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ABSTRACT 

 

This paper describes a method for automatic reconstruction of concise polygonal curves from 

unorganized dense planar points. In reverse engineering, these planar points may be generated by 

slicing 3D data points and projecting them onto a plane. It is necessary to approximate these points 

by constructing 2D polygons, while keeping the shape error within a given tolerance. These 2D 

polygons can be used for fabrication using rapid prototyping processes. With the method outlined 

in this paper, the curve to fit these data points can be constructed without considering the structure, 

orientation and topology information of the points. The final 2D polygon obtained possesses the 

minimum number of points while keeping the shape error within a given tolerance. This is 

accomplished in several steps: firstly, the planar points are sorted by a tangent-vector based 

method, which uses a fixed neighbourhood size to estimate the tangent vector of a point.  

Secondly, the sorted points are decomposed into different levels by using B-spline wavelets. 

Finally, the polygonal curve is constructed from coarser to finer level under the control of shape 

error between the original planar points and constructed curve. 
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1. INTRODUCTION 

In reverse engineering, one of the effective methods to 

model data cloud for fabrication using rapid prototyping 

techniques is to adaptively slice the data points, along a 

specific direction, into a number of layers and the points 

in each layer are treated as planar. These planar points 

then need to be represented by one or several 2D 

polygons while the shape error must be kept within a 

given tolerance. At the same time, the number of 

segments in each polygon should be kept to the 

minimum.  This problem can be stated as follows: Given 

a planar data point set D that lie on an unknown curve 

UC, create a curve C to approximate UC, such that the 

constructed curve C should have the same topology as 

UC, and can be everywhere close to UC, i. e., the 

shape error, which is estimated by the largest distance 

between D and C, meets the requirement of shape 

tolerance ε.  
 

To reconstruct a curve from an unordered 2D data set, 

different approximation approaches have been 

presented, which can be classified into global and local 

methods. Global methods assume that the UC is a 

continuous curve, and usually a least square method is 

used to achieve an approximated curve C to fit UC.  

Fang and Gossard [6-7] presented a method to 

reconstruct a smooth parametric curve from the 

unorganized data points by simulating the deformation 

of elastic beam under the application of spring forces. 

This smooth curve is achieved by nonlinear 

minimization of spring energy, which is solved by 

successive quadratic programming. However, this 

method requires previous knowledge of the data 

topology and good initial curve estimates. Hence it is 

not suitable for curve reconstruction from an unknown 

or arbitrary topology. Local fitting methods use 

piecewise curves to fit the “nearby points” piece by 

piece, such that a complex shape can be approximated 

[1, 9-10, 12, 14]. Apparently, the selection of the 

“nearby points”, i.e., neighbourhood points, is an 

important and difficult issue. Two general methods can 

be used. One is to use a fixed neighbourhood size [10], 

which can give a fast computation. However, it causes 

severe problems in practice. The other method is to use 

adaptive neighbourhood size [9, 14], in which the 
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correlation coefficient of neighbourhood points is used 

to decide the neighbourhood size. However, to select an 

appropriate coefficient value as a threshold to determine 

the maximum neighbourhood remains a difficult task. 

 

Recently, a new multi-scale technique for shape 

representation has been developed based on wavelets 

[2, 4, 8]. In computer graphics, wavelet methods are 

developed for the multi-resolution representation of 

parametric curves and surfaces. It is mainly used as a 

powerful tool for curve and surface hierarchical design. 

Wang, et al. [13] presented a multi-scale curvature-

based shape representation using B-spline wavelets. 

They introduced a coarse-to-fine matching algorithm 

that automatically detects the dominant points to 

compress the curve. Esteve, et al. [5] presented a multi-

resolution method for implicit curves and surfaces based 

on wavelets to simplify the topology. 

 

However the above mentioned methods for curve 

representation started with a source of data in digital 

ordered form. This paper presents a method to construct 

a curve from unorganized data points based on wavelets 

under the control of shape error. 

 

This paper is organized as follows. In section 2, a sorting 

algorithm is outlined. In section 3, the curve 

decomposition based on wavelets is addressed. Section 

4 describes the algorithm of polygonal curve 

reconstruction from coarser level to finer level under the 

control of shape tolerance. Section 5 gives two case 

studies.  Finally, conclusions are given in section 6. 

