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ABSTRACT 

 

In this work, a fuzzy logic approach is proposed to transform a geometric model of arbitrary shape 

to its block Cartesian abstraction. This abstraction is topologically similar to the original model and 

it contains geometric sub-entities which are all aligned in the Cartesian directions. This is achieved 

by calculating the modifications made to the face normals as a result of the influences of the 

adjacent faces. A fuzzy logic inference engine is developed by combining heuristics to emulate the 

local changes in face normals with respect to the changes in the global space.  A three-dimensional 

field morphing algorithm is used to position the features of this Cartesian abstraction so that a 

congruent geometric model can be reconstructed. Such a model is useful for the generation of 

structured quadrilateral boundary element meshes or structured hexahedral meshes based on grid-

based meshing method, mesh mapping or sweeping. This approach is also able to overcome the 

traditional problem of having poorly shaped elements at the boundary using the grid-based 

method of mesh generation. As the topology of the Cartesian abstraction is congruent to the 

original model, the mesh can be mapped back to the original model by employing an inverse 

operation of the transformation. 
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1. INTRODUCTION 

In the preparation of a simulation model for numerical 

analysis, it is often required to pre-process the geometric 

model so that it can be meshed effectively. Processes like 

feature recognition and suppression, and domain 

decomposition are commonly employed with mesh 

generation algorithms to automatically create the finite 

element mesh. While automatic tetrahedral mesh 

generation techniques have matured, robust automatic 

hexahedral mesh generation remains a challenge. Given 

the rigid nature of the hexahedral grid [18], it becomes 

even more difficult if a structured mesh is required.  

 

The research in automatic hexahedral meshing 

algorithms can be classified under three main categories: 

the block decomposition method, the superposition 

method and the advancing front method. The block 

decomposition approach involves subdividing the 

domain into meshable sub-entities and then using 

appropriate algorithms to discretize these sub-parts. 

Examples of such algorithms are the swept volume 

decomposition and recomposition method [6], the 

medial axis transformation [1],[12-13] and the midpoint 

subdivision and integer programming method [7], and 

the basic logical bulk shape (BLOBS) method [8-10]. 

The advancing front approach generates the mesh by 

starting at the boundary of the model and progressively 

building elements into the interior of the model. Some 

examples of algorithms employing this approach are the 

whisker weaving method [3],[17] and the plastering 

method [2],[11]. In the superposition approach, a 

sufficiently large mesh is superimposed on the model 

and it is then adapted to the boundary of the model. 

Examples of such a class of algorithms are the modified 

grid-based method which can use the isomorphic 

transformation approach [14] or projective approach 

[16]. Other variants involve using the octree scheme 

[15], or a sculpting algorithm [19] to generate the initial 

mesh. 

 

The advantages of the different meshing techniques are 

balanced between two important issues: the quality of 

the boundary mesh and the quality of the core mesh. 

Achieving one usually compromises the other. A 

comparison of the different mesh generation algorithms 

was made by Su et al. [16].  
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In this paper, a fuzzy logic inference engine is proposed 

to map the geometric domain to a block Cartesian space. 

By meshing this block Cartesian abstraction, both the 

boundary and core mesh can be of high quality. 

Moreover, the mesh is essentially structured in nature. 

Apart from the immediate application in automatic 

hexahedral mesh generation, the block Cartesian 

abstraction is also useful in the area of feature 

recognition and domain decomposition. The paper is 

organized as follows. Section 2 describes the 

methodology of the algorithm, section 3 presents the 

usefulness of this method with respect to the new grid-

based hexahedral mesh generation algorithm, and 

section 5 concludes the paper. 

 

2. METHODOLOGY 

The objective of this paper is to develop a robust 

algorithm to obtain a block Cartesian abstraction of a 

solid model with arbitrary shape. The task is to modify 

the original geometric model such that its sub-entities 

conform to the Cartesian directions, that is, its faces lie 

along the xy-, the yz- or the zx-plane, and its edges are 

parallel to the x, y or z-direction. Chiba et al. [4] has 

proposed a method to generate such a recognition 

model. However, the algorithm faces stability problems 

and it fails to converge when certain features are 

encountered, like a 45° chamfer. In this paper, a new 

fuzzy logic engine is proposed. The major differences are 

as follows: 

i) The use of surface normals to calculate the new 

orientations of the sub-entities of the model 

rather than using edge directions.  

ii) The application of a different fuzzy logic 

inference engine for the computation of the 

new orientations of geometric entities.  

iii) The employment of a feature placement 

algorithm for positioning the features of the 

model. 

