
 503

Optimal Iso-Surfaces

Carlos Andújar1, Pere Brunet2, Antoni Chica3, Isabel Navazo4, Jarek Rossignac5 and Àlvar Vinacua6

1Universitat Politècnica de Catalunya, andujar@lsi.upc.es
2Universitat Politècnica de Catalunya, pere@lsi.upc.es

3Universitat Politècnica de Catalunya, achica@iri.upc.es
4Universitat Politècnica de Catalunya, isabel@lsi.upc.es

5Georgia Institute of Technology, jarek@cc.gatech.edu
6Universitat Politècnica de Catalunya, alvar@lsi.upc.es

ABSTRACT

Since the publication of the original Marching Cubes algorithm, numerous variations have been
proposed for guaranteeing water-tight constructions of triangulated approximations of iso-surfaces.
Most approaches divide the 3D space into cubes that each occupies the space between eight
neighboring samples of a regular lattice. The portion of the iso-surface inside a cube may be
computed independently of what happens in the other cubes, provided that the constructions for
each pair of neighboring cubes agree along their common face. The portion of the iso-surface
associated with a cube may consist of one or more connected components, which we call sheets.
We distinguish three types of decisions in the construction of the iso-surface connectivity: (1) how
to split the X-faces, which have alternating in/out samples, (2) how many sheets to use in a cube,
and (3) how to triangulate each sheet. Previously reported techniques make these decisions based
on local criteria, often using pre-computed look-up tables or simple construction rules. Instead, we
propose global strategies for optimizing several topological and combinatorial measures of the iso-
surfaces: triangle count, genus, and number of shells. We describe efficient implementations of
these optimizations and the auxiliary data structures developed to support them.

Keywords: Iso-surface extraction, Handle Removal, Topological Ambiguity, Triangle Meshes.

1. INTRODUCTION

Let O be a solid object with one or more connected
com-ponents. A discrete representation of O may be
obtained by classifying, against O, a set of sample
points distributed on the nodes of a regular, axis-aligned
three-dimensional grid. Nodes lying inside O or on its
boundary are labeled as black and nodes lying outside
O are labeled as white. Such a lattice may be
constructed in a variety of ways from a polyhedral or
curved representation of O through a voxe-lization
process. A similar lattice color-coding may be produced
by considering the values of a scalar field at each node.
If the value is larger than a prescribed threshold, the
node is black; otherwise, it is white.
In many application areas, it is useful to convert the dis-
crete information stored in the black/white coloring of
the grid nodes into a continuous boundary model. Most
often, this model is a triangle mesh M, which
approximates the boundary of the original solid object
O. We say that M is a separating surface for a

black/white grid of nodes when it is a manifold triangle
mesh that bounds a solid that contains all black nodes
and none of the white ones.
Multiple variations of the original Marching Cubes
algorithm [8] give a solution to the iso-surface
extraction problem. However, current techniques are
based on local criteria and therefore cannot offer a
direct control of topological properties of the extracted
mesh.
Sometimes the connectivity, and hence the topology, of
M is unambiguously defined by the in/out classification
of the samples and therefore all iso-surface extraction
algorithms lead to topologically equivalent meshes. But
in general, different extraction algorithms may lead to
meshes with different topologies. The principal focus of
prior art in this area was to guarantee that M is a valid
boundary of a solid and possibly to guarantee that it is a
two-manifold.
In this paper, we propose an approach for selecting
amongst all valid topologies the one that minimizes a
desired topological or combinatorial cost, which can be

 504

the total triangle count, the number of connected shells,
or the total genus. The proposed algorithm is very
efficient, succeeds in optimizing the topological
properties of M and does not allow mesh triangles on
the faces of the grid cubes (in order to avoid rigid
orthogonal mesh triangles).
Our main contributions are:

• The identification and classification of the de-
grees of freedom in the iso-surface extraction
algorithms.

• The design of a new iso-surface extraction
algorithm that guarantees a topologically
correct iso-surface, by using these degrees of
freedom.

• The derivation of two data structures (the X-
face graph and the Merge Tree of equivalence
classes) that capture the global topological
properties of M.

