
 339

GridCAD: A Collaborative CAD System Based on Grid Computing

He-Fu Shi1, Min Tang1,2, Shang-Ching Chou2 and Jin-Xiang Dong1

1Zhejiang University, loocool@sina.com, tang_m@zju.edu.cn, djx@zju.edu.cn

2Wichita State University, chou@cs.wichita.edu

ABSTRACT

Current works on distributive and collaborative CAD systems often focus on collaborative request
submitting, but not distributively executing. A new approach to integrating Grid Computing into
Collaborative CAD system is proposed in this paper. A prototype system GridCAD based on this
approach is implemented with Web Services based Grid Computing technology. XML/SOAP is
adopted as the communications mechanism between Server and Clients. The Session Manager
provides the solution of validity maintenance of product models under collaborative environments.
In particular, as the core module, Task Manager enables GridCAD to dynamically split complex
operations and to distributively perform subtasks. GridCAD also guarantees interoperability on
heterogeneous systems so that different types of systems can communicate smoothly and perform
the computation much faster than on a single machine.

Keywords: Web Services; XML; SOAP; Grid Computing; Dynamic Scheduling; Collaborative
CAD.

1. INTRODUCTION

Due to the rapid development in network and computer
technologies, new demands in computer aided design

technologies arose. Complex system designs today are
frequently done in a collaborative distributive
environment. A lot of researches have been done on
distributed and collaborative CAD applications. Many
prototype systems with different technologies and
architectures also have been experienced.

1.1 Current Approaches on Distributed CAD

Considering the network architecture, most of previous
works on distributed CAD researches mainly put the
focus on two kinds of models: Server/Client Model and
Equal Node Model.
In a Server/Client Model, all the modeling operations
like entities creating or editing at the model level are
performed on the server side. Commonly, the server is
composed of modeling kernel and geometric kernel; it
maintains the validation of models and provides
interactive interfaces for clients’ requests during design
processes. As a node exposed to the end-user, the client
provides UI Module and Model Displaying Module.
Experimental systems like WebSPIFF[6] and NetFeature[2]
are well known in this direction.
Equal Node Model assures all computer nodes included
are “equal” in functionality. Same modeling kernel and
model sharing module are installed in each host in an
equal model system. A cutting action made by a single

host will cause all nodes performing the same operation
under communication mechanism for maintaining
consistency of the model. Current prototypes with Equal
Nodes Model such as CollIDE[1], Cooperative
ARCADE[3] and CSCW-FeatureM[4] and TOBACO[5] are
ready for experimental use.
Progresses have been achieved in distributed CAD
system, but most of the communication mechanisms of
current works are based on Socket, CORBA, JAVA-RMI,
or DCOM. These mechanisms limit the scalability and
applicability of Internet based collaborative CAD
systems. The network condition nowadays becomes
quite complicated: multiple protocols, heterogeneous
systems and various programming languages. An open
and platform-independent distributed architecture needs
to be developed urgently. Designers also need a more
powerful and faster CAD system in a collaborative
environment for functions like large-scale model
comparison and high quality rendering. Since those
time consuming operations generally processed by the
server, multiple and continuous requests may cause the
server to be overloaded and turn the design process too
slow to be practical.

1.2 Web Services & Grid Computing

As a burgeoning technology, Web Services are software
components that are exposed to a network via a
statically defined interface, allowing other applications
to leverage exported functionality. Web Services plus
“Universal Description, Discovery and Integration”
(UDDI), “Web Services Description Language” (WSDL)

 340

and “Simple Object Access Protocol” (SOAP) present a
complete solution for distributed applications. UDDI
provides a means of discovering other services and
registering new services for others to discover. WSDL
offers a way to provide the needed information about a
discovered service to allow a client to interact with it.
SOAP is adopted as the interfaces of invoking between
server and clients.

