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ABSTRACT 
 

Since the publication of the original Marching Cubes algorithm, numerous variations have been 
proposed for guaranteeing water-tight constructions of triangulated approximations of iso-surfaces. 
Most approaches divide the 3D space into cubes that each occupies the space between eight 
neighboring samples of a regular lattice. The portion of the iso-surface inside a cube may be 
computed independently of what happens in the other cubes, provided that the constructions for 
each pair of neighboring cubes agree along their common face. The portion of the iso-surface 
associated with a cube may consist of one or more connected components, which we call sheets. 
We distinguish three types of decisions in the construction of the iso-surface connectivity: (1) how 
to split the X-faces, which have alternating in/out samples, (2) how many sheets to use in a cube, 
and (3) how to triangulate each sheet. Previously reported techniques make these decisions based 
on local criteria, often using pre-computed look-up tables or simple construction rules. Instead, we 
propose global strategies for optimizing several topological and combinatorial measures of the iso-
surfaces: triangle count, genus, and number of shells. We describe efficient implementations of 
these optimizations and the auxiliary data structures developed to support them. 

 
Keywords: Iso-surface extraction, Handle Removal, Topological Ambiguity, Triangle Meshes. 

 

1. INTRODUCTION 

Let O be a solid object with one or more connected 
com-ponents. A discrete representation of O may be 
obtained by classifying, against O, a set of sample 
points distributed on the nodes of a regular, axis-aligned 
three-dimensional grid. Nodes lying inside O or on its 
boundary are labeled as black and nodes lying outside 
O are labeled as white. Such a lattice may be 
constructed in a variety of ways from a polyhedral or 
curved representation of O through a voxe-lization 
process. A similar lattice color-coding may be produced 
by considering the values of a scalar field at each node. 
If the value is larger than a prescribed threshold, the 
node is black; otherwise, it is white. 
In many application areas, it is useful to convert the dis-
crete information stored in the black/white coloring of 
the grid nodes into a continuous boundary model. Most 
often, this model is a triangle mesh M, which 
approximates the boundary of the original solid object 
O. We say that M is a separating surface for a 

black/white grid of nodes when it is a manifold triangle 
mesh that bounds a solid that contains all black nodes 
and none of the white ones. 
Multiple variations of the original Marching Cubes 
algorithm [8] give a solution to the iso-surface 
extraction problem. However, current techniques are 
based on local criteria and therefore cannot offer a 
direct control of topological properties of the extracted 
mesh. 
Sometimes the connectivity, and hence the topology, of 
M is unambiguously defined by the in/out classification 
of the samples and therefore all iso-surface extraction 
algorithms lead to topologically equivalent meshes. But 
in general, different extraction algorithms may lead to 
meshes with different topologies. The principal focus of 
prior art in this area was to guarantee that M is a valid 
boundary of a solid and possibly to guarantee that it is a 
two-manifold. 
In this paper, we propose an approach for selecting 
amongst all valid topologies the one that minimizes a 
desired topological or combinatorial cost, which can be 
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the total triangle count, the number of connected shells, 
or the total genus. The proposed algorithm is very 
efficient, succeeds in optimizing the topological 
properties of M and does not allow mesh triangles on 
the faces of the grid cubes (in order to avoid rigid 
orthogonal mesh triangles). 
Our main contributions are: 

• The identification and classification of the de-
grees of freedom in the iso-surface extraction 
algorithms. 

• The design of a new iso-surface extraction 
algorithm that guarantees a topologically 
correct iso-surface, by using these degrees of 
freedom. 

• The derivation of two data structures (the X-
face graph and the Merge Tree of equivalence 
classes) that capture the global topological 
properties of M. 

• Efficient algorithms, based on a few atomic 
operations and on the traversal of the X-face 
graph, for the optimization of the topology of 
M. 

• The guarantee that M is two-manifold. 
After reviewing the previous work in the next section, 
we present the degrees of freedom that are implicit in 
standard Iso-surface Extraction algorithms, and propose 
algorithms and dedicated data structures for iso-surface 
generation with optimization of the topological 
properties of the final mesh, M. Finally, we report results 
on several examples. 
 