 

2.1 Creation of a Tessellated Model 

To generate a Cartesian abstraction, it is first required to 

obtain a tessellated model so that every curved edge is 

approximated by straight line segments and every curved 

surface is approximated by triangular facets while planar 

faces are approximated by polygonal boundaries. The 

degree of tessellation must be such that the number of 

line segments and facets is minimal yet adequately 

represents the original model. An estimated length of the 

arc segment l used in the tessellation is given by 

max4K
l

π
≈                (1) 

 

where Kmax is the maximum curvature of the edge. If the 

curve is a straight line (K = 0), it is not tessellated. Next, 

a set of triangular facets are used to approximate all non-

planar faces using the tessellated edges as contraints to 

the triangulation, which is achieved by standard 

Delaunay’s algorithm, as illustrated in Fig. 1. 

 

 
Fig. 1. Tessellation of a geometric model 

 

2.2 Face Normal Reassignment 

In order to create a Cartesian abstraction, all the face 

normals of the tessellated model must be reoriented in 

the x, y, or z-direction. There is, however, no unique 

way of determining the directions of the face normals 

and the problem is made much more complicated since 

changes made in local regions have an impact in the 

global sense. To solve this problem, a fuzzy logic system 

with three inputs (antecedent) and one output 

(consequent) is implemented. Consider two adjacent 

faces A and B as shown in Fig. 2., the probabilities (Pη,A 

and Pη,B) that their face normals are assigned to the η-

Cartesian directions are determined based on relation 

shown in Fig. 3(a)., where θη is the angle between the 

face normal and the η-direction. The probability Pα that 

these two faces are assigned to the same direction is also 

determined based on relation shown in Fig. 3(b)., where 

θ is the angle between the two adjacent faces A and B.  

 

 
 

Fig. 2. A pair of adjacent faces A and B 

original model tessellated model 

A 

B 

C 
D 
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Fig. 3. Relations between (a) Pη and θη, and (b) Pα and θ  

Given these values, the interest is to find the effect which 

one surface has on the other in terms of the assignment 

modification ΔPη,A in each of the η-Cartesian direction. 

The logic of this system is described as follows: 

 

If Pα is high, then the assignment modification tends 

to change the normal direction of surface A to the 

direction of that of surface B. However, if Pα is low, 

then the assignment modification tends to change 

the normal direction of surface A away from that of 

surface B. 

 

The rule-base with multiple antecedent and single 

consequent variables is 

 

Rule 1: IF Pη,A is high AND Pη,B is high AND Pα is 

high THEN ΔPη,A is positive 

ALSO 

Rule 2: IF Pη,A is low AND Pη,B is low AND Pα is 

high THEN ΔPη,A is negative 

ALSO 

Rule 3: IF Pη,A is high AND Pη,B is low AND Pα is 

low THEN ΔPη,A is positive 

ALSO 

Rule 4: IF Pη,A is low AND Pη,B is high AND Pα is 

low THEN ΔPη,A is negative 

 

The membership functions of the fuzzy sets are illustrated 

in Fig. 4. and the Multiple-Input, Single-Output (MISO) 

linguistic model is illustrated in Fig. 5. 

 

 

 

Fig. 4. Membership functions of fuzzy sets 
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Fig. 5. Multiple-Input, Single-Output (MISO) linguistic model 

 

The algorithm to obtain the crisp output is a two-step 

process: 

i) For each rule of the linguistic model, calculate 

the degree of firing τi using Larsen’s method 

(multiplicative product) [21] 

 

τi = Bi1 (Pη,A) × Bi2 (Pη,B) × Bi3 (Pα)  (2) 

 

ii) Use the product-sum method to obtain the 

fuzzy set Fi inferred by the ith rule and aggregate 

the inferred fuzzy sets to obtain the output 

 

Fi = τiDi    (3) 

∑∑
==

==
m

i

ii

m

i

i DFV
11

τ   (4) 

 

The product-sum method yields 

 

ΔPη,A = β[ΔPη,A - ΔPη,B + (2ΔPη,B - 1) Pα]  (5) 

 

For face A which has m adjacent faces,  

∑
=

Δ=Δ
m

i

iA PP
1

,, ηη    (6) 

 

A problem that this algorithm faces is the case when Px,A 

= 0.5. In other words, face A makes an angle of 45° with 

the x-axis and is at 135° to face B. This configuration is 

commonly found at chamfered corners. To overcome 

this problem, an area sensitivity factor ΔPα and a 

random factor is introduced to Pα such that 

 

Pα′ = Pα + ΔPα + e×randn   (7) 

 

where e is a sufficiently small number and randn is a 

random number chosen from a normal-distribution with 

mean zero and variance one. The complete system is 

illustrated in Fig. 6. 