Service

provider

WSDL SOAP

UDDI

Service
invoker

SOAP

MethodsAuthors

Registers

Finds

Methods

Searches

Invokes

Generates
WSDL

Fig. 1. Web Services process

Figure 1 shows how the Web Services process flows. At
the beginning, a service is coded up. As long as the
service is web-accessible, it’s a candidate for a service
registry with its own WSDL document. This is all part of
the UDDI portion of the figure. UDDI also allows a user
to search all registered services for a specific service
name and the registry returns all the matching services.
Grid computing [7], most simply stated, is distributed
computing taken to create the illusion of a simple yet
large and powerful self managing virtual computer out
of a large collection of connected heterogeneous
systems sharing various combinations of resources. A
distributed application integrated with grid computing
can make use of all available system resources
effectively, and can separately perform time consuming
computations to achieve faster responses. Especially for
a distributed CAD system, grid computing can greatly
improve efficiency in the design processes of all end-
users.

1.3 Integrating Web Services & Grid Computing

in Distributed CAD System

GridCAD is a prototype collaborative CAD system
integrated with grid computing technology. Server/Client
architecture is adopted in GridCAD and Web Services is
used as communication interfaces between the server
and clients. In order for GridCAD to integrate grid
computing functionality, we introduce Task Manager
Module embedded in server. We use SOAP and
Extended Markup Language (XML) as transferring
interface and data format. These characteristics
overcome the bottlenecks of traditional distributed

systems to support simple porting to multiple platforms.
The Task Manager subdivides complex operations into
several sub-operations, and then submits them to grid
services and executes them as a parallel system.
This paper is organized as follows. In Section 2, the
distributed architecture of GridCAD is overviewed; the
structure and functionality of the server and the clients,
and the module of model maintenance are also
described in this section. In Section 3, our main
contribution, the Grid Computing mechanism is
embedded into GridCAD, is presented. Especially, the
Task Manager Module is detailed. Some
implementation details and examples are given in
Section 4. Finally, conclusions and the future work are
discussed in Section 5.

2. DISTRIBUTED ARCHITECTURE OF

GRIDCAD

2.1. Architecture of GridCAD

Application

Client
Proxy A

Client
Proxy B

SOAP

Web
Service

SOAP

Web
Service

SOAP

Common Web Services Application

Fig. 2. A common Web Services based application
programming model

We use Figure 2 to graphically demonstrate the client
proxy application programming model [8]. A client proxy
is similar to a “stub” that is local to the application and
provides the same API (Application Programming
Interface) as the actual web service. However, the client
proxy does not implement any of the web service’s
business logic, instead brokers communicate between
the application and the remote web service. Essentially,
the application invokes methods of the client proxy,
which then encapsulates the method calls together with
any arguments as a SOAP message and transmits the
message to the web service. The web service performs
the desired functionality, and returns the result as a
SOAP message to the client proxy. The method call of
the client proxy then returns with the result.
Figure 3 depicts the main architecture of GridCAD and
it is mainly based on the framework of Figure 2. It hides
the complexity of network implementation because any
invoking for a client web service simply contacts with
the client proxies and all low level networking details
will be transparent to application.

2.2 Server

 341

The CAD kernel is implemented at the server side; it
provides all of modeling operations and geometric
functions; and the kernel does not have any distributive
characteristics. For better programming structure, all
functions of the kernel are exposed as APIs and these
APIs have been classified and encapsulated into
different Web Services by functionality (entity creating,
entity editing, model viewing, scene rendering, etc.)
APIs with similar function will be put into the same web
service.
The server establishes one client proxy for each client.
When a SOAP message from client arrives, the server
decodes it and processes the request information into its
corresponding Client Proxy. Unlike the common Web
Services programming structure, client proxies in
GridCAD do not directly submit the message to Web
Services but refer to Session Manager for arbitration.
The Session Manager performs the validation of
requests from all clients. If a request is valid, then
GridCAD processes it with Web Services, otherwise
refuses this request.

2.3 Client

Application

Application Interfaces

Session Manager

Client Proxy 1 Client Proxy 3Client Proxy 2
.....

SOAP

XML/HTTP

Client 1

Web Service

SOAP

Client 2

Web Service

SOAP

Client 3

Web Service

SOAP

Creating
Service

Rendering
Service

Viewing
Service

.....

Entities Owner Table

Fig. 3. Distributive architecture of GridCAD

The Client is composed of two main components: the
display module providing model displaying functionality;
and the user interactive module providing functionality
to operate on model. The outgoing interfaces are also
designed with Web Services. When a user request is
processed, Web Services encapsulates it into a SOAP
message and send to the server via the HTTP protocol.
The display module updates the model view as soon as

the result of request returns. In addition to the Web
Services of request sending and receiving, a special Web
Services is setup at each client end for receiving model
update information, so any change of the model by
other clients will be displayed at the client end in time.

