
 331

Model Compression for Design Synchronization within Distributed

Environments

S. H. Bok1, A. Senthil Kumar2, Y. S. Wong3, A. Y. C. Nee4

1 National University of Singapore, engboksh@nus.edu.sg

2 National University of Singapore, mpeask@nus.edu.sg
3 National University of Singapore, mpewys@nus.edu.sg

4 National University of Singapore, mpeneeyc@nus.edu.sg

ABSTRACT

Today’s product development practices occur as ad-hoc fragmented value chains across distributed

environments. They increasingly require distributed collaborative design capabilities for companies

to cooperatively design products to be competitive. There are thus specific middleware

mechanisms and capabilities needed to appropriately distribute functionality and data across the

network in a complex heterogeneous computing landscape. These are part of the fundamental

problems of concurrency and synchronization at various system and support levels. This paper

addresses one aspect of the design synchronization problem in digital product modeling and

associated design changes due to shape editing to provide timely support in distributed

collaborative design. This involves exploiting the geometric/model compression technique for

effective visualization and interaction.

Keywords: Distributed Collaborative Design, Design Synchronization, Model Compression

1. INTRODUCTION

Collaborative engineering is a key concern in the global

engineering economy. It requires a concerted and

continuous combination of product design, management

and planning, and realization activities amongst

dispersed participants who need to engage early and

frequently to work on what-if scenarios amidst different

engineering domains, disciplines and perspectives with

the associated processes and resources.

This means accessing and using complex, large remote

design models and associated datasets and interacting

with customers, stylists, suppliers, and domain experts.

Each of these groups of people uses different

heterogeneous tools to manipulate and evaluate

changing product models. Suitable computing

infrastructures and associated technologies involving

tools and applications are required given the decisive

development and potential of the Internet as a

collaboration medium in a heterogeneous hardware and

software landscape. These are termed as middleware

[12] [18]. Involved with this are challenging problems

relating to inter-operability, appropriate product and

information models and their distribution, and efficient

quality communication, all attributable to complete

design synchronization support [13][23].

More specifically, the design cycle of complex products

has come to rely on upon very complex and repetitive

flows of information between the various design groups

across varying distributed environments. This often

reflects resolving conflicts through such cycles as teams

progressively refine constraints. These activities are full

of references to the product features (e.g., shape and

position of features, manufacturing and maintenance

processes, etc.) and are thus difficult to carry out via

electronic mail, voice mail, or telephone conversations

with consistency.

Early and rapid design change in ad-hoc collaboration is

thus always occurring and requiring timely

communication and updates to dispersed participants in

the product model context in as seamless and as generic

as possible way. We note that such collaborations are

essentially networks.

According to Wang [23], when a product is designed

through the joint and collective efforts of many

designers, the design process may be called

collaborative design (it may also be called co-operative

 332

design, concurrent design and inter-disciplinary or even

integrated design, though each term may introduce

differentiation in technical requirements and objectives).

This may include functions as disparate as design,

manufacturing, assembly, test, quality and even

purchasing from suppliers and customers.

More technically, collaborative systems can be generally

defined as distributed multiple user systems that are both

concurrent and synchronized [2]. Concurrency involves

management of different processes trying to

simultaneously access and manipulate the same data.

Synchronization involves propagating evolving data

among users of a distributed application, in order to

keep their data consistent.

These concepts are generally rather demanding, their

difficulty becomes particularly apparent within a

collaborative design modeling framework, where the

amount of model data that has to be synchronized is

typically very large, and the concurrent modeling actions

taking place may be very complex.

Specifically, to leverage the Internet, various domain-

specific middleware capabilities are required in

association with the appropriate formulation of

distributed functionality and data architecturally

speaking. As well, we note that there are several fallacies

associated with networks such as network reliability, zero

latency, limitless bandwidth, network security, and fixed

network topologies. Such fallacies affect the problem of

distributed collaborative design and provide valid

consideration in providing the middleware capabilities

and support. In particular, with design synchronization,

large 3D models and datasets for visualization and

interaction must be dealt with in terms of latency and

bandwidth.

In Section 2, several collaborative design systems in

research are reviewed. In Section 3, the proposed

system architecture is briefly discussed as a framework.