 

2. DATA SORTING 

From a planar point cloud D = {Di}, we start from a 

randomly selected point and use a fixed neighbourhood 

radius to find the first neighbourhood. The point that is 

closest to the centre of the points is used as the start 

point. We then construct a straight line segment that 

locally fits the points within the neighbourhood. Here, 

we use a least-square method to compute a regression 

line, which passes the start point and best fits the points 

within the neighbourhood.  To make sure that the 

polygon fits the original point set well within the given 

shape error tolerance, the fixed neighbourhood radius is 

assigned a small value, e.g., the shape error tolerance. 

This small neighbourhood size helps to keep sufficient 

information on sharp corners. However, it also results in 

zigzag shapes of the polygon. An example of data sorting 

is shown in Fig. 1 in which the original data cloud for the 

polygon has 2,214 points (see Fig. 1a).  Employing a 

fixed neighbourhood size of 0.08mm, we obtained 489 

points after sorting as shown in Fig. 1b. 

 

 

 

 

 

 

 

 
          

              

        (a)             (b) 

 

Fig. 1. An example of data sorting 

 

3. CURVE DECOMPOSITION 

The resultant data points obtained from the sorting 

process are generally dense. Further processing is 

required such that the resultant polygon has the 

minimum number of segments (subject to a given shape 

error). Wavelets can be applied here to achieve this 

purpose. Wavelet transform and multi-resolution analysis 

can be used to represent signal scale by scale. In this 

section we focus on the aspects of 2D curve 

decomposition using wavelets. For a more detailed 

reading on wavelets, readers can refer to text books [3, 

11]. 

 

Denoting the data points of the polygon as Si (i = 0, 

1, …, n), they can be reasonably considered as the 

control points of the unknown B-spline curve f, which 

nearly passes these data points. This curve f can be 

represented by a limited number of cubic endpoint-

interpolating B-spline bases as 
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where )(uφ is a row vector of the basis functions called 

scaling functions and coefficient S is a column vector of 

the control points. If these basis functions are considered 

as scaling functions at scale j, and f becomes f j, that is 

within the space Vj, then Eqn. (1) becomes 
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f j represents the original shape that has the maximum 

number of data points. On the other hand, f j can be 

approximated by using fewer number of data points (the 

dominant points). This is called curve decomposition 

and the resultant curve is f j-1 that represents the original 

shape at scale j-1 in space Vj-1.  Mathematically, f j-1 can 

also be expressed using Eqn. (2) with )(1 u−jφ   and Sj-1. 
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The relationship between )(ujφ  and )(1 u−jφ  can be 

expressed as:  
 

jjj uu P)()(1 φφ =−            (3) 

Suppose space W j-1 is the complement space of V j-1 in 

space V j, and )(
1

u
j−ψ is the basis matrix in W j-1, then 

we have 

jjj uu Q)()(1 φψ =−
                (4) 

According to Eqns. (3)-(4), we have the following, 
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P j and Q j are called synthesis filters, while A j and B j 

are called analysis filters [11]. Thus, f j can be 

decomposed to
jjj
fAf =−1

and
jjj fBd =−1
, in which 

f j-1 is the approximation of f j, and dj-1 is the detail that is 

lost because of this approximation. Similarly, further 

decomposition of the curve can be carried out to lower 

scales. The number of the data points in f j-1 is half of 

that in f j, and the positions of these data points at level j-

1 are slightly different from the corresponding data 

points at level j because of the filtering nature of Aj. The 

detail coefficients dj-1 stores the lost information so that f j 

can be recovered from f j-1.  Fig. 2 shows an example of 

curve decomposition in which the shape in Fig. 2a is 

approximated by the shape in Fig. 2b. 
 
Therefore, we can use the end-point interpolating B-

spline as the scaling basis and B-spline wavelets to 

decompose the initial polygon into lower levels at, j-1, j-2, 

and so on. However, the remaining challenge is to 

determine the number of levels of decomposition needed 

to achieve a shape that is represented by the minimum 

number of points while maintaining the shape error 

within the given tolerance. For a curve, its flat area may 

need more levels to decompose, while the curved area 

may need fewer. As shown in Fig. 2a, a curve at level k 

is within shape error tolerance and it is decomposed into 

level k-1, as shown in Fig. 2b.  Obviously, the curved 

region at level k-1 will be out of shape error tolerance, 

which will stop the further decomposition to level k-2, 

even though the flat region can be compressed further. 