2.4 Session Manager

The Session Manager stores all information of client
requests and offers model validity maintenance
functionality.
Due to the limitation of network condition, not all of
operations on one model can be updated at every client
end in real-time. So such situation like editing an entity
that has already been deleted from one client could
happen at another client. To avoid such illegal
operations, the Session Manager Module is adopted.
Session Manager is based on the Entities Owner Rule:
any client that wants to operate on a certain entity
should check out it at first. The implementation of
Session Manager is based upon Entities Owner Table.
Entities Owner Table stores all possible entities owner
information of every model available in the current
distributive environment. Any owner information of one
entity can be found in this table. When an operation
request arrives, Session Manager will check Entities
Owner Table for the target entity. If the entity is not
found in the table, that means the entity could have
been deleted by another client, the request will be
refused; or if the target entity is found but there is no
owner information, then the request sender becomes
the owner of the entity. If both the entity and owner
information exist, then Session Manager compares the
original owner with the request sender and determinates
whether the request should be submitted or refused.
Any entities creating and deleting operations will cause
Entities Owner Table updated to keep Session Manager
working correctly. Some requests like model viewing
that does not change the model data will skip Entities
Owner Table and will be executed directly.

3. GRID COMPUTING MECHANISM

This section presents our main contribution: the Grid
Computing mechanism is embedded into GridCAD. The
Task Manager splits the task submitted by Session
Manager into several sub-tasks, and processes them to
Grid Services available over network. In addition, the
Task Manager is also responsible for gathering all results
generated by Grid Services and for assembling a final
result of the original task. With such a layer at the server
side of GridCAD, some complex or time-consuming
operations will skip the CAD Kernel and will be
executed distributively to keep the server running
effectively and smoothly.

 342

3.1 Task Definition

In GridCAD, each request from clients is wrapped as a
Task object and each task corresponds to a certain API
of the server. The data members of class Task are listed
below.

Class Task {
 TaskID idTask;

 RequestID idRequester;
 RequestTime tmRequest;

TaskType tpTask;
TaskName nmTask;
TaskObject objTask;

 TaskParam paraTask;

 TaskComplexity cmplTask;
}

To identify a task uniquely, a global TaskID is assigned

to bind every task received by the server. Task also
records idRequester, to indicate the ID of Client that

sends the request and tmRequest as when the request

is submitted. Class member tpTask states as the type

of the requested operation like Entity Creating, Editing
and etc, for specifying the corresponding Web Service.
nmTask here in class stores the name of a task and

objTask points to the target object of the task,

including the ID of model and ID of object. All
parameters needed for operation are kept by data
member paraTask. cmplTask specifies the

complexity of the operation, each type of task inheriting
from class Task will implement its own method to
calculate cmplTask for itself. For examples, a model

comparison operation weights the sum of entities and
blocks in source models, the number of layers in models
and etc. to compute the cmplTask; and cmplTask of

a rendering operation depends on the size of the scenes,
resolution of target picture, method of ray tracing and
sum of entities.
All the above data members provides generic
information of a base Task object. All those details
about specific operations will be implemented in
inherited classes. The capsulation of task not only
makes the requests flow among modules more clearly
but also results in simpler programming structure and in
higher performance of server for executing different
operations with classified Web Services.

3.2 Grid Services [9]

Grid Service is the smallest computational unit of Grid
Computing mechanism in GridCAD. Grid Services is a
set of particular Web Services places at clients
distributively and randomly. Unlike the Web Services
described in section 2, Grid Services response only
when Task Manager invoking them. Each Grid Service

is responsible for a specific operation like model
comparison, scene rendering, etc.
Grid Services could be placed randomly on network
and every Grid Service will register itself in UDDI when
it is activated, Task Manager could find and invoke the
required Grid Services by searching UDDI with WSDL
documents.

3.3 Task Manager

Classified
Web Services

Session Manager

Task

Manager
SOAP/XML/HTTP

Grid Computers

(Grid Services)

.....

.....