2. PREVIOUS WORK 
As first noted by Dürst [4], the original Marching Cubes 
algorithm [8] may produce iso-surfaces with holes due 
to topologically inconsistent decisions on the 
reconstruction of ambiguous faces, where the borders 
used by one incident cube do not match the borders of 
the other incident cube. Several approaches addressing 
this problem have been published (see [6],[13] for a 
review).  
Disambiguation techniques reported so far have focused 
on two major concerns: topological consistency, i.e. 
producing closed surfaces by proper cube 
polygonalization, and topological correctness, i.e. 
extracting a surface faithful to the geometry of the real 
surface. 
Consistency can be guaranteed by just considering the 
inside/outside node classification, regardless of the 
actual data values. Tetrahedra decomposition 
techniques [11],[18] split each cube into five or six 
tetrahedra, which always exhibit an unambiguous 
polygonalization. Preferred polarity methods decide 
how to slash an X-face using a uniform criterion: always 
join black nodes or always join white nodes. This 

decision can be implemented either algorithmically [2] 
or by using a single-entry lookup table [7],[9]. All these 
techniques are generally simple to implement although 
they do not solve the correctness problem. 
Techniques addressing the topological correctness 
problem infer the proper polygonalization of an 
ambiguous cube by analyzing its actual data values. As a 
consequence, these methods are required to provide 
different polygonalization schemes for each ambiguous 
cube. Most methods only attempt to assure the 
correctness of the returned surface on the boundary of 
ambiguous faces. The analysis can be based on face 
center resampling [15],[17], bilinear interpolation [12] 
or gradient disambiguation [16]. Only a few methods 
attempt to recover the original topology also inside the 
ambiguous cubes either by using critical point analysis 
[14] or trilinear interpolation [3],[10]. Note that all these 
techniques are data-dependent and therefore are noise-
sensitive and cannot be applied to binary grids. 
All the disambiguation techniques discussed so far are 
based on local decisions and do not offer any explicit 
control over the global properties of the extracted 
surface such as genus, triangle count, or number of 
shells. 
Besides Marching Cubes disambiguation, a number of 
techniques have been proposed for guaranteeing the 
topological correctness of the resulting surface. When 
the desired topology and an approximating shape are 
known beforehand, one can start with an initial estimate 
of M and then adjust it to match a given shape by 
applying topology-preserving operations (see e.g. [1]). 
An alternative approach was proposed for removing 
small handles or tunnels [5]. 
In this paper we identify the choices that may be used to 
control the topology of M while guaranteeing its 
topological consistency. 
 
3. DEFINITIONS 
The space surrounding the solid O may be decomposed 
into cubic cells in two different ways. Cubes centered 
around the nodes are usually referred to as the voxels of 
a volumetric model. Each voxel inherits the color of the 
node located at its center. The union of the black voxels 
may be used as a coarse approximation of O. In contrast 
to voxels, the cubes considered here span the interstice 
between 8 nodes of the lattice, which are its corners. A 
cube has 12 edges. Some of them may join white and 
black nodes and contain the vertices of the mesh V= 
{Vi}. 
 
3.1 Sheets and Border Edges 
The intersection between the triangle mesh M and the 
boundary of a given cube forms one or several 
polygonal cycles. Like most iso-surface generation 
schemes, we require that the edges of these intersection 
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curves form a subset of the edges of M. This assumption 
is fundamental to the Marching Cubes algorithm and to 
most of its variations, because it ensures that each 
triangle of M is contained in a single cube. 
Consequently, the triangles of M may be gene-rated by 
considering one cube at a time. 
The set of the triangles of M that lie in a given cube may 
be empty (when all corners of the cube have the same 
color) or may form one or more connected components 
called sheets. Each one of these components is a 
manifold with boundary. It is bounded by one or more 
simple cycles of border edges (contained in the faces of 
the cube). Let CL and CR be the two face-connected 
cubes sharing a common face fLR. To ensure that M is a 
manifold without boundary, the border edges of the 
portion of M in the cube CL must match the border 
edges of the portion of M in the neighbor cube CR. This 
way, each triangle of M has one neighbor across each 
one if its edges. This requirement has lead to several 
publications that disambiguate the MC algorithm, as 
discussed in Section 2. 
 