We refer to our past and present efforts in this area of

providing for distributed collaborative design [6-9]. In

particular, we have also indicated some related research

involving downstream design synchronization in an

Integrated Product and Process Design (IPPD) context,

exemplified with fixture planning with some overlapping

information [9]. This leads to Section 4 as a problem

overview in this paper context and several

considerations supporting the leverage of the model

compression technique to provide ‘end-to-end’

capability supporting design synchronization in our

research approach. Some results are presented in

Section 5 followed by Section 6 on conclusions.

2. COLLABORATIVE DESIGN SYSTEMS

SURVEY

Several approaches were developed in creating an

integrated environment or frameworks for product and

process design based on traditional standalone systems.

One approach is the use of standard file formats such as

STEP and IGES for CAD models located at central

databases. Roy [20] proposed a Web-based

collaborative design framework for the use of a translator

to convert CAD models into VRML based models which

can then be viewed over the WWW onto such

standalone systems. The VRML models are stored in an

existing product data repository. The translator resides

on a main central server and can be accessed remotely

by a designer. Most of such frameworks including [15,

10] are regarded as under proof-of-concept development

stage [23].

One drawback in the use of standard file formats is that

the approach provides a static (rigid) interface to

applications [8]. It is also important to note that although

VRML is treated as a neutral representation, it in itself is

not a geometric model and can only be used to display

geometric models with no editing capability [23]. We

also wish to note that like HTML for 2D web page layout

and display for publishing, VRML is the equivalent of 3D

display or multimedia publishing. It is also not an

appropriate method for product model and data

representation. Technically it also mirrors a static scene

graph approach which is not very efficient and

cumbersome in the realm of design changes. In

summary, these are drawbacks to synchronization.

For more relevant means to design synchronization, we

note the efforts of Hoffman [9] with their net shape

association to monitor design changes. Our work [15] is

similar with more detail reported therein. Notable is the

role of the server-based cellular model coupled with

semantic feature modeling and feature conversion for

design synchronization, as report by de Kraker [5] and

led by Bronsvoort. Related is the extension work on the

Internet, WebSPIFF, carried out by Bidarra [2]. We note

that design synchronization on an ‘end to end’ principle

that is from server to client has not been discussed

elsewhere in the distributed and collaborative design to

the best of our knowledge. In particular, the role of

interactive 3D facet models integral to design changes

effected from a geometric modeling server is not

exploited. We use the next 2 sections to introduce

architectural considerations to formulate distributed

functionality and associated data for supporting

synchronization.

 333

3. DISTRIBUTED DESIGN ARCHITECTURE

The requirements in a distributed and collaborative

design context lead almost inevitably to the adoption of

a client-server or more generally distributed computing

architecture, in which the server provides the participants

in a collaborative design session with the indispensable

communication, coordination and data consistency tools,

in addition to the necessary basic modeling facilities.

A recurrent problem in client-server systems lies in the

conflict between limiting the complexity of the client

application and minimizing the network load. In a

collaborative design context, client complexity is mainly

determined by the type of modeling and interactive

facilities implemented at the client, whereas network load

is mainly a function of the kind and size of the model

data being transferred to/from the clients [5]. Thus,

unless special or specific measures are introduced, the

abovementioned conflict cannot be optimally balanced

or compromised. We note that either extreme of so-

called thin clients and fat clients, respectively presents the

problem of heavy network traffic for unintelligent image

rendering, and that of massive data inconsistencies. The

former is not a novel approach and the latter is too close

to the condition of standalone systems. Both pose

extreme synchronization issues without attempting to

provide appropriate middleware capabilities.

In conclusion, the principle for a good compromise to

such difficulties is a client-server approach, where the

server coordinates the collaborative session, maintains a

shared model and repository, and provides all

functionality that cannot, or should not, be implemented

on the client. The clients then perform operations locally

as much as possible, and only high level semantic

messages, and limited amounts of information necessary

for updating the client, will be sent over the network.

This keeps the network load relatively low, while

guaranteeing good client interactivity at acceptable

response times. An important advantage of this

architecture is there is only one product model in the

system. Clients send their modeling operations to the

server, and receive feedback after any such operation

has been performed on its central feature model,

avoiding inconsistency between multiple versions of the

same model.

Figures 1, 2 and 3 illustrate the general consideration of

a product data centric architecture, a system architecture

and framework to support distributed collaborative

design and the ‘network stack’ of middleware layers. We

note that design changes should now be seen to

generate and drive the essential functionality and data in

distributed collaborative design with the corresponding

need to handle large complex sets of models and data.