• Efficient algorithms, based on a few atomic
operations and on the traversal of the X-face
graph, for the optimization of the topology of
M.

• The guarantee that M is two-manifold.
After reviewing the previous work in the next section,
we present the degrees of freedom that are implicit in
standard Iso-surface Extraction algorithms, and propose
algorithms and dedicated data structures for iso-surface
generation with optimization of the topological
properties of the final mesh, M. Finally, we report results
on several examples.

2. PREVIOUS WORK
As first noted by Dürst [4], the original Marching Cubes
algorithm [8] may produce iso-surfaces with holes due
to topologically inconsistent decisions on the
reconstruction of ambiguous faces, where the borders
used by one incident cube do not match the borders of
the other incident cube. Several approaches addressing
this problem have been published (see [6],[13] for a
review).
Disambiguation techniques reported so far have focused
on two major concerns: topological consistency, i.e.
producing closed surfaces by proper cube
polygonalization, and topological correctness, i.e.
extracting a surface faithful to the geometry of the real
surface.
Consistency can be guaranteed by just considering the
inside/outside node classification, regardless of the
actual data values. Tetrahedra decomposition
techniques [11],[18] split each cube into five or six
tetrahedra, which always exhibit an unambiguous
polygonalization. Preferred polarity methods decide
how to slash an X-face using a uniform criterion: always
join black nodes or always join white nodes. This

decision can be implemented either algorithmically [2]
or by using a single-entry lookup table [7],[9]. All these
techniques are generally simple to implement although
they do not solve the correctness problem.
Techniques addressing the topological correctness
problem infer the proper polygonalization of an
ambiguous cube by analyzing its actual data values. As a
consequence, these methods are required to provide
different polygonalization schemes for each ambiguous
cube. Most methods only attempt to assure the
correctness of the returned surface on the boundary of
ambiguous faces. The analysis can be based on face
center resampling [15],[17], bilinear interpolation [12]
or gradient disambiguation [16]. Only a few methods
attempt to recover the original topology also inside the
ambiguous cubes either by using critical point analysis
[14] or trilinear interpolation [3],[10]. Note that all these
techniques are data-dependent and therefore are noise-
sensitive and cannot be applied to binary grids.
All the disambiguation techniques discussed so far are
based on local decisions and do not offer any explicit
control over the global properties of the extracted
surface such as genus, triangle count, or number of
shells.
Besides Marching Cubes disambiguation, a number of
techniques have been proposed for guaranteeing the
topological correctness of the resulting surface. When
the desired topology and an approximating shape are
known beforehand, one can start with an initial estimate
of M and then adjust it to match a given shape by
applying topology-preserving operations (see e.g. [1]).
An alternative approach was proposed for removing
small handles or tunnels [5].
In this paper we identify the choices that may be used to
control the topology of M while guaranteeing its
topological consistency.

3. DEFINITIONS
The space surrounding the solid O may be decomposed
into cubic cells in two different ways. Cubes centered
around the nodes are usually referred to as the voxels of
a volumetric model. Each voxel inherits the color of the
node located at its center. The union of the black voxels
may be used as a coarse approximation of O. In contrast
to voxels, the cubes considered here span the interstice
between 8 nodes of the lattice, which are its corners. A
cube has 12 edges. Some of them may join white and
black nodes and contain the vertices of the mesh V=
{Vi}.

3.1 Sheets and Border Edges
The intersection between the triangle mesh M and the
boundary of a given cube forms one or several
polygonal cycles. Like most iso-surface generation
schemes, we require that the edges of these intersection

 505

curves form a subset of the edges of M. This assumption
is fundamental to the Marching Cubes algorithm and to
most of its variations, because it ensures that each
triangle of M is contained in a single cube.
Consequently, the triangles of M may be gene-rated by
considering one cube at a time.
The set of the triangles of M that lie in a given cube may
be empty (when all corners of the cube have the same
color) or may form one or more connected components
called sheets. Each one of these components is a
manifold with boundary. It is bounded by one or more
simple cycles of border edges (contained in the faces of
the cube). Let CL and CR be the two face-connected
cubes sharing a common face fLR. To ensure that M is a
manifold without boundary, the border edges of the
portion of M in the cube CL must match the border
edges of the portion of M in the neighbor cube CR. This
way, each triangle of M has one neighbor across each
one if its edges. This requirement has lead to several
publications that disambiguate the MC algorithm, as
discussed in Section 2.