3.2 X-faces, Loops and X-cubes 
When the four corners of a face have the same color, 
the face contains no edges of M. When a face f has two 
vertices (see Fig. 1(a)., Fig. 1(b).), it contains a single 
border edge of M, joining them. This edge will be used 
as a border edge by the two cubes incident upon f. 
Finally, when a face f has alternating black and white 
corners, and hence four vertices in its boundary, it 
contains two border edges of M. Note that we have a 
choice in selecting these two edges (Fig. 1(c). and Fig. 
1(d).). We use the term X-face to refer to such 
ambiguous faces. 
 
 

 
        (a)                      (b)                    (c)                    (d) 
 
Fig. 1. Faces with two vertices (a, b) generating a single border 
edge of M. In (c, d), faces generating two border edges of the 
triangular mesh M.  
 
Once the edges of M have been defined for all the faces, 
the corresponding borders for any given cube may 
always be uniquely chained into cycles, which we call 
loops. These loops are the boundary of the portion of M 
associated with the cube. Note that we can have at most 
four loops inside a cube (Fig. 2.). 
 

 
 
Fig. 2. Configurations with two and with four loops. With two 
loops (left and center), we have two possibilities: two sheets, 
each homeomorphic to a disk, or a single sheet homeomorphic 
to an annulus (tunnel or handle).  
 
X-cubes are defined as cubes having no X-faces but 
having more than one loop. The only MC configuration 
leading to an X-cube is the one depicted in Fig. 2-left. 
The loops in an X-cube can be connected or not, and 
this does not affect any X-face decision (observe that 
this is not the case in Fig. 2 right). X-cubes represent 
quasi-non-manifold parts of O that are not producing X-
faces. 
 
4. DEGREES OF FREEDOM IN ISO-SURFACE 
EXTRACTION 
We have identified two tools for controlling the topology 
and the connectivity of the final mesh: we must decide 
how to slash X-faces and we must decide (in all X-
cubes) whether to have a different sheet per loop or to 
connect the two loops. Decisions on X-cubes are 
obviously independent from decisions on X-faces, as 
they do not affect the X-face slashing decisions. 
Deciding how to slash X-faces and deciding if loops 
must be connected or not in X-cubes, gives us a number 
of degrees of freedom that can be used to optimize the 
topological properties of the final mesh M. 
Moreover, after having decided which way to slash each 
X-face and which way we connect loops in each X-cube, 
individual sheets must be triangulated. Although the 
available choices may impact the total area of M, they 
do not affect -in our approach- the topology, and hence 
they are not relevant for the optimization of the number 
of shells, cells, or the genus. In short, 

• Once the choice for all of the X-faces is made, 
the border edges and hence the loops of the 
final mesh are completely determined.  

• The choice on having separate sheets or 
connecting loops in individual X-cubes, affects 
the total number of triangles in the mesh and 
the topology of the mesh (Fig. 2.). 

• The decision on how to select a triangulation 
for each sheet among the valid ones has no 
impact on the topology of the mesh, but it 
does have an effect on the total surface area of 
the mesh. Therefore we will not discuss these 
choices in the present paper. 
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5. TOOLS FOR A GLOBAL APPROACH 
The objective of the rest of the paper is to propose 
several algorithms that use the degrees of freedom 
shown in the last section in order to optimize the 
topological properties of the final mesh. In the rest of this 
section we will show that this is not possible if we are 
only based on local decisions, and two efficient data 
structures (representing global information) for the 
topological optimization in Marching Cubes will be 
proposed. 
The Euler-Poincarè formula for a closed manifold 
triangle mesh without borders consisting of V vertices, S 
shells (connected parts of M), and H handles indicates 
that the total number T of triangles is: 

