
 293

Block Cartesian Abstraction of a Geometric Model Using Fuzzy Logic

Y. Su1 and A. Senthil Kumar2

1Institute of High Performance Computing, suyi@ihpc.a-star.edu.sg

2National University of Singapore, mpeask@nus.edu.sg

ABSTRACT

In this work, a fuzzy logic approach is proposed to transform a geometric model of arbitrary shape

to its block Cartesian abstraction. This abstraction is topologically similar to the original model and

it contains geometric sub-entities which are all aligned in the Cartesian directions. This is achieved

by calculating the modifications made to the face normals as a result of the influences of the

adjacent faces. A fuzzy logic inference engine is developed by combining heuristics to emulate the

local changes in face normals with respect to the changes in the global space. A three-dimensional

field morphing algorithm is used to position the features of this Cartesian abstraction so that a

congruent geometric model can be reconstructed. Such a model is useful for the generation of

structured quadrilateral boundary element meshes or structured hexahedral meshes based on grid-

based meshing method, mesh mapping or sweeping. This approach is also able to overcome the

traditional problem of having poorly shaped elements at the boundary using the grid-based

method of mesh generation. As the topology of the Cartesian abstraction is congruent to the

original model, the mesh can be mapped back to the original model by employing an inverse

operation of the transformation.

Keywords: Fuzzy logic; Field morphing; Hexahedral mesh generation.

1. INTRODUCTION

In the preparation of a simulation model for numerical

analysis, it is often required to pre-process the geometric

model so that it can be meshed effectively. Processes like

feature recognition and suppression, and domain

decomposition are commonly employed with mesh

generation algorithms to automatically create the finite

element mesh. While automatic tetrahedral mesh

generation techniques have matured, robust automatic

hexahedral mesh generation remains a challenge. Given

the rigid nature of the hexahedral grid [18], it becomes

even more difficult if a structured mesh is required.

The research in automatic hexahedral meshing

algorithms can be classified under three main categories:

the block decomposition method, the superposition

method and the advancing front method. The block

decomposition approach involves subdividing the

domain into meshable sub-entities and then using

appropriate algorithms to discretize these sub-parts.

Examples of such algorithms are the swept volume

decomposition and recomposition method [6], the

medial axis transformation [1],[12-13] and the midpoint

subdivision and integer programming method [7], and

the basic logical bulk shape (BLOBS) method [8-10].

The advancing front approach generates the mesh by

starting at the boundary of the model and progressively

building elements into the interior of the model. Some

examples of algorithms employing this approach are the

whisker weaving method [3],[17] and the plastering

method [2],[11]. In the superposition approach, a

sufficiently large mesh is superimposed on the model

and it is then adapted to the boundary of the model.

Examples of such a class of algorithms are the modified

grid-based method which can use the isomorphic

transformation approach [14] or projective approach

[16]. Other variants involve using the octree scheme

[15], or a sculpting algorithm [19] to generate the initial

mesh.

The advantages of the different meshing techniques are

balanced between two important issues: the quality of

the boundary mesh and the quality of the core mesh.

Achieving one usually compromises the other. A

comparison of the different mesh generation algorithms

was made by Su et al. [16].

 294

In this paper, a fuzzy logic inference engine is proposed

to map the geometric domain to a block Cartesian space.

By meshing this block Cartesian abstraction, both the

boundary and core mesh can be of high quality.

Moreover, the mesh is essentially structured in nature.

Apart from the immediate application in automatic

hexahedral mesh generation, the block Cartesian

abstraction is also useful in the area of feature

recognition and domain decomposition. The paper is

organized as follows. Section 2 describes the

methodology of the algorithm, section 3 presents the

usefulness of this method with respect to the new grid-

based hexahedral mesh generation algorithm, and

section 5 concludes the paper.