3.2 X-faces, Loops and X-cubes
When the four corners of a face have the same color,
the face contains no edges of M. When a face f has two
vertices (see Fig. 1(a)., Fig. 1(b).), it contains a single
border edge of M, joining them. This edge will be used
as a border edge by the two cubes incident upon f.
Finally, when a face f has alternating black and white
corners, and hence four vertices in its boundary, it
contains two border edges of M. Note that we have a
choice in selecting these two edges (Fig. 1(c). and Fig.
1(d).). We use the term X-face to refer to such
ambiguous faces.

 (a) (b) (c) (d)

Fig. 1. Faces with two vertices (a, b) generating a single border
edge of M. In (c, d), faces generating two border edges of the
triangular mesh M.

Once the edges of M have been defined for all the faces,
the corresponding borders for any given cube may
always be uniquely chained into cycles, which we call
loops. These loops are the boundary of the portion of M
associated with the cube. Note that we can have at most
four loops inside a cube (Fig. 2.).

Fig. 2. Configurations with two and with four loops. With two
loops (left and center), we have two possibilities: two sheets,
each homeomorphic to a disk, or a single sheet homeomorphic
to an annulus (tunnel or handle).

X-cubes are defined as cubes having no X-faces but
having more than one loop. The only MC configuration
leading to an X-cube is the one depicted in Fig. 2-left.
The loops in an X-cube can be connected or not, and
this does not affect any X-face decision (observe that
this is not the case in Fig. 2 right). X-cubes represent
quasi-non-manifold parts of O that are not producing X-
faces.

4. DEGREES OF FREEDOM IN ISO-SURFACE
EXTRACTION
We have identified two tools for controlling the topology
and the connectivity of the final mesh: we must decide
how to slash X-faces and we must decide (in all X-
cubes) whether to have a different sheet per loop or to
connect the two loops. Decisions on X-cubes are
obviously independent from decisions on X-faces, as
they do not affect the X-face slashing decisions.
Deciding how to slash X-faces and deciding if loops
must be connected or not in X-cubes, gives us a number
of degrees of freedom that can be used to optimize the
topological properties of the final mesh M.
Moreover, after having decided which way to slash each
X-face and which way we connect loops in each X-cube,
individual sheets must be triangulated. Although the
available choices may impact the total area of M, they
do not affect -in our approach- the topology, and hence
they are not relevant for the optimization of the number
of shells, cells, or the genus. In short,

• Once the choice for all of the X-faces is made,
the border edges and hence the loops of the
final mesh are completely determined.

• The choice on having separate sheets or
connecting loops in individual X-cubes, affects
the total number of triangles in the mesh and
the topology of the mesh (Fig. 2.).

• The decision on how to select a triangulation
for each sheet among the valid ones has no
impact on the topology of the mesh, but it
does have an effect on the total surface area of
the mesh. Therefore we will not discuss these
choices in the present paper.

 506

5. TOOLS FOR A GLOBAL APPROACH
The objective of the rest of the paper is to propose
several algorithms that use the degrees of freedom
shown in the last section in order to optimize the
topological properties of the final mesh. In the rest of this
section we will show that this is not possible if we are
only based on local decisions, and two efficient data
structures (representing global information) for the
topological optimization in Marching Cubes will be
proposed.
The Euler-Poincarè formula for a closed manifold
triangle mesh without borders consisting of V vertices, S
shells (connected parts of M), and H handles indicates
that the total number T of triangles is:

 T = 2V+4(H-S) (1)
The total number of loops over all cubes will be noted as
L, while the total number of half border edges over all
the faces of the cubes will be noted as B. For a particular
cube C, its number of loops and border edges will be
noted as Lc and Bc. Note that L is the sum of all Lc and
that B equals the sum of all Bc.
Each vertex of M is bounding eight border edges
because it lies on an edge of the grid which has four
incident square faces of the adjacent cubes. Each face f
contains two coincident border edges, one per cube
incident upon f. Furthermore, each border edge is
bounded by two vertices. Hence, the total number of
border edges in all cubes is constant:
 B = 4V (2)
We also have a relationship among the number of loops
L, the number of triangles T and the total number of
sheets (denoted by s) inside all cubes. The relation is
given by the formula:
 T= 4V + 2L –4s (3)
To prove this relationship, let us first look at a single
cube C, and let us first assume that we keep the loops
separated without connecting them. Then, for a loop
having b border edges we generate t=b-2 triangles of M.
If C has b border edges and l loops, we can sum the
number of triangles for each of the loops and obtain
t=b-2l as the total number of triangles generated for C.
By summing this expression for all cubes and taking into
account Eqn. (2) and that s=L (since we do not have
connected loops) we can write:
T=B-2L = 4V-2L = 4V-2L-4(s-L) = 4V+2L-4s, which
is the above equation. To prove it in the general case
where we connect some of the loops, we can simply
observe that the above equation is invariant under the
connecting loops operation: for every connection
between two loops in any of the cubes, s decreases in
one while T increases by four (Fig. 2.).
Also observe that once X-faces have been fixed, since V
is constant, L is also constant and we can conclude that

T and s are always varying in opposite ways: s decreases
as T increases, and vice-versa.
Given that V is fixed, the only available variables for our
optimization are T, H and S. Unfortunately, we do not
have a local control on H and S, which depend on the
global structure of the mesh. In the rest of this section we
will present the two new data structures that supply the
necessary global information to the mesh generation
algorithm: the X-face propagation graph and the merge
tree of equivalence classes of vertices.

5.1 X-face propagation graph
The X-face propagation graph is a convenient tool for
deciding on X-face slashing. Consider the abstract graph
G=(V, E) where configurations with at least one X-face
correspond to graph nodes and where the X-faces
correspond to links between graph nodes that represent
their incident cubes. For this graph to represent a
possible choice of how to slash the X-faces, each graph
edge is assigned a binary value indicating its slashing
choice.
The X-face graph can be constructed in linear time by a
single traversal of the volumetric model. During the
traversal, a graph node with label (i,j,k) is inserted into V
if the cube (i,j,k) has at least one X-face. An edge
connecting node (i,j,k) with any of its three face-
neighbors along directions {X+, Y+, Z+} is inserted
into E if the shared face is an X-face. Since this graph is
not oriented, only three faces of each cube are
considered, so as to avoid edge repetition.
A simple examination of the 256 cube configurations
reveals that cubes can have 0, 1, 2, 3 or 6 X-faces
(frequencies over the 256 configurations are shown in
Tab. 1.). Since the degree of the graph vertices is
bounded by 6, X-face graphs are sparse, with a small
number of edges connecting nodes and only a few high-
order nodes.

X-faces #
Configurations

Percentage

0 135 52.7%
1 72 28.1%
2 30 11.7%
3 16 6.2%
4 0 0.0%
5 0 0.0%
6 2 0.7%

Tab. 1. Frequencies of X-faces over the 256 cube
configurations. Note that cubes with 4 or 5 X-faces do not exist.

 507

Dataset Ship (Fig. 8.) Random
1

Random
2

Resolution 128x128x128 8x8x8 8x8x8
Non-Empty
cubes

35,020 312 299

Deg. 1 54 49 34
Deg. 2 21 9 12
Deg. 3 0 9 8
Deg. 6 0 2 2
arcs 48 53 47
cycles 0 0 8

components

27 16 13

Tab. 2. Properties of the X-face graph on the test datasets. Deg
n stands for the number of graph nodes with degree n.

Tab. 2. shows the number of vertices, edges,
components and cycles of the X-face graph on a ship
engine's room model (Fig. 8.) and on two random
datasets. Note that on all test models the X-face graph
has many connected com-ponents and few high-
ordernodes. Our experiments show that graph cycles
might appear, although very rarely in practice. Hence,
most of the connected components of the X-face graph
are trees.