Such design changes occur in distributed environments

involve different users and heterogeneous tools and

formats.

Figure 2: Overall System Architecture

Figure 3: Middleware Perspective and Layers

Accordingly by middleware design, we have developed

suitable and reusable Java classes and interfaces. More

Figure 1: Product Model-Centric Characteristics

 334

information can be found in [14-15], [17], [22]. By

functionality and data considerations, this approach

accounts for the problems of compatibility and inter-

operability so that we may develop an extensible

computing environment supporting seamless integration.

This refers to the Java-based geometric kernel modeling

interface, the use of Extensible Markup Language (XML)

to model and represent an augmented product data

representation, and on the client side, the interfaces for

extension into a modeler independent association

relationship management capability to help propagate

design changes and maintain domain-specific

application view consistency, similar to [9] and discussed

in [15] to achieve adaptive process responses and

solutions.

In the context of this paper, we would like to deliberate

on the ‘end-to-end’ requirement for design

synchronization given the augmented product data XML

representation conceived and used in exchange between

server and client. We note now that interactive graphics

or facet models for visualization are crucial in a

distributed design situation for this synchronization.

4. MODEL COMPRESSION FOR DESIGN

SYNCHRONIZATION

In this section, we review computer graphics

simplification techniques and evaluate relevant issues

related to distributed collaborative design. We then

arrive at the choice and leverage of the model

compression algorithm for integration to support ‘end-to-

end’ design synchronization.

Interactive 3D computer graphics play an important role

in human-computer interaction in design and

manufacturing, amongst many other areas. In many of

these applications and a general context, human

productivity or satisfaction would be significantly

enhanced by the possibility of immediate or rapid access

to remotely located 3D data sets for visual inspection or

manipulation.

3D computer graphics are dominated by polygonal or

facet models due to their mathematical simplicity. This

results in simple and effective rendering algorithms which

embed well in computer hardware leading to widely

available graphics accelerators. The number and

complexity, measured by the number of facets and

vertices, of these 3D models and data sets is growing

rapidly, due to improved design and model acquisition

tools. This growth seems to be faster than the ability of

graphics accelerators to render them interactively. As

well, anticipated increases in phone and network

bandwidth will not, by themselves, suffice to offset the

explosion of complex 3D models. This observation is

applicable to design and manufacturing as products have

grown in complexity and given the need to carry out

distributed collaborative design. Thus there is always a

need for product models as parts and assemblies to be

viewed and edited interactively. This has created the

need for polygonal simplification techniques [4].

Briefly, these methods can simplify the polygonal

geometry of small, distant, or otherwise unimportant

redundant portions of the model, seeking to reduce the

rendering cost without a significant loss in visual content

such as in flight simulation. Alternatively, they can

reduce model complexity without introducing geometric

error such as in volumetric information stemming from

medical imaging useful for surgical simulation. In the

case of complex engineering analysis and simulation

problems that require a model to go through subdivision

or partitioning, simplification is employed to remove

unnecessary geometry. If the problem is to improve

runtime performance in visualization by simplifying the

polygonal scene being rendered, the most common use

of polygonal simplification is to generate levels of detail

(LODs) of the objects in a scene [12]. By representing

distant objects with a lower LOD and nearby objects with

a higher LOD, applications from video games to CAD

visualization packages can accelerate rendering and

increase interactivity. In the latter case, this would be

evident in a factory simulation situation involving spatial

factory design and planning where losses in geometric

accuracy and detail can be tolerated.

However, in the context of distributed collaborative

design, we have noted that frequent design changes and

updates need to occur across distributed environments.

From the perspective of synchronization, simplification

techniques involving time consuming preprocessing

efforts to generate multiple LODs would not be suitable

as multiple time-consuming updates are incurred in

distributed collaborative design, even though this is has

been termed as progressive transmission or streaming

[7]. LODs also severely compromise the geometric and

visual fidelity required in design and would not be

advisable especially when co-design involving distributed

teams members take place.

In addition, simplification techniques that drastically

allow for topology modification, compromise or loss [6,

21] are also inappropriate in distributed collaborative

design as this would also create misunderstanding of the

original topology in the B-rep model. The CAD model

for a product design would become grossly

misinterpreted when design features are ‘lost’ during

communication. We also note that unlike say flight or

factory simulation, collaborative design requires more

static or passive as opposed to dynamic scene model

viewpoints.