2. METHODOLOGY

The objective of this paper is to develop a robust

algorithm to obtain a block Cartesian abstraction of a

solid model with arbitrary shape. The task is to modify

the original geometric model such that its sub-entities

conform to the Cartesian directions, that is, its faces lie

along the xy-, the yz- or the zx-plane, and its edges are

parallel to the x, y or z-direction. Chiba et al. [4] has

proposed a method to generate such a recognition

model. However, the algorithm faces stability problems

and it fails to converge when certain features are

encountered, like a 45° chamfer. In this paper, a new

fuzzy logic engine is proposed. The major differences are

as follows:

i) The use of surface normals to calculate the new

orientations of the sub-entities of the model

rather than using edge directions.

ii) The application of a different fuzzy logic

inference engine for the computation of the

new orientations of geometric entities.

iii) The employment of a feature placement

algorithm for positioning the features of the

model.

2.1 Creation of a Tessellated Model

To generate a Cartesian abstraction, it is first required to

obtain a tessellated model so that every curved edge is

approximated by straight line segments and every curved

surface is approximated by triangular facets while planar

faces are approximated by polygonal boundaries. The

degree of tessellation must be such that the number of

line segments and facets is minimal yet adequately

represents the original model. An estimated length of the

arc segment l used in the tessellation is given by

max4K
l

π
≈ (1)

where Kmax is the maximum curvature of the edge. If the

curve is a straight line (K = 0), it is not tessellated. Next,

a set of triangular facets are used to approximate all non-

planar faces using the tessellated edges as contraints to

the triangulation, which is achieved by standard

Delaunay’s algorithm, as illustrated in Fig. 1.

Fig. 1. Tessellation of a geometric model

2.2 Face Normal Reassignment

In order to create a Cartesian abstraction, all the face

normals of the tessellated model must be reoriented in

the x, y, or z-direction. There is, however, no unique

way of determining the directions of the face normals

and the problem is made much more complicated since

changes made in local regions have an impact in the

global sense. To solve this problem, a fuzzy logic system

with three inputs (antecedent) and one output

(consequent) is implemented. Consider two adjacent

faces A and B as shown in Fig. 2., the probabilities (Pη,A

and Pη,B) that their face normals are assigned to the η-

Cartesian directions are determined based on relation

shown in Fig. 3(a)., where θη is the angle between the

face normal and the η-direction. The probability Pα that

these two faces are assigned to the same direction is also

determined based on relation shown in Fig. 3(b)., where

θ is the angle between the two adjacent faces A and B.

Fig. 2. A pair of adjacent faces A and B

original model tessellated model

A

B

C
D

 295

Fig. 3. Relations between (a) Pη and θη, and (b) Pα and θ

Given these values, the interest is to find the effect which

one surface has on the other in terms of the assignment

modification ΔPη,A in each of the η-Cartesian direction.

The logic of this system is described as follows:

If Pα is high, then the assignment modification tends

to change the normal direction of surface A to the

direction of that of surface B. However, if Pα is low,

then the assignment modification tends to change

the normal direction of surface A away from that of

surface B.

The rule-base with multiple antecedent and single

consequent variables is

Rule 1: IF Pη,A is high AND Pη,B is high AND Pα is

high THEN ΔPη,A is positive

ALSO

Rule 2: IF Pη,A is low AND Pη,B is low AND Pα is

high THEN ΔPη,A is negative

ALSO

Rule 3: IF Pη,A is high AND Pη,B is low AND Pα is

low THEN ΔPη,A is positive

ALSO

Rule 4: IF Pη,A is low AND Pη,B is high AND Pα is

low THEN ΔPη,A is negative

The membership functions of the fuzzy sets are illustrated

in Fig. 4. and the Multiple-Input, Single-Output (MISO)

linguistic model is illustrated in Fig. 5.

Fig. 4. Membership functions of fuzzy sets

B11 = low B21 = high

0 1

1

B12 = low B22 = high

1

B13 = low B23 = high

1

0 1

0 1

D2 = negative D1 = positive

1

0 1 -1

Pη,A

Pη,B

Pα

V

90° 180° 0°
0

1

θ

Pα

0

1

Pη =cos
2θη

0°
θη

Pη

90°
(a)

(b)

 296

Fig. 5. Multiple-Input, Single-Output (MISO) linguistic model

The algorithm to obtain the crisp output is a two-step

process:

i) For each rule of the linguistic model, calculate

the degree of firing τi using Larsen’s method

(multiplicative product) [21]