Fig. 3. Main components of the X-face graph on the test model.

5.2 Connectivity merge tree
The second data structure is related with the equivalence
classes of vertices. These equivalence classes initially
encode clusters of vertices connected by border edges
that are not contained in X-faces (obviously, internal
edges of the cube triangulations do not affect these
clusters). In other words, two vertices initially belong to
the same class iff they will belong to the same shell
regardless of the X-face and X-cube decisions. We will
use this additional tool to decide on the individual effect
on H and S of a certain choice on the connection of
loops of an X-cube or the slashing of an X-face, and we

will update the equivalence classes at each decision. The
interest of this data structure relies in the fact that the
number of shells S depends on the global connectivity of
the mesh, and cannot be determined locally: if a
particular slashing choice in a certain X-face connects
vertices that were not previously in the same cluster
(equivalence class), we are decreasing the total number
of shells S. This set of classes gives a strict upper bound
to the number of resulting shells, as all vertices in a
single equivalence class must lie on the same shell. At
the end, when all decisions have been taken, the
number of clusters in this data structure is exactly the
number S of shells.
To implement it, we use a merge tree of the vertices Vi
that is initially constructed in a one-sweep process. In
this way we store equivalence classes of vertices,
modulo the equivalence relation given by the
connectivity along a series of border edges that do not
belong to an X-face. That is: initially, two vertices Vi and
Vj are in the same class if there exists a sequence of
vertices Vi=V0, V1, ... Vn =Vj such that for k=0 ... n-1,
the segment Vi Vi+1 is a border edge that does not
belong to an X-face. Notice that these border edges will
always remain in the final triangulation.
Using standard data structures we can construct this set
of equivalence classes in a single pass of the model,
merging classes as we visit the boundary edges of non-
X-faces. Finding the canonical representative of a class
has a cost of O(log m) where m is the number of vertices
in the class. Merging two classes can be done in constant
time. Therefore the whole data structure is initialized in
time bounded by O(n log n)+m, where n is the total
number of vertices in the model and m is the number of
voxels.
Furthermore, this data structure supports the dynamic
computation of the impact of any choice on any given
X-face or X-cube. If the end vertices of the chosen
border edges on an X-face or on the two loops of an X-
cube belong to the same class, the choice does not affect
the number of shells. If however they belong to different
classes, then the choice of connecting the classes will
reduce in one unit the maximum number of shells
attainable.

6. THE TOPOLOGICAL OPTIMIZATION
 ALGORITHM
Our algorithm consists of four main steps, and optimizes
the mesh topology by traversing the X-face graph while
taking some atomic decisions on how to slash the
individual X-faces and on how to connect (or not) the
loops inside X-cubes:

InitializeXfaceGraph(G)
InitializeMergeTree(T)
{convert the X-face graph into a tree}

 508

if there are cycles in the X-face graph then
 for each graph cycle C do
 choose a random X-face of the cycle
 cut the cycle C by choosing a random slash on
 the X-face
 end
end
{traverse the X-face tree and fix all X-faces}
while not all X-faces have been fixed do
 ChoseOneTreeLeaf(c,f) {leaves correspond to cubes
 c with only one X-face f}
 FixLeaf(f,SlashingCriterion)
 UpdateMergeTree(T)
 PruneLeaf(c)
end
{decide on connecting loops within X-cubes}
for each cube c do
 FixXcube(ConnectingCriterion)
 UpdateMergeTree(T)
end
{final triangulation within cubes}
for each cube c do
 Triangulate its border edges with triangles inside c
end

6.1 Slashing criteria on a X-face f
Observe that the particular choice on how X-faces are
slashed affects the total number of loops in the mesh.
Slashing an X-face f from one slashing choice to the
other will always change by exactly one the number of
loops in each one of the two cubes adjacent to f (if,
before the slash, the two borders of f were part of the
same loop in one of the cubes, the slash will split that
loop and hence increase the number of loops for that
cube; if, before the slash, the two borders of f were part
of two different loops of the cube, the slash will merge
these two loops and decrease by one the loops count for
this cube). Therefore, depending on the situation, an X-
face slash may either leave L unchanged -when the loop
count was increased in one of the cubes and decreased
in the other one- or increase or decrease it by 2.
We propose the following four criteria (the last two are
supported by the Merge Tree encoding the equivalence
classes of vertices):
Criterion 1. Take the option that maximizes Lc in every

cube c sharing the face f. We have seen that if Lc
increases by one, the loop count in the neighbor
cube cannot decrease by more than one. Then, the
total count L can never decrease. This is used in
our greedy algorithm for maximizing L.