 335

Nevertheless we should indicate that LODs have been a

key aspect in the design specification of the Virtual

Reality Markup Language (VRML) standard and other

programmatic scene graph techniques for visualization.

Their original context being more related to multimedia

uses would be inappropriate for distributed collaborative

design involving complete descriptions and

augmentation issues such as design intent and product-

process modeling.

With the consideration and requirement for integration,

distributed collaborative design capabilities in distributed

environments require an approach to leveraging a

simplification algorithm that is transmission or bandwidth

friendly, can avoid losses or compromises as mentioned

above and is able to accommodate product model

representations and design changes. We thus require a

simplification algorithm known as model or geometry

compression that in general can take original highly

detailed and complex models and reduce its size to a

bandwidth-acceptable level of complexity without

compromising visual and topology fidelity.

In general, combining different simplification techniques

can still be relevant in the context of product assembly

modeling and manipulation. This is because we can

consider parts in a product assembly as either ‘passive’

or ‘active’; the former not being contextually subject to

design changes or shape editing – thus allowing

compromises in fidelity, and conversely the latter, as is

our present problem definition. If therefore there are

large product assembly models to be handled, for say

assembly simulation, the role of LODs for example might

be useful.

Much of the work done in model or geometry

compression is based on clever encoding of the

topological relationship between nodes in the meshes.

These encodings minimize the repeated references to

nodes, thereby achieving a compact description of

topology. An interesting observation made in meshes

representing manifolds is that, on an average, the

number of triangles is twice the number of vertices and

each vertex is referenced in 5 to 7 triangles. Hence, a lot

of research has concentrated on aggressive attack on the

problem of encoding of topological relationship between

vertices.

Early examples of compact encoding of a mesh were

seen in triangle rendering engines such as OpenGL, in

the form of triangle-strips and triangle-fans. A lot of

research has been carried out in generating maximal

triangle-strip decomposition of given meshes, minimizing

the repetitions in the references to vertices. For our

purpose, we note that Rossignac’s work on the

Edgebreaker algorithm achieves even greater

compression by compact representation of topological

relationship between vertices of a mesh [19].

The choice is made of model or geometric compression,

that is basically loss-less and capable of high

compression ratios, is relevant to the bandwidth and

transmission constraints of the Internet as a shared

resource and expedient to the need for synchronization

for timely updates. To do that, it is proposed that the

model compression algorithm should be integrated in a

middleware framework for distributed collaborative

design that may also support incremental design change.

More specifically, integrated model compression across

distributed environments requires incremental

compression on the server side, followed by transmission

and decompression into our augmented product data

XML representations for use on the client end user side.

To the best of our knowledge, this aspect has not been

reported elsewhere in the distributed collaborative design

context.

5. RESULTS & DISCUSSIONS

The Edgebreaker algorithm was mainly developed in the

context of visualization of complete 3D models

independent of the origin of those models [11]. Thus the

compressed data format does not contain modeling

information such as face tags and B-rep topological

information that are useful as augmentation for product

data representation and integral portrayal with the

modeling kernel to effect distributed and collaborative

design. The initial augmented product data approach

using XML that was conceived has been necessary and

sufficient enough to demonstrate the feasibility of

Internet-enabled Fixture Design [22]. Design change and

synchronization were not accounted for.

This approach, without the leverage of model

compression and augmentation for distributed design, is

similar to Hoffman although he had used the term

‘characteristic point’ and the concept of ‘geometry

certificates’ in the Master model repository context as an

abstraction from the geometric server.

We have integrated the Edgebreaker compression

algorithm into our architecture. We have also modified

the initial augmented Product Data representation’s XML

schema (Figure 4). The sequence of computing events

for arriving at the Product Data XML Schema for

complete models is shown in Figure 5. In general, such

augmented information is important for engineering

collaboration as clients interact with the modeling kernel

and can also easily visualize, interrogate and interact on

the client side. In a more advanced and relevant context,

 336

we note the value of semantic feature modeling [1] and

its complement to our middleware oriented approach

noting also that facets are standard descriptions with no

compatibility issues. As facet models are characteristic of

engineering and product models and need to be kept as

a repository, it would be advisable to employ such

compression methods to these repositories.