Client Proxies

Fig. 4. Task Manager Module in GridCAD

Task Manager is the key component that enables
GridCAD to have Grid Computing functionality. Figure
4 shows the position where Task Manager locates.
Compared with Figure 3, Task Manager is a relatively
independent module in GridCAD. Unlike the framework
shown in Figure 3, Session Manager here submits tasks
to Task Manager, not to local Web Services. Task
Manager analyses the task and chooses a proper way to
handle the task: Grid Services or local Web Services.

3.3.1 The Task Manager Process

As shown in Figure 5, Task Manager maintains a Task
Queue. All valid requests checked by Session Manager
are stored in Task Queue before being actually executed.
Following the “FIFO” rule, Task Manager picks the first
task from Task Queue, and then queries the type
(tpTask), name (nmTask), and parameters (paraTask) of
the task. By these properties, Task Manager searches
the UDDI for available Grid Services. After that, Task
Manager checks the task if it is divisible, and if it is, splits
it into several subtasks by the properties of the task and
available Grid Services returned by UDDI as searching
result. A client proxy will be constructed for calling a
Grid Service remotely. When all calls to Grid Services
complete and the results of each subtask return to Task
Manager, the task is accomplished.

343

Session M anager

.....

Task

Q ueue

Task

……

UDD I

 F inds WSDL

XML/HTTP

G rid Serv ice 1SOAP

G rid Serv ice 2SOAP

G rid Serv ice 3SOAP

.....

Reg is te rs

Reg iste rs

Reg is te rs

Grid Serv ice nSOAP

Reg is ters

Invokes

Invokes

Invokes

SOAP

C lient P roxy 2

C lient P roxy 3

C lient P roxy n

C lass ified

W eb Services

.....

C lien t P rox ies

.....

Fig. 5. The Task Manager process

As mentioned above, a special UDDI is setup in
GridCAD for registering and searching Grid Services
dynamically. UDDI is an open standard, in GridCAD it
could be placed at any host over the network and the
only thing is to specify the right network address when
registration or search is performed.

3.3.2 Task Checking

The Integration of Grid Computing in GridCAD enables
it to carry out some operations partially and
distributively. To reduce the server’s responding time
and improve clients’ efficiency, quite a part of the server
load is shifted to Grid Services on clients. But
considering semantics of some CAD operations, their
divisions are knotty or even impossible. Moreover, some
operations are lightweight in time and space costs so
that the usage of server resources is relatively
insignificant and it won’t affect the efficiency of the
whole system. Therefore, these operations needn’t to be
split in Task Manager.

Task
Need G rid

Services?

UDD I/W SDL

G rid Services
Yes

Loca l AP I

No

Task D iv is ib ility Tab le

Fig. 6. Task Checking Module

The Task Checking Module is designed to solve the
problem described above. It contains a Task Divisibility
Table (TDT), which mainly holds segments called

tpTask (Type of Task), nmTask (Name of Task), and

segTask (Complexity Granularity of Task). Segments

of segTask store the lower limit of complexity of this

type of task. Any operation of the same type in the
design process will be divided into subtasks if its
cmplTask is larger than segTask. When a task arrives,

Task Checking Module analyzes its tpTask, nmTask

and cmplTask, and then seeks the record of task with

type tpTask in TDT, then compares cmplTask and

segTask. Finally, Task Checking Module determinates

whether the operation should be split or not and how
many subtasks it should be split into.
Assuming that task is an instance of specific operation
submitted by an end user and tdtItem is a record

corresponding to task in TDT, the process above could
be described in the following pseudo codes:

if (tdtItem.segTask == 0)

LocalApiProc(task);
else if (tdtItem.segTask > 0)
 numSplit =

task.cmplTask/tdtItem.segTask+1;

TDT is presented as a configuration file of GridCAD.
We assume that the tasks with value 0 of segTask would
be directly carried out at the server side without being
divided. numSplit indicates the largest number of
subtask that could be split from original task. It is a
suggestive value. The final value also depends on the
number of available grid services returned by UDDI.

