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ABSTRACT 

 

This paper presents a new algorithm for raising the degree of a B-spline curve which can also insert 

new knots at the same time. The new algorithm is faster than existing algorithms, and is much 

easier to understand and to implement. The new control points are computed using the following 

three simple steps: computing derivatives from control points, resampling the knot vector, and 

computing new control points from derivatives. Comparisons with previous methods and examples 

are given. 
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1. INTRODUCTION 

Several algorithms have been published for raising the 

degree of B-spline curves [3,7-10]. The fastest of these is 

the algorithm by Prautzsch and Piper [9]; a simpler and 

easier-to-understand algorithm is the one by Piegl and 

Tiller [10]. The latter converts the B-spline curve to 

Bezier form, raises the degree of each Bezier curve, and 

then rejoins the Bezier curves to give the new B-spline 

curve. Liu[7] gives another degree elevation algorithm, 

which has the benefits of being fast and simple. It simply 

computes the new control points via a series of knot 

insertions followed by a series of knot deletions. 

 

As is well-known, polynomial curve is uniquely 

determined by its value and the values of its derivatives 

at given point. Because B-spline curves are piecewise 

polynomial curves, they share similar property, i.e., each 

curve segment over knot interval [ 1,i it t + ] is determined 

by the value and derivatives of the curve at the knot it . 

We have previously used this property for knot 

adjustment of B-splines [14].  

 
Various papers [5,13,15] give rapid algorithms for the 

computation of the derivatives of an arbitrary order B-

Spline, and demonstrate that knot refinement algorithms 

based on the above observation are an order of 

magnitude faster than the well-known Oslo algorithm [2].  

 

In this paper, we develop new efficient degree elevation 

algorithm based on derivatives. While existing 

algorithms only work for clamped B-spline curves, our 

new algorithm also handles the case of unclamped B-

spline curves. Comparisons between our new algorithm 

and existing ones are made, showing that our algorithm 

is more efficient, and is also easy to understand and 

implement. In Section 2, various B-spline formulae are 

stated. Section 3 describes our new algorithms. 

Comparisons and examples are given in Section 4. A 

conclusion Section closes the paper. 
 

 

2. B-SPLINE FORMULAE 

Here we summarize various relevant B-spline formulae 

and define our notation. Parametric B-spline curve of 

order k is defined by linear combination of B-spline basis 

functions as follows:  

, 1 1

0

( ) ( ),     ,
n

i i k k n

i

P t PN t t t t− +
=

= ≤ ≤∑
     

(1)
 

where the iP are control points forming a control polygon, 

and , ( ), 0,...,i kN t i n= , are the B-spline basis 

functions of order k defined on the knot 

vector 0 1 1[ ,..., , ,..., , ,..., ]k k n n n kT t t t t t t− + += . 

 

We could explicitly require that  i k it t+ > : if  i k it t+ = , 
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this leads to , ( ) 0i kN t = ,  resulting in a B-spline curve 

which splits into two separate B-spline curves. However, 

there is no need to impose this condition, and Equation 

(1) is still valid with this choice of knot vector. This fact is 

important because the ( - )thk p  derivative of a B-spline 

curve may not satisfy the condition that  i p it t+ > , but it 

is still convenient to treat it as a single B-spline curve. 

 

As some knots with consecutive subscripts may be equal, 

for the sake of convenience,  we rewrite the knot vector 

in another form as follows: 

1

1

0 -2 0 1 1

-1 -1 2

 [ ,..., , , ,..., ,...,

       ,..., , , ,..., ] (2)

S

k

z

S S S n n k

z

T t t u u u

u u u t t

−

+ +

=
14243

14243

 

where 0 2 0 2 ... , ...k S n n kt t u u t t− + +≤ ≤ ≤ ≤ ≤ ≤ , 

and 0,...,{ }i i Su =  is a strictly increasing sequence, 

with 1,..., -1{ }i i Sz =  being positive integers giving the 

multiplicities of each of the knots: 

1 ; 1, 2,..., -1iz k i S≤ ≤ = . The multiplicity of each 

iu is iz . 