In this sequence of events, when a modeling operation is

carried out, a tessellated mesh of the model is created by

invoking a function call on Parasolid. The mesh data

from Parasolid is then formatted as required for the

Edgebreaker algorithm to work. The data required for

Edgebreaker are the number of vertices, the coordinates

of the vertices, the number of triangles and the indices of

the vertices that belong to each triangle.

The coupling of ‘model compressed’ data with the

augmented product data representation is logical and

obvious given that design changes cause changes to the

boundary representation and as such boundary and

topological information extracted in such changes would

have been transmitted across to the client side. The

essential difference is the re-organization and

compression format introduced into the augmented

product data XML representation whilst respecting their

linkage with the boundary information. With design

changes caused by shape editing, this new schema will

also allow for concurrent changes in both B-rep

topological information and model compressed data.

We have verified the effectiveness of the Edgebreaker

algorithm in reducing the data required for visualizing a

3D model by comparing the sizes of the augmented

product data XML files with compressed geometry

format and uncompressed mesh data. The results of our

experiments are presented in Tables 1 and 2 for some

basic primitive models and complex realistic product

models (Figures 6 and 7). The experimental results show

a significant compression of the data required, validating

the effectiveness of using the Edgebreaker algorithm for

model compression in reducing data sizes (Table 1).

Initial timing tests to compare the visualization taken for

without compression as in the prior system, and with

compression with Edgebreaker incorporated are shown

in Table 2. We note that this is for complete model

compression, rather than for design changes. As well,

these have not taken place in a networked context

though caution should be applied to the consideration

that the Internet has always been a shared traffic

‘highway’ of resources, one essential characteristic of

collaboration. Adequate predictable performance would

really relate to the concept and practice of ‘Quality of

Service’ (QOS), an important research concern in

network research. Still, it is clear that when no special

measures are undertaken in this regard, the viability of

distributed and collaborative design would be less, just as

in the same regard, research on graphics simplification

and compression.

Visualization Time Model

Type IFD (secs) JEdgebreaker (secs)

Percentage

Difference (%)

Cube 1.74 1.74 0.0

Prism 1.49 1.49 0.0

Sphere 6.73 3.53 47.5

Torus 13.07 4.00 70.0

Table 2: Timing tests for visualization

File Size
Model

Type
Before

Compression

After

Compression

Compression

Ratio

Cube 5KB 1KB 5

Prism 7KB 2KB 3.5

Sphere 178KB 31KB 5.74

Torus 379KB 66KB 5.74

Chuck 492KB 79KB 6.23

Flange 137KB 39KB 3.5

Table 1: Size reduction tests with model compression

Figure 5: Basic integration and sequence of creating the

augmented product data schema.

Compressed

Geometry

Faces

Document

Body Body Tag

• SeedCorner

• CLERS

• Corners

• FaceTag

• FaceType

• Triangles

Figure 4: Revised Product data schema incorporating

compressed geometry

 337

Figure 7: Flange.

Figure 6: Chuck.

6. CONCLUSIONS

In today’s context of investigating the Internet as a

medium for distributed collaborative design, the primary

concern for seamless integration require a middleware

oriented environment and architecture to address a

number of issues. These cover compatibility, inter-

operability, reusability and extensibility, and techniques

on design synchronization and concurrency in general.

In this paper, we explain how in the formulation of

distributed functionality and data, there is a need to

handle 3D data sets inherent in the visualization and

interaction of product models to account for timely

updates and exchanges in the use of network

bandwidths on the Internet. This resulted in the choice

and testing of the geometric or model compression

algorithm. We note the need to develop integrated

incremental compression to support design changes. In

an overall arrangement for effecting synchronization, we

should note that timely updates may require a

distributed coordination mechanism to ensure that

relevant dispersed servers and clients are operating in a

lock-step fashion.

7. REFERENCES

[1] Bidarra, R., and Bronsvoort, W. F., Semantic

Feature Modeling, Computer-Aided Design 32

(2000) 201–225 202

[2] Bidarra, R., van den Berg, E. and Bronsvoort,

W.F, 2001, Collaborative Modeling with Features,

In: CD-ROM Proceedings of the 2001 ASME

Computers and Information in Engineering

Conference, 9-12 September, Pittsburgh, PA,

ASME, NY.

[3] Blatecky, A; West, A; Spada, M., 2002,

Middleware – The New Frontier. EDUCAUSE

Review, Jul-Aug, 25-35.