Criterion 2. Minimize Lc in every cube c sharing the
face f. For the same reasons as in (1), the algorithm
will tend to minimize L.

Criterion 3. Take the option that does not decrease the
number of equivalence classes (if one of the

possible choices does so). The algorithm will tend to
maximize S, as the final number of equivalence
classes equals S.

Criterion 4. Take the option that decreases the
number of equivalence classes (if one of the
possible choices decreases it). The algorithm will
tend to minimize S (the final number of equivalence
classes equals S).

6.2 Criteria on how to connect loops within X-
cubes
After having fixed the X-faces of the model, we must
decide how to connect the remaining free loops (the
loops in X-cubes). We must first observe that, when we
connect two loops, we have a net increase of T in four
(due to Eqn. (3)). Therefore, and due to T=2V+4(H-
S), we have a net increase of (H-S) in one. Taking into
account this property, we have the following four
options:
Criterion a. Never connect loops. In this case, (H-S) is

decreased. This decision tends to generate many
small blobs -disconnected shells-. In case of noisy
models, irrelevant small features can be easily
identified and removed.

Criterion b. Always connect loops. Now, (H-S) is
increased and S is decreased. At the end we will
have a lower number of equivalence classes and a
small S.

Criterion c. Two loops are connected when they
belong to the same equivalence class. In this case, S
remains constant. But, as we have an increase in H-
S, the final consequence is an increase of H in one.

Criterion d. Two loops are connected when they do
not belong to the same equivalence class. In this
case, S is reduced by one. As we have an increase
in H-S, the final consequence is that H remains
constant.

7. COMBINED DECISIONS
We have sixteen possible combined decisions that can
be taken during the traversal of the X-face graph and the
visit of the X-cubes (from 1-a to 4-d). In what follows,
the notation min(W) stands for the subset σ of all
meshes M such that W(m) has its minimum value for all
m in σ The same applies to max(W). We use the
notations High and Low in those cases where we cannot
guarantee a maximum or a minimum.
The four implemented algorithms correspond to 1-a,
2-b, 3-c and 4-d. In these cases, both atomic decisions
are complementary:

• In case 1-a we maximize L and, since we do not
connect loops, we have s=L. Then, T=4V+2L-
4s = 4V - 2L and the maximization of L leads to
min(T). On the other hand, as T=2V+4(H-S),

 509

we will have min(H-S), with Low(H) and
High(S).

• In case 2-b, L is minimized and s has its
maximum conditioned to the value of L. Then
s≥L and 4(H-S)=2V+2L-4s≤2V-2L$. The
consequence is a High(H-S) with High(H) and a
Low(S).

• In case 3-c, the number of shells is maximized,
due to the arguments presented in Section 6. The
consequence is max(S) with High(H).

• Case 4-d tends to min(S) with Low(H) since we
always connect disconnected equivalence classes.
We can guarantee that, if the initial solid (before
voxelization) had R shells, the final mesh M will
have R’≤ R shells.

