are defined

recursively by:

1 -1

1

 if 0

= ()if 0 and (3)

0 if 0 and

i

l l l

i i i i k i l

i k i l

i k i l

P l

k l
P P P l t t

t t

l t t

−
+ + +

+ +

+ +

 =


−
− > >

−
 > =

Alternatively, we can compute
1

1

l

iP
−
+ from

-1l

iP and
l

iP

by a rearrangement of Equation (3):

1 -1

1 (4)
i

l l li k i l
i i

t t
P P P

k l

− + +
+

−
= +

−

We call
j

iP the derivative coefficients of the B-spline

()P t . When a B-spline curve has only simple knots,

Wang [15] gives the following formula to compute the

(1)thk − derivatives at the knots using the
j

iP as

follows:
(1) 1() (5)k k

i iP u P− −=

For curves having multiple knots, we now give a similar

formula:

Theorem 1

 1()

 1 1

1

() , where (6)i

i

i
j k z j kj

i i S i l

l

P u P zβ β− ≤ ≤ −
≤ ≤ −

=

= =∑

PROOF

()

, , 1

0 0

1

, 1 , 1

() () () (7)

 () ()(8)

i

i

i i i i

i

i

n j n j
j j j

i i i j k j i i i j k j k

i i

k j
j j

i i j k j k j k j k

i

j

P u P N u P N t

P N t P N t

P

β

β

β β β β
β

β

− −

+ − + − + −
= =

+ − −

+ − + − + − + −
=

= =

= =

=

∑ ∑

∑

 (9)

Equation (8) follows from 1ii k i ju t tβ + − += = and

Equation (9) follows

from
1

, 1 , 1() () 1
i

i i i

i

k j

j k j k i j k j k

i

N t N t
β

β β β
β

+ − −

+ − + − + − + −
=

= =∑

Knot vectors of B-splines can be classified as clamped

and unclamped [6,12]. The knot vector of a clamped B-

spline curve satisfies 0 1 2 0··· kt t t u−= = = =

and 2 ···S n n ku t t+ += = = . We may also say that P(t) is

left-clamped if 0 1 1··· kt t t −= = = . It is well known that a

left-clamped B-spline curve ()P t satisfies

()

0 0() ,0 1 (10)j jP u P j k= ≤ ≤ −

3. DEGREE ELEVATION

3.1 Degree Elevation of a B-spline curve

We now consider degree elevation of a clamped curve.

Since a B-spline curve is a piecewise polynomial curve, it

is possible to raise its degree from k to k + m, where m is

an integer greater than or equal to 1. Thus, there must

exist control points iQ and a new knot vector

0[,...,]n k mT t t + += such that

 721

,

0

() () () (11)i k m i

i

P t Q t N t Q
π

+

=

= =∑

where n is the number of control points of ()Q t ,

and , (), 0,...,i k mN t i n+ = , are the B-spline basis

functions of order k + m defined on the knot vector T .

The curves ()P t and ()Q t have the same geometry

and parameterization. The computation of n , iQ , and

T is referred to as raising the degree of the curve [10].

The knot vector T and n can be computed as follows.

Assume that T takes the form given in equation (2).

Since degree elevation preserves continuity, ()Q t has

continuity of order ik z
C

−
at iu , and the new knot

vector must take the form

1 1

0 0 1 1 1 1[,... , , ,..., ,..., ,..., , ,...,], (12)

S

S S S S

z mk m z m k m

T u u u u u u u u

−

− −

++ + +

=
1424314243 14243 14243

so that n n S m= + × . We now consider how to find

the iQ .

Theorem 2 The derivative coefficients of ()P t and

()Q t are related as follows

,0 1. (13)j jQ P j k= ≤ ≤ −

 1

1 , (14)
p p p

t i p S

pm k z i kQ Pβ β
≤ ≤

+ − ≤ ≤ −=

1 -1 1

1 , (15)
p p

k k p S

pm j pm j mQ Pβ β
− ≤ ≤
+ + + ≤ ≤=

PROOF. Theorem 1 gives that,

()

0 0

()

0 0

() () 1

1

() , 0 1

() , 0 1

() , () ,
i i p

i i

i i

i i i i p S

p p k z i k

P u P i k

Q u Q i k

P u P Q u Qβ β
≤ ≤
− ≤ ≤ −

= ≤ ≤ −

= ≤ ≤ −

= =

As ()P t and ()Q t have the same geometry and

parametrization, so do their derivatives, which proves

Equations (13) and (14).