Hence, using the shape error tolerance as the only 

criterion may stop decomposition process too early. 

Therefore, the ideal situation is that the decomposition is 

carried out adaptively for flat and curved regions 

respectively. In practice, however, this is difficult to 

achieve. In our approach, the decomposition is carried 

out to the minimum level in which the shape error in the 

flattest regions is just within the given tolerance. At the 

same time, the information for each level of 

decomposition is recorded. Based on the given 

tolerance, the curved regions can be reconstructed until 

the level where the shape error meets the tolerance. In 

this way, other regions can be reconstructed and the 

decomposition can achieve an optimal result globally. 

 

 

 

 

 

 
 

 (a) Level k  (b) Level k-1 

 

Fig. 2. An example of curve decomposition 

 

To achieve the optimal decomposition, we use criteria to 

check whether the final level of decomposition is 

achieved. The first one is the shape error. For the i-th 

segment Si
m at m level, the shape error is calculated as: 
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where, Pi is the subset of the originally sorted data points 

f j, which are near to segment Si
m compared to any other 

segments at level m. The shape error measures the 

distance between the segment and the points of the 

original level which are nearer to this segment. If any of 

the errors of the segments are larger than the given 

tolerance, there is a shape-error violation. To further 

check whether this happens in a flat region or a curved 

region, it is necessary to check the curvature at the 

violation region. Here, we use a simplified method of 

curvature checking by using a relative shape error. For 

segment Si
m, its relative shape error is defined as: 
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Obviously, the relative shape error is larger in the curved 

region than that of the flat region. A threshold value is 

needed to check whether there is a relative-error 

violation for that segment. If both shape-error violation 

and relative-error violation happen to a segment at the 

same time, the decomposition stops and the final level of 

decomposition (or the coarsest level of curve) is one level 

higher than the current one. 

 
4. CURVE RECONSTRUCTION FROM COARS-

ER TO FINER LEVEL 

With the algorithms introduced in section 3, a curve with 

dense points can be decomposed to coarser levels. 

Obviously, at the coarse level, some data points may be 

Curved 

region 
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out of shape tolerance. Hence, it is necessary to find and 

keep the points that meet shape tolerance from coarser 

level to finer level, such that the reconstructed curve will 

be as concise as possible within the given tolerance. For 

implementation, we start with the coarsest level r by 

extracting the points that form continuous segments, 

which meet the tolerance. If the segments do not form a 

closed shape, we continue extracting points at level r+1, 

until the maximum level j. 

 

4.1. Extract Storable Coefficients at the Coarsest 

Level  

At this level, among the scaling coefficients set C, given a 

coefficient ci and its two adjacent coefficients ci-1 and 

ci+1, ci is termed as a storable point associated with the 

original planar data points P if the following criterion is 

satisfied: 
 

ε≤−−
∈ +− },{
min

11 iiii
ci

ccpccp
Pp

            (8) 

where ε is the given tolerance and the point set Pci 

represents the neighbourhood points of ci, formed from 

P.  Pci can be formed by finding all the data points in P 

that are closer to ci than to any other coefficients C at 

this level, namely, 
 

ki
k

cpcp
Cc

−=−
∈
min                    (9) 

If four adjacent coefficients ci-1, ci, ci+1 and ci+2 are 

storable, we can link ci and ci+1 to form a line segment 

and ci and ci+1 are extracted as the desired points. Thus, 

the scaling and detail coefficients at higher levels 

corresponding to these two coefficients can be flagged. 

We can then delete the data point from P if this point 

satisfies: 

 

ε≤− +1iiccp   and 1, +∪∈ icci PPp         (10) 

where, Pci and Pc,i+1 are obtained with Eqn. (9). In cases 

where there are three or less consecutive storable points 

found in a region, these storable points are ignored. 

 

Similarly, when we identify more than four consecutive 

storable points, we will extract only the inner scaling 

coefficients (two end points will not be considered). The 

storable points extracted (2 or more) are called multi-

storable coefficients (MSC). Within a MSC, we will 

reduce the data points in the original set using Eqn. (10). 