 

Let 
( ) ( )lP t denote the 

thl derivative of ( )P t . Then 

-
( )

, -

0

( )= ( )
n l

l l

i i l k l

i

P t P N t+
=
∑  where , - ( )i l k lN t+  are the 

B-spline basis functions defined over the knot vector 

given by Equation (2), and the 
l

iP are defined 

recursively by: 
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                        if 0
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Alternatively, we can compute 
1

1

l

iP
−
+ from  

-1l

iP  and
l

iP  

by a rearrangement of Equation (3): 

1 -1

1    (4)
i

l l li k i l
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P P P
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− + +
+

−
= +

−
 

We call 
j

iP the derivative coefficients of the B-spline 

( )P t . When a B-spline curve has only simple knots, 

Wang [15] gives the following formula to compute the  

( 1)thk −  derivatives at the knots using the
j

iP  as 

follows: 
( 1) 1( )    (5)k k

i iP u P− −=                                  

 

For curves having multiple knots, we now give a similar 

formula: 

 

Theorem 1  

     1( )
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1

( )  ,  where  (6)i
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PROOF 
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Equation (8) follows from 1ii k i ju t tβ + − += = and 

Equation (9) follows 

from
1

, 1 , 1( ) ( ) 1
i

i i i

i

k j

j k j k i j k j k

i

N t N t
β

β β β
β

+ − −

+ − + − + − + −
=

= =∑   

Knot vectors of B-splines can be classified as clamped 

and unclamped [6,12]. The knot vector of a clamped B-

spline curve satisfies 0 1 2 0··· kt t t u−= = = =  

and 2 ···S n n ku t t+ += = = . We may also say that P(t) is 

left-clamped if 0 1 1··· kt t t −= = = . It is well known that a 

left-clamped B-spline curve ( )P t   satisfies 

( )

0 0( )  ,0 1                (10)j jP u P j k= ≤ ≤ −  

 

3. DEGREE ELEVATION 

 

3.1 Degree Elevation of a B-spline curve 

We now consider degree elevation of a clamped curve. 

Since a B-spline curve is a piecewise polynomial curve, it 

is possible to raise its degree from k to k + m, where m is 

an integer greater than or equal to 1. Thus, there must 

exist control points iQ and a new knot vector 

0[ ,..., ]n k mT t t + +=  such that 



 721 

,

0

( ) ( ) ( )      (11)i k m i

i

P t Q t N t Q
π

+

=

= =∑  

where n  is the number of control points of ( )Q t , 

and , ( ), 0,...,i k mN t i n+ = , are the B-spline basis 

functions of order k + m defined on the knot vector T . 

 

The curves ( )P t and ( )Q t  have the same geometry 

and parameterization. The computation of n , iQ  , and 

T is referred to as raising the degree of the curve [10]. 

 

The knot vector T  and n  can be computed as follows. 

Assume that T takes the form given in equation (2). 

Since degree elevation preserves continuity, ( )Q t  has 

continuity of order ik z
C

−
at iu , and the new knot 

vector must take the form 

1 1

0 0 1 1 1 1[ ,... , , ,..., ,..., ,..., , ,..., ],  (12)

S

S S S S

z mk m z m k m

T u u u u u u u u

−

− −

++ + +

=
1424314243 14243 14243

 

so that n n S m= + × . We now consider how to find 

the iQ . 

 

Theorem 2  The derivative coefficients of ( )P t and 

( )Q t  are related as follows 

 

,0 1.   (13)j jQ P j k= ≤ ≤ −  

 1

1 ,     (14)
p p p

t i p S

pm k z i kQ Pβ β
≤ ≤

+ − ≤ ≤ −=  

1 -1 1

1 ,      (15)
p p

k k p S

pm j pm j mQ Pβ β
− ≤ ≤
+ + + ≤ ≤=  

 

PROOF. Theorem 1 gives that, 

 
( )

0 0

( )

0 0

( ) ( ) 1

1

( ) ,   0 1

( ) ,   0 1

( ) , ( ) ,
i i p

i i

i i

i i i i p S

p p k z i k

P u P i k

Q u Q i k

P u P Q u Qβ β
≤ ≤
− ≤ ≤ −

= ≤ ≤ −

= ≤ ≤ −

= =

 

 

As ( )P t and ( )Q t  have the same geometry and 

parametrization, so do their derivatives, which proves 

Equations (13) and (14). 

 

Consider one segment of the knot vector, 

1[ ,  )p pt u u +∈ . It is well known that at most k + m of 

the B-spline basis functions , ( )i k mN t+  are nonzero in 

this segment; more precisely, , ( )i k mN t+ is nonzero on 

1[ ,  )p pu u +  when 

 ( 1)  1p pp m k i pm kβ β+ − − + ≤ ≤ + − . 