3.3.3 Task Splitting & Result Merging

As the key component of Task Manager, TSRM (Task
Splitting & Result Merging) searches UDDI for available
Grid Services about the divisible task that is verified by
Task Checking Module. Then TSRM splits the task into

344

several subtasks in conformity with numSplit calculated
by Task Checking Module, the result returned by UDDI,
and task’s own parameters. In the view of data structure,
a sub task is complete and contains all attributes of a
task object. Some parameters of a subtask may be a
subset of those in its parent-task. Rules and methods of
each specific task is predefined and implemented in
each inherited class.

UDDI/WSDL

Task.Task Split
Result Merge

SubTask

SubTask

SubTask

Proxy

Proxy

Proxy

Fig. 7. Task Splitting & Merging Module

After task division, TSRM creates a proxy for each
subtask to invoke Grid Service remotely, as shown in
figure 7. When all calls to Grid Services return to proxies,
TSRM assembles results by the rule of division and
returns it to homologous client of the task.
The entire process of Task Manager will be described
e.g., as follows. Model comparison is a typical operation
in CAD used to find out the differences of a model from
another. This task can be divided by coordinates of
models. When a client submits a model comparison
request, Task Manager picks it out. Task Checking
Module firstly queries TDT for its divisibility property
and calculates its numSplit, then hands over it to

TSRM if it is divisible. TSRM searches UDDI for
specified Grid Services related to model comparison and
gets the WSDL of them. After that, the division of the
model comparison task will be performed by the
minimum of numSplit and the number of available

Grid Services.
The following function depiction may help to
understand the comparison operation:

CompareResult *ModelCompare(
cadModel *mdl_a,
cadModel *mdl_b,
Point top_left,
Point btm_right);

Parameters mdl_a and mdl_b are the two models to

be compared. And point top_left and btm_right

indicate the area to be compared and it is a rectangle
represented by point pair of the diagonal corners.
Function ModelCompare will return the result in

CompareResult type that contains the differences of

all entities in two models.
In our example we suppose that UDDI returns four Grid
Services offering model comparison interface. In this

case, the division of the task is to split the compare-area
as shown in Figure 8.

top_left(lx,ty)

btm_right(rx,by)

top_mid_left

mid

mid_top_left

btm_mid_right

mid_btm_right

Fig. 8. Compare area splitting

After division, the original area becomes four sub-
rectangles as below (also depicted in point pairs of
diagonal corner):

(top_left, mid);
(mid_top_left, mid_btm_right);
(top_mid_left, btm_mid_right);
(mid, btm_right);

Points Coordinates

top_left (lx, ty)

mid_top_left ((lx+rx)/2, ty)

top_mid_left (lx, (ty+by)/2)

mid ((lx+rx)/2, (ty+by)/2)

mid_btm_right (rx, (ty+by)/2)

btm_mid_right ((lx+rx)/2, by)

btm_right (rx,by)

Tab. 1. Sub area coordinates

These four parts of comparison are assigned to four
Grid Services. Then the TSRM waits and gathers four
results from Grid Services. The combination of the four
sub-results will be returned to client.
The above discusses the execution process of a
particular task in TSRM. In the implementation of Task
Manager, multiple threads technology is also adopted to
enable TSRM to pick several tasks from Task Queue at
the same time and to transact in parallel. The more Grid
Services available, the less resources of clients wasted
and the more efficiency gained.

4. IMPLEMENTATION OF GRIDCAD

GridCAD is implemented on the platform of eCAD
system we developed, which is a stand-alone CAD
system based on ACIS [10]. eCAD supports “DWG” and
“DXF” file formats, and is fully compatible with
AutoCAD 2000 system of AutoDesk. eCAD is also
extended with some capabilities as realistic scene
rendering, models management, etc. The server of

345

GridCAD inherits the entities operation module and
geometry engine from eCAD. The user interface and
display modules of eCAD are adopted by the client of
GridCAD. All the exchanges of data between the server
and clients are transmitted in XML format through
SOAP and HTTP, and all remote invoking is
implemented by invoking the interface exposed by Web
Services on the server or clients.
According to the demand of collaboration and
distribution, a Session Manager Module is developed
and embedded in the server side of GridCAD. The Task
Manager Module is also implemented to enable
GridCAD to integrate the Grid Computing ability.
Several instances of particular functions of Grid Services,
such as model comparing, scene rendering, etc., are
implemented and spread at client sides for the Task
Manager dynamically invoking.
As described in the architecture of GridCAD, Session
Manager and Task Manager Modules are quite
independent; therefore the Grid Services based Grid
Computing functionality could be easily integrated into
other distributive CAD applications. What we should do
is to add a Task Manager Module for the server, and
those Grid Services can be achieved with some
modification.