These four algorithms have been implemented, and
their results will be discussed in the next section. The
Max/Min global optimal values are always reached
provided that the X-face graph has no cycles. In the next
section we will see that this is the case in most practical
cases.
Our current implementation triangulates each sheet so
that no triangle lies on the faces of the cubes. These
faces would produce undesirable artefacts when actual
data values are used for interpolating the vertex position
along the grid edges. It has also to be noted that when
using criteria 2 and 3, in order to represent the
intersection of two (or more) tunnels, a few cases require
the introduction of internal vertices [3].
The remaining twelve combined decisions (1-b, 1-c, .. ,
4-c) take conflicting decisions on the X-faces and the X-
cube loops, their application being less clear. They will
be investigated as part of our future work.
On the other hand, tie situations might occur when the
two slashing choices for an X-face fulfill a given criterion.
This is simply a consequence of the fact that in most
cases the mesh having the optimal values for T, H or S
is not unique. A simple random selection can be used to
solve the tie whenever we only target a single
magnitude. If this is the case, the output mesh will be a
random choice from the set of meshes having the
optimal value of the target. A much more interesting
approach for solving slashing ties consists in using an
ordered pair of combined criteria. This fact enables us to
optimize a magnitude while trying to keep small another
one.

8. EXAMPLES AND DISCUSSION
Fig. 4. shows the results of our algorithm with strategies
1-a, 2-b, and 4-d. In this example 3-c yields the same
result as 1-a, and is not shown. The test model consists
of the edges of a cube plus all of its diagonals. The
model has a resolution of 16x16x16; of the 4096 cells,
only 240 have X-faces (but only one per cube), and
there are a total of 40 X-cubes. The edges of the cube

are thicker, so they are stable throughout. The
diagonals, instead, are thinner, and result in very
different reconstructions. In agreement with the expected
behavior, we get the triangle, shell and hole-counts
summarized in Tab. 3.

Fig. 4. Results of strategies 1-a, 2-b and 4-d on the test cube.

 T S H T S H
1-
a

2296 136 5 575,776 1,182 223

2-
b

2936 1 30 583,932 339 1,419

3-c 2296 136 5 577,232 1,185 590
4-
d

2836 1 5 580,076 340 456

Tab. 3. Number of Triangles, Sheets and Holes in the resulting
mesh for the test cube (left, all meshes have 1410 vertices) and
the model on Fig. 8. (all meshes have 289,806 vertices).

One can observe how 1-a and 3-c minimize the number
of triangles, while 2-b and 4-d minimize the number of
shells, but 2-b maximizes genus, whereas 4-d minimizes
it.
Although this example is academic, it displays well the
behavior of the different variants of the algorithm. For a
more realistic, albeit less pedagogical example, Fig. 5.
shows a portion of a ship's engine room, sampled at a
resolution of 256x256x256. The images at the right of
Fig. 5. are enlarged views of a not-so crowded area
(highlighted in blue in the leftmost figure), where
differences in the results of strategies 2-b and 3-c are
readily seen. The models have been rendered here with

 510

all vertices fixed at the midpoints of their cell-edges,
which accounts for the irregular appearance, but
displays clearly the topology of the result (additional
images can be found at
http://www.lsi.upc.es/\~virtual/CAD.html.

Fig. 5. The result of two different strategies on a complex
model. The right-hand side figures are blow-ups of the region
marked with a blue rectangle.

The processing of this model on a Pentium-4 running at
1.7GHz with 256Mb of ram took: 0.98 s to build the X-
faces graph, 4.23 s to build the connectivity merge-tree,
and 0.41 s to solve the graph, for a total running-time
overhead of 5.62 s (above the time necessary for the
ordinary marching cubes). There are a total of 286,631
non-empty voxels, with 5,739 X-faces; 4,492 cells have
only one X-face, 854 have two X-faces, 392 have three
X-faces and one has six X-faces. The X-cubes total 289.
The merge tree initially has 2,358 components. Tab. 3.
summarizes the effect on the topology of the different
variants of our algorithm. Notice how these numbers are
in agreement with the properties enumerated in Section
7.

9. CONCLUSIONS
In this paper, four algorithms to control and to optimize
the topological properties of iso-surfaces have been
presented and discussed. Several minimality criteria
have been considered: total triangle count, genus,
number of shells and combined criteria. The remaining
degrees of freedom in iso-surface extraction algorithms

have been identified, two data structures (the X-face
graph and the Merge Tree of equivalence classes) that
retain global topological properties of the final mesh M
have been proposed, and several efficient algorithms
(based on a few atomic operations and on the traversal
of the X-face graph) for the topological control and
optimization of the final triangular mesh have been
presented and discussed.
Future work will focus on a deeper characterization of
the algorithms based on the presented atomic decisions
and on the development of area and volume
minimization algorithms. Another topic for future work is
how to use the proposed atomic decisions for reducing
the total number of triangles counting once each group
of adjacent, coplanar triangles.