τi = Bi1 (Pη,A) × Bi2 (Pη,B) × Bi3 (Pα) (2)

ii) Use the product-sum method to obtain the

fuzzy set Fi inferred by the ith rule and aggregate

the inferred fuzzy sets to obtain the output

Fi = τiDi (3)

∑∑
==

==
m

i

ii

m

i

i DFV
11

τ (4)

The product-sum method yields

ΔPη,A = β[ΔPη,A - ΔPη,B + (2ΔPη,B - 1) Pα] (5)

For face A which has m adjacent faces,

∑
=

Δ=Δ
m

i

iA PP
1

,, ηη (6)

A problem that this algorithm faces is the case when Px,A

= 0.5. In other words, face A makes an angle of 45° with

the x-axis and is at 135° to face B. This configuration is

commonly found at chamfered corners. To overcome

this problem, an area sensitivity factor ΔPα and a

random factor is introduced to Pα such that

Pα′ = Pα + ΔPα + e×randn (7)

where e is a sufficiently small number and randn is a

random number chosen from a normal-distribution with

mean zero and variance one. The complete system is

illustrated in Fig. 6.

For each iteration k, the modified assignment probability

for n�i is then calculated from

Pη,i(k+1) = Pη,i(k) + ΔPη,i(k)

 (8)

Inputs Rule-base Output

⇒

IF U1 is B21 AND U2 is B22 AND U3 is B23 THEN V is D1

τ1 = B21×B22×B23

⇒

⇒

⇒

F1

U3 = Pα

+
ΔPη,A β V

U1 = Pη,A

U2 = Pη,B

τ1×D1

F2

F3

F4

τ2×D2

τ3×D1

τ4×D2

τ2 = B11×B12×B23

τ3 = B21×B12×B13

τ4 = B11×B22×B13

IF U1 is B11 AND U2 is B12 AND U3 is B23 THEN V is D2

IF U1 is B21 AND U2 is B12 AND U3 is B13 THEN V is D1

IF U1 is B11 AND U2 is B22 AND U3 is B13 THEN V is D2

 297

Fig. 6. Complete fuzzy logic inference engine

2.3 Edge Length and Direction Assignment

After the directions of the face normals have been

reassigned, the directions of the edges for each surface

are determined. For a surface i, the direction of its jth

edge is calculated as follows:

jiji nne ×=, (9)

where jie , is the direction of the jth edge of surface i, n�i

is the surface normal direction of surface i, and n�j is the

normal direction of its adjacent surface at edge j.

The calculation of the new length of each edge after the

edge direction assignment is based on simple proportion.

Since every edge is already in the x, y or z-direction,

then the sum of the edge lengths in the positive

orientation must equal the sum of the edge lengths in the

negative orientation. Thus, for an edge l in

consideration,

∑
∑=′

δ

ω

l

l
l

2
 (10)

where l′ is the new edge length, lω is the length of an

edge in the same orientation (ω = x, y or z), and lδ is the

length of an edge in the same direction (δ = ±x, ±y or

±z). Since each edge is shared by two surfaces, the new

length is the average of the two lengths calculated for the

surfaces.

Fig. 7. Feature subset in the block Cartesian space

2.4 Feature Placement Using a Modified Field

Morphing Technique

After determining the new face normal directions and

edge lengths, the task remains to construct the block

Cartesian model. As such, information is inferred from

the original set of faces to determine how the positions of

features are affected after the transformation. A feature is

identified by a group of interconnected edges whereby

some of the edges form the inner boundary of some

faces of the original model, as shown in Fig. 7. To

approximate the position of a feature with respect to the

main body, the new positions of every vertex on the

feature is calculated based upon the influences of the

surrounding control primitives.

tessellated model

feature
subset

block Cartesian space

P η,B

Area B / Area A

 P η,A

γ
MISO LM

+
ΔPα

γ×e

randn

+

 Pα

β
SISO LM

P′η,A

ΔPη,A

 298

Fig. 8. Transformation of a face S to S′

A vertex X of the feature undergoes a coordinate

mapping to a new location X′ based upon the

transformation between a pair of faces as illustrated in

Fig. 8. First, a point Xs is defined such that Xs is the

perpendicular projection of X onto face S. Given a

reference point R of the surface S and its unit normal

vector n�s, Xs can be found by using the following

equation:

[] sss nnRXXX ⋅−−=)((11)

After Xs is determined, the corresponding point Xs′ of the

surface S′ is calculated. To find the new position X′, the

following equation is used:

[] sssA
A

s nnXXXX ⋅−+′=′ ′)(

(12)

where A′ and A are the surface areas of S′ and S,

respectively. Also, the coordinate mapping of each

vertex must be weighted with respect to all the faces of

the object. The weight of the ith pair of faces is computed

as follows:

b

i

p

i
i

da

A
w 









+
=

(13)

where A is the area of the face S, and d is the distance

between X and S. If Xs lies within the outer loop of S,

then d is given by sXX − . Otherwise, d is the closest

distance to any outer edge of S. The values of a, b and

p used here are 0.005, 2 and 1, respectively. For m pairs

of faces, the final position of the vertex is computed

using the following equation:

∑

∑ −′
+=′

m

i

i

m

i

iii

w

XXw

XX

)(

 (14)

The complete process of constructing a recognition

model from the original model is illustrated in Fig 9.

Fig. 9. Construction of block Cartesian abstraction

3. DISCUSSIONS

In this section, a new grid-based method [16] is

employed to mesh the block Cartesian abstraction of a

model using hexahedral elements, as shown in Fig. 10. A

Laplacian-Isoparametric transformation [5] is used to

map the mesh back to the original model. The mapping

is performed progressively by transforming the nodes on

the vertices, then for those on the edges, and followed by

those on the faces and finally for the nodes inside the

solid. In general, the transformation of nodal locations

on an n-dimensional entity is done by fixing the nodes

on its (n - 1)-dimensional sub-entities. It is observed that

the final mesh is boundary sensitive. Thus, by using the

block Cartesian abstraction as a mapping space, the

inherent disadvantage of having poorly shaped elements

at the boundary in the grid-based type of hexahedral

mesh generation algorithm is avoided. In general, if a

block Cartesian model can be abstracted, then a

hexahedral mesh can be derived. Moreover, by

employing certain types of mesh generation algorithm,

like the sub-mapping [20] and grid-based algorithm [16],

a structured hexahedral mesh can be obtained, as shown

in Fig. 11.

One inherent problem in the method presented in this

paper is that certain geometrical configurations are very

difficult to mesh with elements of high quality. This

occurs when the local geometry tapers significantly, with

the worst cases being corners which are less than 45° or

greater than 135°. Using a simple grid overlay to

generate the mesh does not suffice in such cases and

tessellated model block Cartesian
extraction

original model

X

X s ′

X ′

X s

R

n s
n s ′

v 2 ′

v 1 ′

v 3 ′
v 4

v 5

v 6

v 1
v 2

v 3

v 4 ′

v 5 ′

v 6 ′
Face S Face S′

 299

modification to the mesh is required. Research work is

currently being undertaken in this area.

Fig. 10. Hexahedral mesh generation using new grid-based

algorithm and Laplacian-Isoparametric transformation

4. CONCLUSION

Using a fuzzy logic inference engine to derive the block

Cartesian abstraction of a geometric model is a viable

and effective approach. Such an abstraction is useful in

applications like domain decomposition, feature

extraction and mesh generation. This is especially so in

the area of hexahedral mesh generation where boundary

sensitivity is an important issue. This approach also

facilitates the construction of a structured mesh. An issue

which requires further research effort is the problem of

degeneracies which occur due to sharply varying

geometry and shape.

Fig. 11. Generation of structured mesh

block
Cartesian

abstraction

Laplacian-
Isoparametric

transformation

block
Cartesian
abstraction

Laplacian-
Isoparametric
transformation

 300

5. REFERENCES

[1] Ang, P. Y. and Armstrong, C. G., Adaptive curvature-

sensitive meshing of the medial axis, Proceedings

10th International Meshing Roundtable, Sandia

National Laboratories, 2001, pp 155-165.

[2] Blacker, T. D. and Meyers, R. J., Seams and wedges

in plastering: A 3-D hexahedral mesh generation

algorithm, Engng Comput, Vol. 9, 1993, pp 83–93.

[3] Calvo, N. A. and Sergio, R. I., All-hexahedral

element meshing: Generation of the dual mesh by

recurrent subdivision, Comput Methods Appl Mech

Engng, 2000, pp 371-378.