Consider one segment of the knot vector,

1[,)p pt u u +∈ . It is well known that at most k + m of

the B-spline basis functions , ()i k mN t+ are nonzero in

this segment; more precisely, , ()i k mN t+ is nonzero on

1[,)p pu u + when

 (1) 1p pp m k i pm kβ β+ − − + ≤ ≤ + − .

Consider the
thk derivatives of ()P t and ()Q t . As

the degree of ()P t is 1k − , its
thk derivative equals

zero, and thus so is the
thk derivative of ()Q t . Thus

·
() ()

,

0

,

(1) 1

() () ()

 () 0.
p

p

n S m
k k k

i k mi

i

pm k

k
i k mi

i p m k

P t Q t Q N t

Q N t

β

β

+

+

=

+ −

+

= + − − +

= =

= =

∑

∑

The above equation allows us to deduce that

0, (1) 1k

i p pQ p m k i pm kβ β= + − − + ≤ ≤ + −
, and as a result we can deduce Equation (15) from

1 1

1 .
()

k k ki k m i k
i i i

t t
Q Q Q

k m k

− − + + +
+

−
= +

+ −

Remark It is obvious that Theorem 2 holds as long as

()P t and ()Q t are just left-clamped; it does not matter

if the curve is right-unclamped. To do degree elevation

for an unclamped curve, we can turn it into a left-

clamped curve using our earlier knot adjustment

algorithm.

For a given l in Equations (3) and (4), we can see that

division by a common factor of (-)k l is needed for

all i , so from a software engineering point of view, it

simplifies matters if we define instead

� �

1 1

/ (), / (),
j j

j jj j
i i ii

l l

P P k l Q Q k m l
= =

= − = + −∏ ∏
which lets us rewrite Equations (3) and (4) in simpler

form:

�
� �

� � �

1 1

1

1 1

1

, (16)

() . (17)

j j
j i i
i

i k i l

j j j

i i ii k i l

P P
P

t t

P P t t P

− −
+

+ +

− −
+ + +

−
=

−

= + − ⋅

Equations (13–15) now become

 722

� �
00

1

() ,0 1, (18)

j
j j

l

k l
Q P j k

k m l=

−
= ⋅ ≤ ≤ −

+ −∏

� � 1

1

1

() , (19)

p

pp

j
j j p S

k z i kpm

l

k l
Q P

k m l
ββ

≤ ≤
− ≤ ≤ −+

=

−
= ⋅

+ −∏

� �1 -1 1

1 , (20)
p p

k k p S

j mpm j pm
Q Qβ β

− ≤ ≤
≤ ≤+ + +=

This leads to greater efficiency. For example, in the case

where the knots of ()P t are not repeated, then

1
()

j

l

k l

k m l=

−
+ −∏ can be computed a priori, so while

Equations (13) and (14) add a further n multiplications,

Equations (16) and (17) save a total of

(-1)n k multiplications and (-1)mn k divisions

respectively.

Based on the equations developed above, we now give

a procedural method for degree elevation of a clamped

B-spline curve as follows:

Algorithm 1 Raise a clamped B-spline curve from

degree k to degree k m+

� Use Equation (16) to compute

�
0 ,0 1
j

P j k≤ ≤ − and � 1

1,
p

p

j p S

k z i kPβ
≤ ≤
− ≤ ≤ −

� Use Equation (12) to compute �T and set %n to

n S m+ ×

� Use Equations (18–20) to get

�
0
,0 1
j

Q j k≤ ≤ − and �
p

j

pm
Qβ + , �

1

p

k

pm j
Qβ

−

+ +

� Use Equation (17) to compute new control

points �
0

i
Q ,

Remarks

Existing degree elevation algorithms [7,9,10] can only

handle clamped B-spline curves. The degree of an

unclamped B-spline curve is raised by first clamping

its knot vector using a suitable algorithm [12]. As an

alternative, we may use a knot adjustment algorithm for

this purpose [14]; it can easily be combined with our

new degree elevation algorithm to obtain greater overall

efficiency.