    T = 2V+4(H-S)                           (1) 
The total number of loops over all cubes will be noted as 
L, while the total number of half border edges over all 
the faces of the cubes will be noted as B. For a particular 
cube C, its number of loops and border edges will be 
noted as Lc and Bc. Note that L is the sum of all Lc and 
that B equals the sum of all Bc. 
Each vertex of M is bounding eight border edges 
because it lies on an edge of the grid which has four 
incident square faces of the adjacent cubes. Each face f 
contains two coincident border edges, one per cube 
incident upon f. Furthermore, each border edge is 
bounded by two vertices. Hence, the total number of 
border edges in all cubes is constant: 
                              B = 4V                                    (2) 
We also have a relationship among the number of loops 
L, the number of triangles T and the total number of 
sheets (denoted by s) inside all cubes. The relation is 
given by the formula: 
                      T= 4V + 2L –4s                          (3) 
To prove this relationship, let us first look at a single 
cube C, and let us first assume that we keep the loops 
separated without connecting them. Then, for a loop 
having b border edges we generate t=b-2 triangles of M. 
If C has b border edges and l loops, we can sum the 
number of triangles for each of the loops and obtain 
t=b-2l as the total number of triangles generated for C. 
By summing this expression for all cubes and taking into 
account Eqn. (2) and that s=L (since  we  do not  have  
connected  loops)  we  can  write:  
T=B-2L = 4V-2L = 4V-2L-4(s-L) = 4V+2L-4s, which 
is the above equation. To prove it in the general case 
where we connect some of the loops, we can simply 
observe that the above equation is invariant under the 
connecting loops operation: for every connection 
between two loops in any of the cubes, s decreases in 
one while T increases by four (Fig. 2.). 
Also observe that once X-faces have been fixed, since V 
is constant, L is also constant and we can conclude that 

T and s are always varying in opposite ways: s decreases 
as T increases, and vice-versa. 
Given that V is fixed, the only available variables for our 
optimization are T, H and S. Unfortunately, we do not 
have a local control on H and S, which depend on the 
global structure of the mesh. In the rest of this section we 
will present the two new data structures that supply the 
necessary global information to the mesh generation 
algorithm: the X-face propagation graph and the merge 
tree of equivalence classes of vertices. 
 
5.1 X-face propagation graph 
The X-face propagation graph is a convenient tool for 
deciding on X-face slashing. Consider the abstract graph 
G=(V, E) where configurations with at least one X-face 
correspond to graph nodes and where the X-faces 
correspond to links between graph nodes that represent 
their incident cubes. For this graph to represent a 
possible choice of how to slash the X-faces, each graph 
edge is assigned a binary value indicating its slashing 
choice. 
The X-face graph can be constructed in linear time by a 
single traversal of the volumetric model. During the 
traversal, a graph node with label (i,j,k) is inserted into V 
if the cube (i,j,k) has at least one X-face. An edge 
connecting node (i,j,k) with any of its three face-
neighbors along directions {X+, Y+, Z+} is inserted 
into E if the shared face is an X-face. Since this graph is 
not oriented, only three faces of each cube are 
considered, so as to avoid edge repetition. 
A simple examination of the 256 cube configurations 
reveals that cubes can have 0, 1, 2, 3 or 6 X-faces 
(frequencies over the 256 configurations are shown in 
Tab. 1.). Since the degree of the graph vertices is 
bounded by 6, X-face graphs are sparse, with a small 
number of edges connecting nodes and only a few high-
order nodes. 
 

# X-faces # 
Configurations 

Percentage 

0 135 52.7% 
1 72 28.1% 
2 30 11.7% 
3 16 6.2% 
4 0 0.0% 
5 0 0.0% 
6 2 0.7% 

 
Tab. 1. Frequencies of X-faces over the 256 cube 
configurations. Note that cubes with 4 or 5 X-faces do not exist. 
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Dataset Ship (Fig. 8.) Random 
1 

Random 
2 

Resolution 128x128x128 8x8x8 8x8x8 
Non-Empty 
cubes 

35,020 312 299 

Deg. 1 54 49 34 
Deg. 2 21 9 12 
Deg. 3 0 9 8 
Deg. 6 0 2 2 
# arcs 48 53 47 
# cycles 0 0 8 
# 
components 

27 16 13 

 
Tab. 2. Properties of the X-face graph on the test datasets. Deg 
n stands for the number of graph nodes with degree n.  
 
Tab. 2. shows the number of vertices, edges, 
components and cycles of the X-face graph on a ship 
engine's room model (Fig. 8.) and on two random 
datasets. Note that on all test models the X-face graph 
has many connected com-ponents and few high-
ordernodes. Our experiments show that graph cycles 
might appear, although very rarely in practice. Hence, 
most of the connected components of the X-face graph 
are trees. 

 

 
 

Fig. 3. Main components of the X-face graph on the test model. 
 