Consider the 
thk  derivatives of ( )P t  and ( )Q t .  As 

the degree of ( )P t is 1k − , its 
thk derivative equals 

zero, and thus so is the 
thk derivative of ( )Q t . Thus 

·
( ) ( )

,

0

,

( 1) 1

( ) ( ) ( )

          ( )  0.
p

p

n S m
k k k

i k mi

i

pm k

k
i k mi

i p m k

P t Q t Q N t

Q N t

β

β

+

+

=

+ −

+

= + − − +

= =

= =

∑

∑
 

The above equation allows us to deduce that 

0, ( 1) 1k

i p pQ p m k i pm kβ β= + − − + ≤ ≤ + −
, and as a result we can deduce Equation (15) from 

1 1

1   . 
(   )

k k ki k m i k
i i i

t t
Q Q Q

k m k

− − + + +
+

−
= +

+ −
 

 

Remark It is obvious that Theorem 2 holds as long as 

( )P t and ( )Q t are just left-clamped; it does not matter 

if the curve is right-unclamped. To do degree elevation 

for an unclamped curve, we can turn it into a left-

clamped curve using our earlier knot adjustment 

algorithm. 

 

For a given l  in Equations (3) and (4), we can see that 

division by a common factor of (  -  )k l  is needed for 

all i , so from a software engineering point of view, it 

simplifies matters if we define instead 

� �

1 1

/ ( ),   / ( ),
j j

j jj j
i i ii

l l

P P k l Q Q k m l
= =

= − = + −∏ ∏
which lets us rewrite Equations (3) and (4) in simpler 

form:  

�
� �

� � �

1 1

1

1 1

1

,                    (16)
 

(  )  . (17)

j j
j i i
i

i k i l

j j j

i i ii k i l

P P
P

t t

P P t t P

− −
+

+ +

− −
+ + +

−
=

−

= + − ⋅

 

 
Equations (13–15) now become 
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00
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j
j j

l

k l
Q P j k

k m l=

−
= ⋅ ≤ ≤ −

+ −∏  

� � 1

1

1

 
( ) ,     (19)

 
p

pp

j
j j p S

k z i kpm

l

k l
Q P

k m l
ββ

≤ ≤
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=

−
= ⋅
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� �1 -1 1

1 ,      (20)
p p

k k p S

j mpm j pm
Q Qβ β

− ≤ ≤
≤ ≤+ + +=  

 

This leads to greater efficiency. For example, in the case 

where the knots of ( )P t  are not repeated, then 

1
( )

j

l

k l

k m l=

−
+ −∏ can be computed a priori, so while 

Equations (13) and (14) add a further n multiplications, 

Equations (16) and  (17) save a total of 

( -1)n k multiplications and ( -1)mn k divisions 

respectively. 
 

Based on the equations developed above, we now give 

a procedural method for degree elevation of a clamped 

B-spline curve as follows: 

 

Algorithm 1 Raise a clamped B-spline curve from 

degree k  to degree k m+  

 
� Use Equation (16) to compute 

�
0 ,0 1
j

P j k≤ ≤ − and � 1

1,  
p

p

j p S

k z i kPβ
≤ ≤
− ≤ ≤ −  

� Use Equation (12) to compute �T and set %n to 

n S m+ ×  

� Use Equations (18–20) to get 

�
0
,0 1
j

Q j k≤ ≤ − and �
p

j

pm
Qβ + , �

1

p

k

pm j
Qβ

−

+ +  

� Use Equation (17) to compute new control 

points �
0

i
Q , 

 

Remarks 

 

Existing degree elevation algorithms [7,9,10] can only 

handle clamped B-spline curves. The degree of an 

unclamped B-spline curve is raised by first clamping 

its knot vector using a suitable algorithm [12]. As an 

alternative, we may use a knot adjustment algorithm for 

this purpose [14]; it can easily be combined with our 

new degree elevation algorithm to obtain greater overall 

efficiency. 

 

3.2 Combining Knot Insertion and Degree 

Elevation 

In this section, we only consider the case of a clamped 

B-spline curve. Let ,( ) ( )i i kP t PN t= be a spline curve 

defined over the knot vector. 