3.2 Combining Knot Insertion and Degree

Elevation

In this section, we only consider the case of a clamped

B-spline curve. Let ,() ()i i kP t PN t= be a spline curve

defined over the knot vector.

1 1

0 0 1 1 1 1[,... , , ,..., ,..., ,..., , ,...,]

S

S S S S

zk z k

T u u u u u u u u

−

− −=
1424314243 14243 14243

in a similar way to before. We now wish to raise its

degree from k to k m+ , and also to insert a set of

new knots

10 1

0 0 1 1[,... , , ,..., ,..., ,...,]

l

l l

yy y

T s s s s s s

−

=
12314243 123

where each iy gives the multiplicity of knot is .

We denote the final curve by ()Q t . We may express

the final knot vector as

1 [1]

[] 1

0 0 1 1 [1] [1]

[] 1 [] 1 [] []

[,... , , ,..., , ,..., ,

 ..., ,..., , ,...,]

l

l S

l l

k m z z

l S l S l S l S

k mz

T u u u u u u

u u u u

−

+

− −

+

=
14243 14243 14243

1442443 14243

where [] , 0l i iu u i S= ≤ ≤ are the knots of original

curve, and the knots inserted are

1 [1] 1 [1] [] 11

1 1 [1] 1 [1] 1 [1] [1] [] 1 [] 1[,..., , ,..., , ,..., ,..., ,...,]

l l l S

l l l l l S l S

z z z z m z

u u u u u u u u

− −

− − − −

− −

14243 1442443 14243 1442443

The number of new knots is
0

l

ii
n n Sm y

=
= + +∑ ,

where
0

l

ii
y

=∑ is the number of knots being inserted.

Equation (23) is another form of to Equation (21).

Existing degree elevation and knot insertion algorithms

use different methods which are hard to combine.

However, our degree elevation algorithm and the knot

insertion algorithm proposed by [13] can be combined

as they use the same idea, i.e. computing derivatives

from control points, resampling the knot vector, and

computing new control points from derivatives. In this

section, we do so, and show that the resulting algorithm

is more efficient than performing degree elevation and

knot insertion separately. The following Theorem

describes the relations between derivatives of the curve

before and after degree elevation and knot insertion.

Theorem 3

 723

� �

�
�

�

�

�
�

�
�

[]

[][]

00

 1

1 1

1 1 1 1,0 [1] [] 1

0 min(1,)

(1

, 0 1 (24)

 , (25)

, (26)

i

l i

i l i hl i h

h h

j j

j j k z j k
i i S

k k i S h l i l i

j j z m

j

k m z

Q P j k

Q P

Q P

Q Q

β

ββ

β β

++

− ≤ ≤ −
≤ ≤ −

− − ≤ ≤ − ≤ ≤ + − −
+ ≤ ≤ −

+ − − −

= ≤ ≤ −

=

=

=

%

 2, []

) 1, []
, .(27)h

i j h i

j k m z j k h l i

k m z j k z h l i−

+ − ≤ ≤ − ≠
+ − ≤ ≤ − − =

%

% %

PROOF

Equation (24) follows because
() ()

0 0() (),0 1.j jQ u P u j k= ≤ ≤ −

Equation (25) follows because

% 1() ()
[] 1 1() (), .ik z j kj j
l i i i SQ u Q u

− ≤ ≤ −
≤ ≤ −=

Equation (26) follows because
() () 0kQ t = . Equation

(27) follows because

% %() () 2, []

 1, []
() () h

h i

j j k m z j k h l i
h h

k m z j k z h l i
Q u Q u + − ≤ ≤ − ≠

+ − ≤ ≤ − − =
− = +

%

%

The detailed proof follows that of Theorem (2) and we

omit it for brevity.