10. ACKNOWLEDGEMENTS
The authors would like to thank Iordace Costin for his
help. This work has been partially supported by the
Spanish Ministry of Science and Technology, under
grant TIC-2001-2226-C01.

11. REFERENCES
[1] S. Bischoff and L. Kobbelt, Isosurface

Reconstruction with Topology Control, in Proc.
Pacific Graphics 2002, 2002, pp 246-255.

 [2] J. Bloomenthal, An implicit surface polygonizer, in
Graphics Gems IV, Academic Press, 1994, pp 324-
349.

[3] P. Cignoni and F. Ganovelli and C. Montani and R.
Scopigno, Reconstruction of Topologically Correct
and Adaptive Trilinear Isosurfaces, Computers and
Graphics, Vol. 24, No 3, 2000, pp 399-418.

[4] M. J. Dürst, Letters: Additional Reference to
Marching Cubes, Computer Graphics, Vol. 22, No.
2, 1988, pp 72-73.

[5] I. Guskov and Z. Wood, Topological noise removal,
in Proc. Graphics Interface 2001, Canada, 2001,
pp 19-26.

[6] S. Hill and J. C. Roberts, Surface models and the
resolution of n-dimensional cell ambiguity, in
Graphics Gems V, Academic Press, 1995, pp 98-
106.

[7] J.-O. Lachaud, Topologically Defined Iso-surfaces, in
Proc. 6th Discrete Geometry for Computer Imagery
(DGCI'96), Lyon, France, Springer Verlag, 1996,
pp 245-256.

[8] W. Lorensen and H. Cline, Marching Cubes: A
High Resolution 3D Surface Construction
Algorithm, Computer Graphic, Vol. 21, No. 4,
1987, pp 163-169.

[9] C. Montani and R. Scateni and R. Scopigno, A
modified look-up table for implicit disambiguation
of Marching Cubes, The Visual Computer, Vol. 10,
No 6, 1994, pp 353-355

 511

[10] G. Nielson, On Marching Cubes, IEEE Transactions
on Visualization and Computer Graphics, Vol. 9,
No. 3, 2003, pp 283—297.

[11] M. Nielson and T.A. Foley and B. Hamann and D.
Lane, Visualizing and Modeling Scattered
Multivariate Data, IEEE Computer Graphics and
Applications, Vol. 11, No. 3, 1991, pp 47-55.

[12] G.M. Nielson and B. Hamann, The Asymptotic
Decider : Resolving the Ambiguity in Marching
Cubes, in Proc. of IEEE Visualization 91, 1991, pp
83-91.

[13] P. Ning and J. Bloomenthal, An evaluation of
implicit surface tilers, IEEE Computer Graphics and
Applications, Vol. 13, No. 6, 1993, pp 33-41.

[14] B. T. Stander and J. C. Hart, Guaranteeing the
Topology of an Implicit Surface Polygonization for
Interactive Modeling, Computer Graphics (in
SIGGRAPH 97 Proceedings), Vol. 31, No 1, 1997,
pp 279-286.

[15] A. Wallin, Constructing Isosurfaces from CT Data,
IEEE Computer Graphics and Applications, Vol.
11, No. 6, 1991, pp 28-33.

[16] J. Wilhelms and A. Van Gelder, Topological
Considerations in Isosurface Generation, Computer
Graphics, Vol. 24, No. 5, 1990, pp 79-86.

[17] G. Wyvill and C. McPheeters and B. Wyvill, Data
structures for soft objects, The Visual Computer,
Vol. 2, No. 4, 1986, pp 227-234.

[18] C. Zahlten, Piecewise linear approximation of
isovalued surfaces, in Advances in Scientific
Visualization, Spinger-Verlag, 1992, pp 105-118.