 
5.2 Connectivity merge tree 
The second data structure is related with the equivalence 
classes of vertices. These equivalence classes initially 
encode clusters of vertices connected by border edges 
that are not contained in X-faces (obviously, internal 
edges of the cube triangulations do not affect these 
clusters). In other words, two vertices initially belong to 
the same class iff they will belong to the same shell 
regardless of the X-face and X-cube decisions. We will 
use this additional tool to decide on the individual effect 
on H and S of a certain choice on the connection of 
loops of an X-cube or the slashing of an X-face, and we 

will update the equivalence classes at each decision. The 
interest of this data structure relies in the fact that the 
number of shells S depends on the global connectivity of 
the mesh, and cannot be determined locally: if a 
particular slashing choice in a certain X-face connects 
vertices that were not previously in the same cluster 
(equivalence class), we are decreasing the total number 
of shells S. This set of classes gives a strict upper bound 
to the number of resulting shells, as all vertices in a 
single equivalence class must lie on the same shell. At 
the end, when all decisions have been taken, the 
number of clusters in this data structure is exactly the 
number S of shells. 
To implement it, we use a merge tree of the vertices Vi 
that is initially constructed in a one-sweep process. In 
this way we store equivalence classes of vertices, 
modulo the equivalence relation given by the 
connectivity along a series of border edges that do not 
belong to an X-face. That is: initially, two vertices Vi and 
Vj are in the same class if there exists a sequence of 
vertices Vi=V0, V1, ... Vn =Vj such that for k=0 ... n-1, 
the segment Vi Vi+1 is a border edge that does not 
belong to an X-face. Notice that these border edges will 
always remain in the final triangulation. 
Using standard data structures we can construct this set 
of equivalence classes in a single pass of the model, 
merging classes as we visit the boundary edges of non-
X-faces. Finding the canonical representative of a class 
has a cost of O(log m) where m is the number of vertices 
in the class. Merging two classes can be done in constant 
time. Therefore the whole data structure is initialized in 
time bounded by O(n log n)+m, where n is the total 
number of vertices in the model and m is the number of 
voxels. 
Furthermore, this data structure supports the dynamic 
computation of the impact of any choice on any given 
X-face or X-cube. If the end vertices of the chosen 
border edges on an X-face or on the two loops of an X-
cube belong to the same class, the choice does not affect 
the number of shells. If however they belong to different 
classes, then the choice of connecting the classes will 
reduce in one unit the maximum number of shells 
attainable. 
 
6. THE    TOPOLOGICAL   OPTIMIZATION 
    ALGORITHM 
Our algorithm consists of four main steps, and optimizes 
the mesh topology by traversing the X-face graph while 
taking some atomic decisions on how to slash the 
individual X-faces and on how to connect (or not) the 
loops inside X-cubes: 
 
InitializeXfaceGraph(G) 
InitializeMergeTree(T)   
{convert the X-face graph into a tree} 
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if there are cycles in the X-face graph then 
    for each graph cycle C  do 
          choose a random X-face of the cycle 
          cut the cycle C by choosing a random slash on 
          the X-face 
    end 
end 
{traverse the X-face tree and fix all X-faces} 
while not all X-faces have been fixed do 
     ChoseOneTreeLeaf(c,f)  {leaves correspond to cubes  
     c  with  only one X-face f} 
     FixLeaf(f,SlashingCriterion) 
     UpdateMergeTree(T) 
     PruneLeaf(c) 
end 
{decide on connecting loops within X-cubes} 
for each cube c do 
      FixXcube(ConnectingCriterion) 
      UpdateMergeTree(T) 
end 
{final triangulation within cubes} 
for each cube c do 
      Triangulate its border edges with triangles inside c 
end 
 
6.1 Slashing criteria on a X-face f 
Observe that the particular choice on how X-faces are 
slashed affects the total number of loops in the mesh. 
Slashing an X-face f from one slashing choice to the 
other will always change by exactly one the number of 
loops in each one of the two cubes adjacent to f (if, 
before the slash, the two borders of f were part of the 
same loop in one of the cubes, the slash will split that 
loop and hence increase the number of loops for that 
cube; if, before the slash, the two borders of f were part 
of two different loops of the cube, the slash will merge 
these two loops and decrease by one the loops count for 
this cube). Therefore, depending on the situation, an X-
face slash may either leave L unchanged -when the loop 
count was increased in one of the cubes and decreased 
in the other one- or increase or decrease it by 2. 
We propose the following four criteria (the last two are 
supported by the Merge Tree encoding the equivalence 
classes of vertices): 
Criterion 1. Take the option that maximizes Lc in every 

cube c sharing the face f. We have seen that if Lc 
increases by one, the loop count in the neighbor 
cube cannot decrease by more than one. Then, the 
total count L can never decrease. This is used in 
our greedy algorithm for maximizing L. 