We may now give an algorithm for simultaneously

raising the degree and inserting new knots, which follows

by analogy with Algorithm 1.

Algorithm 2 Simultaneous degree elevation and knot

insertion for a Clamped B-Spline Curve; the order is

raised from k to k + m.
� Use Equation (16) to compute

�
0 , 0 1
j

P j k≤ ≤ − and �
 1

1 1 , i

p

i k z i k

p SPβ
− ≤ ≤ −
≤ ≤ − .

� Set �T by Equation (22) and set

%

1

l

i

i

n n Sm y
=

= + +∑ as above.

� Use Theorem 3 to get

�
0
,0 1
j

Q j k≤ ≤ − , � �
[]

 1

1 1 , i

l i

j k z j k

i SQβ
− ≤ ≤ −
≤ ≤ − and

�
[][]

1 1 1,0 [1] [] 1

0 min(1,)
,

l i hl i h

k i S h l i l i

j j z m
Q

β ++

− ≤ ≤ − ≤ ≤ + − −
+ ≤ ≤ −%

� Use Equations (17) and (27) to compute the new

control points �
0

i

Q

Our algorithm is very efficient. For a B-spline curve with

unique knots, we need only 3(k - 1) additions and 2(k -

1) multiplications per inserted knot, while Böhm’s knot

insertion algorithm [4] takes 3(k + m - 1) additions and

2(k + m - 1) multiplications.

4. COMPARISON

4.1Degree elevation only

Here we only consider clamped B-spline curves, as the

algorithms proposed by Piegl [10] and Prautzsch [9]

cover this case. We measured the time taken by the

algorithm as we varied:

� the amount of degree elevation m, using different

starting degrees (k =2, 3, . . .).

� the starting order k, using different elevations of

order (k goes to k + 1, k goes to k + 2, . . .).

To be fair to previous methods, we used the authors’

own code given in [9] and [10]. We used an Intel

Pentium IV, 1.4GHz computer. We ran each program

10000 times, and measured the total time taken. B-

spline test curves with 20 randomly chosen control

points and randomly distributed knots were used.

We first made tests starting with order 3 and order 4

curves, and raised them to varying new orders up to

order 9. Timings are graphed in Figures 1 and 2.

Fig.1. Times Taken to Elevate the Degree Starting at

Order 3

Fig.2. Times Taken to Elevate the Degree Starting at

Order 4

The previous examples used B-spline curves with interior

knots of multiplicity one. We also investigated the

timings in the order 4 case when the interior knots were

all multiple knots, again using a B-spline with 20 control

points.

Figure 3 shows results for order 4 curves with interior

 724

knots of multiplicity three. These results show that our

algorithm is again the best, both in absolute time, and in

growth rate, when the splines have multiple knots.

Next, we studied the performance of the various

algorithms with respect to different starting orders. Figure

4 shows the timing results for elevation from

order k to order k + 1 elevation using starting orders

between 2 and 8.

Finally, the order k to order k + 2 case was tested, and

the results are shown in Figure 5

Fig.3. Times Taken with Interior Knots of Multiplicity 3

Fig.4. Times Taken to Raise the Order by 1 Starting at
Various Orders

Fig.5. Times Taken to Raise the Order by 3 Starting at

Various Orders

We can see from the above that our algorithm is the best

in terms of absolute time taken. Furthermore, Prautzsch

and Piper’s algorithm usually has the worst growth rate;

our algorithm usually has a slightly slower growth rate

than Piegl and Tiller’s algorithm. Our algorithm is the

clear winner. The conclusions drawn by our practical

experiments validate our theoretical comparisons in

terms of the number of operations used. Our new

algorithm is clearly more efficient for degree elevation

than either of the existing algorithms used as

benchmarks.

4.2 Degree elevation and knot insertion

We also experimentally tested and compared our

combined degree elevation and knot insertion algorithm

to the use of separate degree elevation and knot

insertion algorithms. For the separate algorithms we used

the fastest available: for degree elevation, we used

Prautzsch and Piper’s algorithm when raising the degree

by one, and Piegl and Tiller’s algorithm when raising the

degree by more than one; for knot insertion, we used

Böhm’s [1] algorithm. The test conditions were the same

as those described in the previous Section.