[4] Chiba, N., Nishigaki, I., Yamashita, Y., Takizawa, C.

and Fujishiro, K., A flexible automatic hexahedral

mesh generation by boundary-fit method, Comput

Methods Appl Mech Engng, Vol. 161, 1998, pp

145-154.

[5] Hermann, L. R., Laplacian-isoparametric grid

generation scheme, J Engng Mech Div Proc Am Soc

Civil, Vol. 20, 1976, EM5.

[6] Jankovich, S. R., Benzley, S. E., Shepherd, J. F. and

Mitchell, S. A., The Graft Tool: An all-hexahedral

transition algorithm for creating a multi-directional

swept volume mesh, Proceedings 8th International

Meshing Roundtable, Sandia National Laboratories,

1999, pp 387-392.

[7] Li, T. S., McKeag, R. M. and Armstrong, C. G.,

Hexahedral meshing using mid-point subdivision

and integer programming, Comput Methods Appl

Mech Engng, Vol. 124, 1995, pp 171–193.

[8] Liu, S.-S. and Gadh, R., Automatic hexahedral mesh

generation by recursive convex and swept volume

decomposition, Proceedings 6th International

Meshing Roundtable, Sandia National Laboratories,

1997, pp 217–231.

[9] Liu, S.-S. and Gadh, R., Basic LOgical Bulk shapes

(BLOBs) for finite element hexahedral mesh

generation, Proceedings 5th International Meshing

Roundtable, Sandia National Laboratories, 1996,

pp 291–306.

[10] Lu, Y., Gadh, R. and Tautges, T. J., Feature based

hex meshing methodology: Feature recognition and

volume decomposition, Comp-Aid Des, Vol. 33,

No. 3, 2001, pp 221-232.

[11] Owen, S. J. and Saigal, S., H-Morph: An indirect

approach to advancing front hex meshing, Int J

Numer Meth Engng, Vol. 49, No. 1, 2000, pp 289-

312.

[12] Price, M. A., Armstrong, C. G. and Sabin, M. S.,

Hexahedral mesh generation by medial axis

subdivision: I. Solids with convex edges, Int J

Numer Meth Engng, Vol. 38, 1995, pp 3335–3359.

[13] Price, M. A., Armstrong, C. G. and Sabin, M. S.,

Hexahedral mesh generation by medial axis

subdivision: II. Solids with flat and concave edges,

Int J Numer Meth Engng, Vol. 40, 1997, pp 111–

136.

[14] Schneiders, R., A grid-based algorithm for the

generation of hexahedral element meshes, Engng

Comput, Vol. 12, 1996, pp 168–177.

[15] Schneiders, R., An algorithm for the generation of

hexahedral element meshes based on an octree

technique, Proceedings 6th International Meshing

Roundtable, Sandia National Laboratories, 1997,

pp 183–194.

[16] Su, Y., Lee, K.-H. and Senthil Kumar, A., Automatic

hexahedral mesh generation for multi-domain

composite models using a hybrid projective grid-

based method, Comp-Aid Des, 2003, pp 203-215.

[17] Tautges, T. J., Timothy, J., Blacker, T. D. and

Mitchell, S. A., The whisker weaving algorithm: A

connectivity-based method for constructing all-

hexahedral finite element meshes, Int J Numer Meth

Engng, Vol. 39, 1996, pp 3327–3349.

[18] Thompson, J. F., Soni, B. K. and Weatheril, N. P.,

Handbook of grid generation, Boca Raton, FL: CRC

Press, 1998.

[19] Walton, K. S., Benzley, S. E. and Shepherd, J.,

Sculpting: An improved inside-out scheme for all-

hexahedral meshing, Proceedings 11th International

Meshing Roundtable, Sandia National Laboratories,

2002, pp 153-160.

[20] Whitley, M., White, D., Benzley, S. and Blacker, T.,

Two and three-quarter dimensional meshing

facilitators, Engng Comput, Vol. 12, 1996, pp 155-

167.

 [21] Yager, R. R. and Filev, D. P., Essentials of fuzzy

modeling and control, John Wiley and Sons, Inc.,

1994.