Criterion 2. Minimize Lc in every cube c sharing the 
face f. For the same reasons as in (1), the algorithm 
will tend to minimize L. 

Criterion 3. Take the option that does not decrease the 
number of equivalence classes (if one of the 

possible choices does so). The algorithm will tend to 
maximize S, as the final number of equivalence 
classes equals S. 

Criterion 4. Take the option that decreases the 
number of equivalence classes (if one of the 
possible choices decreases it). The algorithm will 
tend to minimize S (the final number of equivalence 
classes equals S). 

 
6.2 Criteria on how to connect loops within X-
cubes 
After having fixed the X-faces of the model, we must 
decide how to connect the remaining free loops (the 
loops in X-cubes). We must first observe that, when we 
connect two loops, we have a net increase of T in four 
(due to Eqn. (3) ). Therefore, and due to T=2V+4(H-
S), we have a net increase of (H-S) in one. Taking into 
account this property, we have the following four 
options: 
Criterion a. Never connect loops. In this case, (H-S) is 

decreased. This decision tends to generate many 
small blobs -disconnected shells-. In case of noisy 
models, irrelevant small features can be easily 
identified and removed.  

Criterion b. Always connect loops. Now, (H-S) is 
increased and S is decreased. At the end we will 
have a lower number of equivalence classes and a 
small S. 

Criterion c. Two loops are connected when they 
belong to the same equivalence class. In this case, S 
remains constant. But, as we have an increase in H-
S, the final consequence is an increase of H in one. 

Criterion d. Two loops are connected when they do 
not belong to the same equivalence class. In this 
case, S is reduced by one. As we have an increase 
in H-S, the final consequence is that H remains 
constant. 

 
7. COMBINED DECISIONS 
We have sixteen possible combined decisions that can 
be taken during the traversal of the X-face graph and the 
visit of the X-cubes (from 1-a to 4-d). In what follows, 
the notation min(W) stands for the subset σ of all 
meshes M such that W(m) has its minimum value for all 
m in σ The same applies to max(W). We use the 
notations High and Low in those cases where we cannot 
guarantee a maximum or a minimum. 
The four  implemented  algorithms correspond  to 1-a, 
2-b, 3-c and 4-d. In these cases, both atomic decisions 
are complementary: 

• In case 1-a we maximize L and, since we do not 
connect loops, we  have s=L. Then, T=4V+2L-
4s = 4V - 2L and the maximization of L leads to 
min(T). On the other hand, as T=2V+4(H-S), 
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we will have min(H-S), with Low(H) and  
High(S). 

• In case 2-b, L is minimized and s has its 
maximum conditioned to the value of L. Then 
s≥L and 4(H-S)=2V+2L-4s≤2V-2L$. The 
consequence is a High(H-S) with High(H) and a 
Low(S). 

• In case 3-c, the number of shells is maximized, 
due to the arguments presented in Section 6. The 
consequence is max(S) with High(H). 

• Case 4-d tends to min(S) with Low(H) since we 
always connect disconnected equivalence classes. 
We can guarantee that, if the initial solid (before 
voxelization) had R shells, the final mesh M will 
have R’≤ R shells. 

These four algorithms have been implemented, and 
their results will be discussed in the next section. The 
Max/Min global optimal values are always reached 
provided that the X-face graph has no cycles. In the next 
section we will see that this is the case in most practical 
cases. 
Our current implementation triangulates each sheet so 
that no triangle lies on the faces of the cubes. These 
faces would produce undesirable artefacts when actual 
data values are used for interpolating the vertex position 
along the grid edges. It has also to be noted that when 
using criteria 2 and 3, in order to represent the 
intersection of two (or more) tunnels, a few cases require 
the introduction of internal vertices [3]. 
The remaining twelve combined decisions (1-b, 1-c, .. , 
4-c) take conflicting decisions on the X-faces and the X-
cube loops, their application being less clear. They will 
be investigated as part of our future work. 
On the other hand, tie situations might occur when the 
two slashing choices for an X-face fulfill a given criterion. 
This is simply a consequence of the fact that in most 
cases the mesh having the optimal values for T, H or S 
is not unique. A simple random selection can be used to 
solve the tie whenever we only target a single 
magnitude. If this is the case, the output mesh will be a 
random choice from the set of meshes having the 
optimal value of the target. A much more interesting 
approach for solving slashing ties consists in using an 
ordered pair of combined criteria. This fact enables us to 
optimize a magnitude while trying to keep small another 
one. 
 