4.1 Heterogeneous Cients

As an open software component standard, Web Services
applications are based on platform independent
software architecture; this breaks the barriers of
operating systems and development platforms. These
good characteristics of Web Services applications make
the implementation of the clients of GridCAD and Grid
Services very simple. We have developed different
clients both on Microsoft Windows in MFC/.net and
RedHat in Linux/j2se. In our experimental environment,
the two kinds of clients are both running properly. To
sum up, regardless of the platforms of clients and the
programming languages chosen to implement clients,
the server concerns only the WSDL of Web Services.

Server

Windows/.net/c#

Client/PC

XML/HTTP

Linux/java

Client/Laptop
Windows CE/j2me

Client/PDA

Fig. 9. Multiple platforms of clients

Figure 9 depicts the integration of heterogeneous
operating systems and programming environments of
GridCAD, including Windows/PC, Linux/Laptop, and
Windows CE/PDA.

4.2 Model Data Representation

As an opening self-describing markup language, XML
offers GridCAD a suitable data-transferring model. The
usage of XML for representing model makes the
structure of model more outstanding and incarnates the
relations among data. Applications based on XML can
also search for specific contents efficiently and
accurately in XML documents, ignoring the irrelevant.
For CAD model data, the XML representation makes it
much easier to outline the relations of entities, view
ports, and workspaces (paper space & model space in
AutoCAD terms).
Furthermore, incrementally transferring of data is also
feasible for updating the changed data so that re-
sending the entire model won’t be necessary. The
sample code below shows how to describe the
modification of a model in XML format. In this example,
the entity with “entity no 0000” is modified by resetting
start and end point.

<?xml version="1.0" ?>
<!DOCTYPE GridCAD (View Source for full
doctype...)>
<dwgupdate>

<blocks>
<block blkname="*Model_Space">

<entity no="0000">
<line>

<Lpt0
data1="400.054434"
data2="120.145565"
data3="0.000000"
type="double" size="3" />

<Lpt1
data1="500.477618"
data2="214.478589"
data3="0.000000"
type="double" size="3" />
</line>

</entity>
</blocks>

</dwgupdate>

In GridCAD we also retain an appropriative Web
Service - Updates Receiving Service on each client to get
the modifications of model from the server side. The
server stores all of models within the entire design
environment and builds indexes by owner clients for
these models; any changes of models can be sent to the
right clients by the indexes. An Updates Informing
Service is set on the server side; its activation depends
on the process of a task. When a task that makes
changes to model is finished, the server starts its

346

Updates Receiving Service and sends the updated data
to all clients related.

4.3 Examples and Experimental Results

4.3.1 Collaborative Design

By queries Entity Owner Table, Task Manager Module
determines a request should be processed or blocked.

Figure 10 describes 2 scenarios that user “Jeff” check
properties and owner info of different entities in the
same model. Jeff is the owner of the surface of tea table
and can modify it, but can’t modify the parameters of
the soleplate; the soleplate was checked out by “Mike”
at the same time.

a b

Fig. 10. Screen shots of collaborative design from GridCAD (for the enlarged figures, please visit our website)

4.3.2 Grid Computing and Experimental Results

The model comparison operation is a time consuming
process in CAD applications. The experimental data of
model comparison operation in GridCAD are illustrated
by Table 2 and Figure 11. We have tested three cases
for different numbers of Grid Services involved. The first
case is without Grid Service. The second case is with
two Grid Services. The third case is with 4 Grid Services.
As listed in Table 2, in the first case the server carries
out the entire operation without the Grid Services
support and costs 45.532 seconds. The second one
costs 26.438 seconds. The third case costs 16.443
seconds. Because a model comparison is made up of a
large amount of entity matches, multiple Grid Services
not only share the load of comparing task but also
decrease the mismatching ratio by splitting the model

space for the entities in different region will not be taken
into comparison.
The process of each Grid Service is neutral and parallel
so that only the one with maximal time-cost should be
taken into consideration; it is 18.176 seconds in second
case and 7.681 seconds in the third one. In Grid
Services supporting cases, because Grid Services are
interoperated remotely, the time spent on task
splitting/merging, message passing, and data transferring
also should be added into final data statistics.
The statistics in Table 2 show that the Task Manager
with Grid Computing works appropriately and
effectively on large-scale computations and operations
to greatly reduce the time costs and to cut down the
load of server. The original models and result of
comparison are illustrated in Figure 11 as screen shots.