1 1

0 0 1 1 1 1[ ,... , , ,..., ,..., ,..., , ,..., ]

S

S S S S

zk z k

T u u u u u u u u

−

− −=
1424314243 14243 14243

 

in a similar way to before. We now wish to raise its 

degree from k  to k m+ , and also to insert a set of 

new knots 

10 1

0 0 1 1[ ,... , , ,..., ,..., ,..., ]

l

l l

yy y

T s s s s s s

−

=
12314243 123

 

where each iy  gives the multiplicity of knot is . 

We denote the final curve by ( )Q t . We may express 

the final knot vector as 

1 [1]

[ ] 1

0 0 1 1 [1] [1]

[ ] 1 [ ] 1 [ ] [ ]

[ ,... , , ,..., , ,..., ,

       ..., ,..., , ,..., ]

l

l S

l l

k m z z

l S l S l S l S

k mz

T u u u u u u

u u u u

−

+

− −

+

=
14243 14243 14243

1442443 14243

 

where [ ]   ,  0l i iu u i S= ≤ ≤ are the knots of original 

curve, and the knots inserted are 

1 [1] 1 [1] [ ] 11

1 1 [1] 1 [1] 1 [1] [1] [ ] 1 [ ] 1[ ,..., , ,..., , ,..., ,..., ,..., ]

l l l S

l l l l l S l S

z z z z m z

u u u u u u u u

− −

− − − −

− −

14243 1442443 14243 1442443

The number of new knots is 
0

 
l

ii
n n Sm y

=
= + +∑ , 

where 
0

l

ii
y

=∑ is the number of knots being inserted. 

Equation (23) is another form of to Equation (21). 

 

Existing degree elevation and knot insertion algorithms 

use different methods which are hard to combine. 

However, our degree elevation algorithm and the knot 

insertion algorithm proposed by [13] can be combined 

as they use the same idea, i.e. computing derivatives 

from control points, resampling the knot vector, and 

computing new control points from derivatives. In this 

section, we do so, and show that the resulting algorithm 

is more efficient than performing degree elevation and 

knot insertion separately. The following Theorem 

describes the relations between derivatives of the curve 

before and after degree elevation and knot insertion. 

 

Theorem 3 
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,  0 1                       (24)
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,      (26)
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Q P j k

Q P
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Q Q
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β β
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 2,  [ ]

)  1,  [ ]
, .(27)h

i j h i

j k m z j k h l i

k m z j k z h l i−

+ − ≤ ≤ − ≠
+ − ≤ ≤ − − =

%

% %

 

 

PROOF  

Equation (24) follows because 
( ) ( )

0 0( ) ( ),0 1.j jQ u P u j k= ≤ ≤ −  

Equation (25) follows because 

%  1( ) ( )
[ ] 1 1( )  ( ), .ik z j kj j
l i i i SQ u Q u

− ≤ ≤ −
≤ ≤ −=  

Equation (26) follows because
( ) ( ) 0kQ t = . Equation 

(27) follows because 

% %( ) ( )  2,  [ ]

 1,  [ ]
( )  ( )  h

h i

j j k m z j k h l i
h h

k m z j k z h l i
Q u Q u + − ≤ ≤ − ≠

+ − ≤ ≤ − − =
− = +

%

%  

The detailed proof follows that of Theorem (2) and we 

omit it for brevity.  

We may now give an algorithm for simultaneously 

raising the degree and inserting new knots, which follows 

by analogy with Algorithm 1. 

 

Algorithm 2  Simultaneous degree elevation and knot  

insertion for a Clamped B-Spline Curve; the order is 

raised from k to k + m. 
� Use Equation (16) to compute 

�
0 ,  0 1
j

P j k≤ ≤ −  and �
 1

1 1 ,   i

p

i k z i k

p SPβ
− ≤ ≤ −
≤ ≤ − . 

� Set �T  by Equation (22) and set 

%

1

 
l

i

i

n n Sm y
=

= + +∑  as above. 

� Use Theorem 3 to get 

�
0
,0 1
j

Q j k≤ ≤ −  , � �
[ ]

 1

1 1 ,   i

l i

j k z j k

i SQβ
− ≤ ≤ −
≤ ≤ − and

�
[ ][ ]

1 1 1,0 [   1] [ ] 1

0  min( 1, )
,

l i hl i h

k i S h l i l i

j j z m
Q

β ++

− ≤ ≤ − ≤ ≤ + − −
+ ≤ ≤ −%  

� Use Equations (17) and (27) to compute the new 

control points �
0

i

Q  

 

Our algorithm is very efficient. For a B-spline curve with 

unique knots, we need only 3(k - 1) additions and 2(k - 

1)  multiplications per inserted knot,  while Böhm’s knot 

insertion algorithm [4] takes 3(k + m - 1) additions and 

2(k + m - 1) multiplications. 