8. EXAMPLES AND DISCUSSION 
Fig. 4.  shows  the results of our algorithm with strategies  
1-a, 2-b, and 4-d. In this example 3-c yields the same 
result as 1-a, and is not shown. The test model consists 
of the edges of a cube plus all of its diagonals. The 
model has a resolution of 16x16x16; of the 4096 cells, 
only 240  have X-faces (but only one per cube), and 
there are a total of 40 X-cubes. The edges of the cube 

are thicker, so they are stable throughout. The 
diagonals, instead, are thinner, and result in very 
different reconstructions. In agreement with the expected 
behavior, we get the triangle, shell and hole-counts 
summarized in Tab. 3. 
 

            
 

                         
 

Fig. 4. Results of strategies 1-a, 2-b and 4-d on the test cube. 
 
 
 

 T S H T S H 
1-
a 

2296 136 5 575,776 1,182 223 

2-
b 

2936 1 30 583,932 339 1,419

3-c 2296 136 5 577,232 1,185 590 
4-
d 

2836 1 5 580,076 340 456 

 
Tab. 3. Number of Triangles, Sheets and Holes in the resulting 
mesh for the test cube (left, all meshes have 1410 vertices) and 
the model on Fig. 8. (all meshes have 289,806 vertices). 
 
One can observe how 1-a and 3-c minimize the number 
of triangles, while 2-b and 4-d minimize the number of 
shells, but 2-b maximizes genus, whereas 4-d minimizes 
it.  
Although this example is academic, it displays well the 
behavior of the different variants of the algorithm. For a 
more realistic, albeit less pedagogical example, Fig. 5. 
shows a portion of a ship's engine room, sampled at a 
resolution  of  256x256x256.  The images at the right of 
Fig. 5. are enlarged views of a not-so crowded area 
(highlighted in blue in the leftmost figure), where  
differences in the results of strategies 2-b and 3-c are 
readily seen. The models have been rendered here with 
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all vertices fixed at the midpoints of their cell-edges, 
which accounts for the irregular appearance, but 
displays clearly the topology of the result (additional 
images can be found at 
http://www.lsi.upc.es/\~virtual/CAD.html. 
 

 

 
 
Fig. 5. The result of two different strategies on a complex 
model. The right-hand side figures are blow-ups of the region 
marked with a blue rectangle. 
 
The processing of this model on a Pentium-4 running at 
1.7GHz with 256Mb of ram took: 0.98 s to build the X-
faces graph, 4.23 s to build the connectivity merge-tree, 
and 0.41 s to solve the graph, for a total running-time 
overhead of 5.62 s (above the time necessary for the 
ordinary marching cubes). There are a total of 286,631 
non-empty voxels, with 5,739 X-faces; 4,492 cells have 
only one X-face, 854 have two X-faces, 392 have three 
X-faces and one has six X-faces. The X-cubes total 289. 
The merge tree initially has 2,358 components. Tab. 3. 
summarizes the effect on the topology of the different 
variants of our algorithm. Notice how these numbers are 
in agreement with the properties enumerated in Section 
7.  
 
9. CONCLUSIONS            
In this paper, four algorithms to control and to optimize 
the topological properties of iso-surfaces have been 
presented and discussed. Several minimality criteria 
have been considered: total triangle count, genus, 
number of shells and combined criteria. The remaining 
degrees of freedom in iso-surface extraction algorithms 

have been identified, two data structures (the X-face 
graph and the Merge Tree of equivalence classes) that 
retain global topological properties of the final mesh M 
have been proposed, and several efficient algorithms 
(based on a few atomic operations and on the traversal 
of the X-face graph) for the topological control and 
optimization of the final triangular mesh have been 
presented and discussed. 
Future work will focus on a deeper characterization of 
the algorithms based on the presented atomic decisions 
and on the development of area and volume 
minimization algorithms. Another topic for future work is 
how to use the proposed atomic decisions for reducing 
the total number of triangles counting once each group 
of adjacent, coplanar triangles. 
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