Executed by Server 2 Grid Services 4 Grid Services

Compare Region Total First half Second half Top left Top right Bottom left Bottom right

Entities in models 6489/6502 4691/4697 1798/1805 2585/2590 2106/2107 1684/1686 114/119

Execution time 42.532 18.176 8.262 2.634 7.681 3.675 2.453

Sum time 42.532 26.438 16.443

Maximal time-cost 42.532 18.176 7.681

Task split time 0.0 7.504 7.801

Result merge time 0.0 2.337 2.614

Net transfer time 0.0 2.010 1.062

Totally costs 42.532 30.027 19.158

Tab. 2. Timings of model comparison with various numbers of Grid Services
(Taken in Environment: Intel Pentium III 667MHZ, 394M SDRAM, Windows 2000 pro Service Pack 3)

347

a b c
Fig. 11. Screenshots of original models and comparing result (Original models are shown as picture a and b, the differences are

marked with red color in c, for the enlarged figures, please visit our website)

5. CONCLUSION AND FUTURE WORK

This paper presents the architecture of a Web Services
based CAD system, GridCAD, which provides a vehicle
for Grid Computing. The advantage of Web Services is
to enable a distributed environment in which any client
can interoperate with server clearly and seamlessly in a
platform-independent, language-independent fashion.
The components based architecture also enhances
expansibility and maintainability of GridCAD.
As the most outstanding approach in GridCAD, its Grid
Computing mechanism makes good use of system
resources to obtain the power as a super computational
environment. The experimental test proves that our
system could achieve real-time interoperation with
complex CAD computations and operations under
collaborative design.

6. ACKNOWLEDGEMENTS

This work was supported in part by the NSF Grant
CCR-0201253 and Chinese National 973 project,
project number: 2002CB312106.

7. REFERENCES

[1] Nam, T. J. and Wright, D. K. CoIIIDE, “A shared
3D workspace for CAD”, In Proceedings of the 4th
International Conference on Network Entities,
Leeds, UK, 1998, 103~105.

[2] Lee J.Y., Kim, H., Han, S.B. and Park, S.B.
“Network-centric feature-based modeling”,
Proceedings of Pacific Graphics '99, Seoul Korea,
1999.280~289.

[3] Stork A, Von Lukas U, Schultz R, “Enhancing a
commercial 3D CAD system by CSCW functionality
or enabling co-operative modeling via WAN”,
Proceedings of the ASME Design Engineering
Technical Conferences, September 1998, Atlanta,
CIE-5711.

[4] Stock, A. and Jasonch, U., “A collaborative
engineering environment”, Proceedings of
TeamCAD’97 Workshop on Collaborative Design,
Altana, GA, 1997, 25~33.

[5] Dietrich, U., von Lukas, U. and Morche,
"Cooperative modeling with TOBACO",
Proceedings TeamCAD 97, GVU/NIST Workshop
on Collaborative Design, Atlanta, May 12-13,
1997. 115~122.

[6] Bidarra, Berg et al., “Collaborative Modeling with
Features”, Proceeding of DETC’ 01, 2001 ASME
Design Engineering Technical Conferences, 2001,
1~11.

[7] Liangjie Zhang, Jenyao Chung and Qun Zhou,
“Introduction of a Grid architecture and toolkit for
building Grid solutions”, http://www-
106.ibm.com/developerworks/webservices/library/w
s-grid1/, IBM developerWorks, Web Services, 2002.

[8] Sandeep Chatterjee, “Developing Real World Web
Services-based Applications”,
http://javaboutique.internet.com/articles/WSApplicat
ions/, 2002.

[9] S. Tuecke, K. Czajkowski, J. Frey and etc. “Open
Grid Services Infrastructure (OGSI), (draft)”,
February, 2003.

[10] www.spatial.com.