To store the extracted coefficients, we use a global 

dynamic list GDL to save the coefficients and its 

corresponding spatial index. For the example shown in 

Fig. 1, Fig. 3 shows the MSC extraction results at the 

coarsest level. It can be seen that there are 3 MSC 

segments extracted at the coarsest level. 

 

 

 

 

 

 

 

 
 

 

Fig. 3. Extracting multiple scaling coefficients (MSCs) at the 

coarsest level 

 

4.2 Extract Scaling Coefficients at the Remaining 

Finer Levels 

The method for extracting the storable coefficients at the 

remaining finer levels is slightly different from that at the 

coarsest level. At higher levels, we firstly need to 

reconstruct all the scaling coefficients from the scaling 

and detail coefficients at coarser level. This process can 

be implemented with the synthesis filters P and Q 

obtained from Eqns. (3)-(4) and the reconstruction from 

level j-1 to j can be done using:  

111 −−− += jjjjj
dQcPc          (11)

  

For the smooth section of planar data points that are 

already approximated by the extracted coefficients at 

coarser level, the corresponding portion at the finer level 

need not be recalculated, i.e., the MSCs that are 

extracted at coarser levels remains unchanged at finer 

levels. For example, a MSC at level j is 

{
j
ic ,

j
i 1+c ,…..

j
ki 1−+c  }, after reconstruction to level j+1, 

we get {cj+1} at level j+1 to replace the whole scaling 

coefficients {cj} and the detail coefficients {dj} at level j. 

This MSC has a corresponding list of coefficients 
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which is called a updated MSC. In the final set of MSCs, 

the updated MSCs will be replaced by their original 

MSCs. The updated MSCs are mainly used for finding 

the search space for new MSCs at the current level.  Fig. 

4 shows the updated MSCs from the MSCs in Fig. 3.  

 

In between the updated MSCs, the coefficients need to 

go through the MSC extraction process introduced in 

section 4.1. This will produce a new set of MSCs at this 

level. Fig. 4 also shows some new MSCs extracted at the 

current level. They are stored into the GDL with their 

corresponding indices.  Fig. 5 shows the data structure of 

the coefficients in Fig. 3 and Fig. 4. Fig. 5a shows 3 

MSCs at level j, and Fig. 5b shows the reconstructed 

Storable points 

Original points 

MSC1 

MSC2 

MSC3 
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scaling coefficients at level j+1, and there are 3 updated 

MSCs. Fig. 5c shows 2 new MSCs extracted from the 

regions in between the update MSCs.  

 

Furthermore, the data points in the original list P that 

satisfy Eq. (10) are deleted. The extraction process 

continues the next higher, until no data points are left in 

P. All the MSCs retained at all levels then form a 

complete shape approximating the original data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Fig. 4. MSC extracting at finer levels 

 

 
 

Fig. 5. Data structure of scaling coefficients 

 

 

5. EXAMPLES 

The algorithm for 2D curve reconstruction using B-spline 

wavelet has been implemented using C++ and OpenGL. 

The input to run the algorithm is a set of 2D points 

without any structure, plus the shape error tolerance and 

the relative error tolerance. Two examples are given here 

to show the efficacy of the algorithm. 

 

In the first example, the 2D data set is shown in Fig. 1. 

The shape tolerance was set at 0.08 mm and the relative 

shape tolerance as 0.05. There are total 5 levels of 

decomposition. The algorithm ran on a PC with a 

1.8GHZ CPU, and the memory is 256MB. It took less 

than 1 minute to complete the decomposition and 

reconstruction. The final constructed polygon shown in 

Fig. 6 has 64 points. It can be seen the corner points are 

very well retained. 

 

 

 

 

 

 

 

 

 
 

Fig. 6. The final 2D shape of example -1 

 

In the second example, the 2D points are obtained by 

taking a slice of a set of scanned data points from an 

object with sculptured surface (see Fig. 7a). The points in 

the sliced layer are then projected onto a plane as shown 

in Fig. 7b. There are total 1,320 points. The shape error 

tolerance was set as 0.05 mm. Employing a fixed 

neighbourhood size of 0.05mm, we obtained 387 sorted 

points as shown in Fig. 7c. The relative error tolerance 

was then set at 0.05, and we obtained a final polygon 

curve with only 67 points as shown in Fig. 7d. This 2D 

curve reconstruction algorithm is part of an overall 

algorithm for construction layer-based model (with shape 

error control and thus adaptive layer thickness), from 

cloud data, for fabrication using rapid prototyping 

methods. Fig. 7e shows the final layer-based model for 

the cloud data in Fig. 7a, which has 49 layers. 