 

4. COMPARISON 

 

4.1Degree elevation only 

Here we only consider clamped B-spline curves, as the 

algorithms proposed by Piegl [10] and Prautzsch [9] 

cover this case. We measured the time taken by the 

algorithm as we varied: 

� the amount of degree elevation m, using different 

starting degrees (k =2, 3, . . . ). 

� the starting order k, using different elevations of 

order (k goes to k + 1, k goes to k + 2, . . . ). 

 

To be fair to previous methods, we used the authors’ 

own code given in [9] and [10].  We used an Intel 

Pentium IV, 1.4GHz computer. We ran each program 

10000 times, and measured the total time taken. B-

spline test curves with 20  randomly chosen control 

points and randomly distributed knots were used. 

 

We first made tests starting with order 3 and order 4 

curves, and raised them to varying new orders up to 

order 9. Timings are graphed in Figures 1 and 2. 

 

 
Fig.1. Times Taken to Elevate the Degree Starting at 

Order 3 

 

 
Fig.2. Times Taken to Elevate the Degree Starting at 

Order 4 

 

The previous examples used B-spline curves with interior 

knots of multiplicity one. We also investigated the 

timings in the order 4  case when the interior knots were 

all multiple knots, again using a B-spline with 20 control 

points. 

 

Figure 3 shows results for order 4 curves with interior 
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knots of multiplicity three. These results show that our 

algorithm is again the best, both in absolute time, and in 

growth rate, when the splines have multiple knots. 

 

Next, we studied the performance of the various 

algorithms with respect to different starting orders. Figure 

4 shows the timing results for elevation from 

order k to order k + 1 elevation using starting orders 

between 2 and 8. 

 

Finally, the order k to order k + 2 case was tested, and 

the results are shown in Figure 5 

 

 
Fig.3. Times Taken with Interior Knots of Multiplicity 3 
 

 
Fig.4. Times Taken to Raise the Order by 1 Starting at 
Various Orders 

 

 
Fig.5. Times Taken to Raise the Order by 3 Starting at 

Various Orders 

 

We can see from the above that our algorithm is the best 

in terms of absolute time taken. Furthermore, Prautzsch 

and Piper’s algorithm usually has the worst growth rate; 

our algorithm usually has a slightly slower growth rate 

than Piegl and Tiller’s algorithm. Our algorithm is the 

clear winner. The conclusions drawn by our practical 

experiments validate our theoretical comparisons in 

terms of the number of operations used. Our new 

algorithm is clearly more efficient for degree elevation 

than either of the existing algorithms used as 

benchmarks. 

 

4.2 Degree elevation and knot insertion 

We also experimentally tested and compared our 

combined degree elevation and knot insertion algorithm 

to the use of separate degree elevation and knot 

insertion algorithms. For the separate algorithms we used 

the fastest available:  for degree elevation, we used 

Prautzsch and Piper’s algorithm when raising the degree 

by one, and Piegl and Tiller’s algorithm when raising the 

degree by more than one; for knot insertion, we used 

Böhm’s [1] algorithm. The test conditions were the same 

as those described in the previous Section. 

 

Two tests were carried out. In the first, we always started 

with an order 3 curve, and raised its order to 4, while at 

the same time inserting a varying number of between 10 

and 110 knots. The timings are graphed in Figure 6. 

 
Fig.6 Times (in Seconds) Taken to Raise the Order by 1 and 
Insert Varying Numbers of Knots 

 

 
Fig.7. Times Taken to Raise the Order by Varying Amounts 
and Insert 100 Knots 
 

In the second test, we started with an order 4 curve, and 

raised its order by varying amounts to order 5, 6, . . . , 
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10, while at the same time always inserting 100 knots. 

The timings are graphed in Figure 7. 

 

As expected, our combined algorithm is faster than using 

separate algorithms. 

 

5. CONCLUSIONS 

We have given a new algorithm to elevate the degree of 

a B-spline curve based on derivatives. It can also be 

combined with an algorithm using similar principles for 

knot insertion to give an efficient algorithm which can do 

degree elevation and knot insertion simultaneously. 

These methods are computationally superior to existing 

approaches. The new method presented in this paper 

can also be extended to the case of degree reduction.  
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