[4] Cignoni, P.; Montani, C.; and Scopigno, R., “A

Comparison of Mesh Simplification Algorithms,”

Computers & Graphics, vol. 22, no. 1, 1998, pp.

37-54.

[5] De Kraker, K. J.; Dohmen, M. and Bronsvoort, W.

F., Maintaining multiple views in feature modeling.

In 4th Symp. on Solid Modeling and Applications.

ACM Press, 1997, pp. 123–130.

[6] El-Sana, J.; and Varshney, A., “Controlled

Simplification of Genus for Polygonal Models,”

Proc. IEEE Visualization 97, IEEE CS Press, Los

Alamitos, Calif., 1997, pp. 403-412.

[7] H. Hoppe, “Progressive Meshes,” Computer

Graphics (Proc. Siggraph 96), vol. 30, ACM Press,

New York, 1996, pp. 99-108.

[8] Han, J.H. and Requicha, A.A.G., 1998, Modeler-

independent feature recognition in a distributed

environment, Computer Aided Design, 30(6), pp

453–63.

[9] Hoffman, C.M. and Joan-Arinyo, R., 1998, CAD

and the product master model, Computer Aided

Design, Vol. 30, pp. 905-919.

[10] Huang, G.Q. and Mak, K.L., 1999, Web-based

collaborative conceptual design, Journal of

Engineering Design, 10(2), pp 183-194.

[11] J-Edgebreaker, Triangle Mesh Compression

Software in Java.

http://www.igd.fhg.de/~coors/JEdgebreaker/

[12] Lindstrom, P. et al., Real-Time, Continuous Level

of Detail Rendering of Height Fields, Computer

Graphics (Proc. Siggraph 96), vol. 30, ACM Press,

New York, 1996, pp. 109-118.

[13] Maropoulos, P. G., 2003, Digital enterprise

technology: defining perspectives and research

priorities. Int. J. Computer Integrated

Manufacturing, 16(7-8), 467–478.

[14] Mervyn, F., Senthil, K.A.; Bok; S.H. and Nee;

A.Y.C., 2003, Developing distributed applications

for integrated product and process design,

Computer Aided Design (in press).

 338

[15] Mervyn, F., Senthil, K.A.; Bok; S.H. and Nee;

A.Y.C., 2003, Design change synchronization in a

distributed environment for integrated product and

process design, Submitted to CAD’04,

International CAD Conference and Exhibition,

May 24-28, 2004.

[16] Pahng, G.D.F.; Bae, S. and Wallace, D., 1998, A

web-based collaborative design modeling

environment, Proceedings of the IEEE Workshops

on Enabling Technologies Infrastructure for

Collaborative Enterprises (WET ICE’98), pp 161-

167.

[17] Ratnapu, K.K., 2001, Web Based CAD System,

NUS Mechanical and Production Engineering.

MEng Thesis.

[18] Richard E. Schantz and Douglas C. Schmidt, 2001,

Middleware for Distributed Systems: Evolving the

Common Structure for Network-centric

Applications, Encyclopedia of Software

Engineering, edited by John Marciniak and

George Telecki, Wiley and Sons.

[19] Rossignac, J., “Edgebreaker: Connectivity

Compression for Triangle Meshes,” IEEE

Trans.Visualization and Computer Graphics, vol.

5, no. 1, pp. 47-61, 1999.

[20] Roy, U., and Kodkani, S.S., Product modeling

within the framework of the World Wide Web, IIE

Transactions 1999; 31(7), pp 667–677.

[21] Schroeder, W., “A Topology-Modifying

Progressive Decimation Algorithm,” Proc. IEEE

Visualization 97, IEEE CS Press, Los Alamitos,

Calif., 1997, pp. 205-212.

[22] Senthil, K.A.; Bok, S.H.; Tan, B.C.; Kumar, R.K.;

Nee, A.Y.C., 2000, The development of an

internet enabled interactive automated fixture

design system. Proceedings of the 7th International

Conference on Mechatronics, edited by Charles

Ume, pp. 1-7, 6-8 Sep 2000, Atlanta, U.S.A.

[23] Wang, L.H.; Shen, W.M.; Xie, H.; Neelamkavil, J.;

and Pardasani, A., Collaborative conceptual

design – state of the art and future trends, 2002,

Computer-Aided Design, Vol. 34, pp 981-966.