Two tests were carried out. In the first, we always started

with an order 3 curve, and raised its order to 4, while at

the same time inserting a varying number of between 10

and 110 knots. The timings are graphed in Figure 6.

Fig.6 Times (in Seconds) Taken to Raise the Order by 1 and
Insert Varying Numbers of Knots

Fig.7. Times Taken to Raise the Order by Varying Amounts
and Insert 100 Knots

In the second test, we started with an order 4 curve, and

raised its order by varying amounts to order 5, 6, . . . ,

 725

10, while at the same time always inserting 100 knots.

The timings are graphed in Figure 7.

As expected, our combined algorithm is faster than using

separate algorithms.

5. CONCLUSIONS

We have given a new algorithm to elevate the degree of

a B-spline curve based on derivatives. It can also be

combined with an algorithm using similar principles for

knot insertion to give an efficient algorithm which can do

degree elevation and knot insertion simultaneously.

These methods are computationally superior to existing

approaches. The new method presented in this paper

can also be extended to the case of degree reduction.

6. ACKNOWLEDGEMENTS
This work was supported by the Natural Science

Foundation of China (Project Number 60225016,

60273012), the Specialized Research Fund for the Doctoral

Program of Higher Education (Project Number

20020003051) and the National Basic Research Project of

China (Project Number 2002CB312100).

7. REFERENCES

[1] W. Beohm, Inserting new knots into B-spline curves,

Computer Aided Design 12 (4), 1980. pp 199--201

[2] E. Cohen, T. Lyche, R. F. Riesenfeld., Discrete B-

spline and subdivision techniques in computer aided

geometric design and computer graphics, Computer

Graphics and Image Processing 14 (2) , 1980 pp

87--111

[3] E. Cohen, T. Lyche, L. Schumaker., Algorithms for

degree raising of splines, ACM Transactions on

Graphics 4 (3) , 1985, pp 171-181.

[4] R. N. Goldman, T. Lyche., Knot insertion and

deletion algorithms for B-spline curves and surfaces,

Society for Industrial and Applied Mathematics,

1993.

[5] L. A. Ferrari, P. V. Sankar, M. J. Silbermann.,

Efficient algorithms for the implementations of

general B-splines, Computer Vision, Graphics and

Image Processing 56 (1) , 1994. pp 102-105

[6] S.-M. Hu, C.-L. Tai and S.-H. Zhang., An Extension

algorithm for B-spline curves by curve unclamping,

Computer Aided Design, 2002, Vol. 34, No. 5, pp

415-419.

[7] W. Liu, Wayne., A simple, efficient degree raising

algorithm for B-spline curves, Computer Aided

Geometric Design 14 (7) 693--698, 1997.

[8] H. Prautzsch, Degree elevation of B-spline curves,

Computer Aided Geometric Design 18 (12), 1984.

pp 193--198

[9] H. Prautzsch, B. Piper., A fast algorithm to raise the

degree of B-Spline curves, Computer Aided

Geometric Design 8 (4), 1991. pp 253--266

[10] L. Pigel, W. Tiller., Software-engineering approach

to degree elevation of B-spline curves, Computer

Aided Design 26 (1) , 1994. pp 17--28

[11] L. Piegl, W. Tiller., Algorithm for approximate

NURBS skinning, Computer-Aided Design 28 (9),

1995. pp 699--706

[12] L. Piegl, W. Tiller., The NURBS Book, Springer-

Verlag, 2nd Edition, 1997.

[13] C.-L. Tai, S.-M. Hu, Q.-X. Huang., Approximate

merging of B-spline curves via knot adjustment and

constrained optimization, Computer Aided Design

35 (10), 2003. pp- 893--899

[14] S. Y. Wang, L. Ferrari, M. J. Silbermann., High

speed computation of spline functions and

applications, International Journal of Imaging

Systems and Technology, 1996. pp 71-75