 

6. CONCLUSIONS 

A practical method for curve construction from 

unstructured planar data points with accuracy control 

has been described. The method commences with a 

quick sorting algorithm based on neighbourhood 

marching method. The small fixed neighbourhood size 

results in a dense and ordered data set. This data set is 

decomposed to different levels under the control of 

shape tolerance and relative error tolerance using B-

spline wavelet. Finally, a concise curve is constructed by 

extracting the data points from coarser level to finer level 

under the control of a shape tolerance. Case studies 

show that our algorithm is efficient. 

 

The remaining challenging issue is the determination of 

the relative error tolerance to control the maximum level 

of decomposition.  Currently, it is a user-specified 

parameter. It is recommended that a small value should 
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be used in order to ensure the maximum level of 

decomposition is reached. This may, however, result in 

that some coarse levels that are useless in the 

reconstruction process, i.e., no MSCs can be found in 

these levels. Therefore, a trade-off is inevitable between 

the optimality and the efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. The raw data and final shape of example-2 

 

 

7. REFERENCES 

[1] Cheng, S. W., and Funke, S., Glolin, M., Kumar, P., 

Poon, S. H. and Ramos, E. A., Curve reconstruction 

from noisy samples, Proceedings of the 19th Symp. 

Computational Geometry ACM, Jun 2003, pp 302-

311. 

[2] Chuang, G. and Kuo, C., Wavelet descriptor of 

planar curves: Theory and applications, IEEE 

Transactions on Image Processing, Vol. 1, No. 5, 

1996, pp 56-70. 

[3] Chui, C., An introduction to wavelets, Academic 

Press, San Diego, 1996. 

[4] Chung, K., The generalized uniqueness wavelet 

descriptor for planar closed curves, IEEE 

Transactions on Image Processing, Vol. 9, No. 5, 

2000, pp 834-845. 

[5] Esteve, J., Brunet, P. and Vinacua, A., 

Multiresolution for Algebraic Curves and Surfaces 

Using Wavelets, Computer Graphics Forum, Vol. 

20, No. 1, 2001, pp 47-59. 

[6] Fang, L. and Gossard, D. C., Fitting 3D curves to 

unorganized data points using deformable curves, 

Visual Computing (Proceedings of CG International 

’92), June 1992, Springer, Berlin, pp 535-543. 

[7] Fang, L. and Gossard, D.C., Multidemensional 

curve fitting to unorganized data points by nonlinear 

minimization, Computer-Aided Design, Vol. 27, No. 

1, 1995, pp 48-58. 

[8] Finkelstein, A. and Salsin, D., Multiresolution 

curves. Computer Graphics Annual Conference 

Series, July 1994, pp 261-268. 

[9] Lee, In-Kwon, Curve reconstruction from 

unorganized points, Computer-Aided Geometric 

Design, Vol. 17, No. 2, 2000, pp 161-177. 

[10] Liu, G. H., Wong, Y. S., Zhang, Y. F., and Loh, H. 

T., Error-based segmentation of cloud data for 

direct rapid prototyping,  Computer-Aided Design, 

Vol. 35, 2002, pp 633-645. 

[11] Stollnitz, E., DeRose, T. and Salesin, D., Wavelets 

for computer graphics, Morgan Kaufmann 

Publishers Inc., San Franscisco, 1996. 

[12] Taubin, G. and Ronfard, R., Implicit simplicial 

models for adaptive curve reconstruction, IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 18, No. 3, 1996, pp 321-325. 

[13] Wang, Y.P., Lee, S.L. and Kazuo Toraichi, 

Multiscale Curvature-Based Shape Representation 

Using B-Spline Wavelets, IEEE Transactions on 

Image Processing, 1999, Vol. 8, No. 11, 1999, pp 

1586-1592. 

[14] Wu, Y.F., Wong, Y.S, Loh, H.T. and Zhang, Y.F., 

Modelling Cloud Data Using an Adaptive Slicing 

Approach, Computer-Aided Design, Vol. 36, 2004, 

pp 231-240. 

 

(a) (b) 

Slicing and 

projecting 
plane 

(c) (d) (e) 