 

For each iteration k, the modified assignment probability 

for n�i is then calculated from 

 

Pη,i(k+1) = Pη,i(k) + ΔPη,i(k)  

 (8) 

Inputs Rule-base Output 

⇒ 

IF U1 is B21 AND U2 is B22 AND U3 is B23 THEN V is D1 

τ1 = B21×B22×B23 

⇒ 

⇒ 

⇒ 

F1 

U3 = Pα 

+ 
ΔPη,A β V 
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IF U1 is B21 AND U2 is B12 AND U3 is B13 THEN V is D1 

IF U1 is B11 AND U2 is B22 AND U3 is B13 THEN V is D2 
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Fig. 6. Complete fuzzy logic inference engine 

  

 

2.3 Edge Length and Direction Assignment 

After the directions of the face normals have been 

reassigned, the directions of the edges for each surface 

are determined. For a surface i, the direction of its jth 

edge is calculated as follows: 

 

jiji nne ×=,     (9) 

 

where jie ,  is the direction of the jth edge of surface i,  n�i 

is the surface normal direction of surface i, and n�j is the 

normal direction of its adjacent surface at edge j. 

 

The calculation of the new length of each edge after the 

edge direction assignment is based on simple proportion. 

Since every edge is already in the x, y or z-direction, 

then the sum of the edge lengths in the positive 

orientation must equal the sum of the edge lengths in the 

negative orientation. Thus, for an edge l in 

consideration, 

 

∑
∑=′

δ

ω

l

l
l

2
    (10) 

 

where l′ is the new edge length, lω is the length of an 

edge in the same orientation (ω = x, y or z), and lδ is the 

length of an edge in the same direction (δ = ±x, ±y or 

±z). Since each edge is shared by two surfaces, the new 

length is the average of the two lengths calculated for the 

surfaces.  

 

 

 

Fig. 7. Feature subset in the block Cartesian space 

 
2.4 Feature Placement Using a Modified Field 

Morphing Technique 

After determining the new face normal directions and 

edge lengths, the task remains to construct the block 

Cartesian model. As such, information is inferred from 

the original set of faces to determine how the positions of 

features are affected after the transformation. A feature is 

identified by a group of interconnected edges whereby 

some of the edges form the inner boundary of some 

faces of the original model, as shown in Fig. 7. To 

approximate the position of a feature with respect to the 

main body, the new positions of every vertex on the 

feature is calculated based upon the influences of the 

surrounding control primitives.  
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Fig. 8. Transformation of a face S to S′ 

 

A vertex X of the feature undergoes a coordinate 

mapping to a new location X′ based upon the 

transformation between a pair of faces as illustrated in 

Fig. 8. First, a point Xs is defined such that Xs is the 

perpendicular projection of X onto face S. Given a 

reference point R of the surface S and its unit normal 

vector n�s, Xs can be found by using the following 

equation: 

 

[ ] sss nnRXXX ⋅−−= )(        (11) 

 

After Xs is determined, the corresponding point Xs′ of the 

surface S′ is calculated. To find the new position X′, the 

following equation is used: 

 

[ ] sssA
A

s nnXXXX ⋅−+′=′ ′ )(            

(12) 

 

where A′ and A are the surface areas of S′ and S, 

respectively. Also, the coordinate mapping of each 

vertex must be weighted with respect to all the faces of 

the object. The weight of the ith pair of faces is computed 

as follows: 

 
b

i

p

i
i

da

A
w 









+
=               

(13) 

 

where A is the area of the face S, and d is the distance 

between X and S. If Xs lies within the outer loop of S, 

then d is given by sXX − . Otherwise, d is the closest 

distance to any outer edge of S.  The values of a, b and 

p used here are 0.005, 2 and 1, respectively. For m pairs 

of faces, the final position of the vertex is computed 

using the following equation: 

∑

∑ −′
+=′

m

i

i

m

i

iii

w

XXw

XX

)(

          (14) 

The complete process of constructing a recognition 

model from the original model is illustrated in Fig 9.  

 

 

 

Fig. 9. Construction of block Cartesian abstraction 

 

3. DISCUSSIONS 

In this section, a new grid-based method [16] is 

employed to mesh the block Cartesian abstraction of a 

model using hexahedral elements, as shown in Fig. 10. A 

Laplacian-Isoparametric transformation [5] is used to 

map the mesh back to the original model. The mapping 

is performed progressively by transforming the nodes on 

the vertices, then for those on the edges, and followed by 

those on the faces and finally for the nodes inside the 

solid. In general, the transformation of nodal locations 

on an n-dimensional entity is done by fixing the nodes 

on its (n - 1)-dimensional sub-entities. It is observed that 

the final mesh is boundary sensitive. Thus, by using the 

block Cartesian abstraction as a mapping space, the 

inherent disadvantage of having poorly shaped elements 

at the boundary in the grid-based type of hexahedral 

mesh generation algorithm is avoided. In general, if a 

block Cartesian model can be abstracted, then a 

hexahedral mesh can be derived. Moreover, by 

employing certain types of mesh generation algorithm, 

like the sub-mapping [20] and grid-based algorithm [16], 

a structured hexahedral mesh can be obtained, as shown 

in Fig. 11. 

 

One inherent problem in the method presented in this 

paper is that certain geometrical configurations are very 

difficult to mesh with elements of high quality. This 

occurs when the local geometry tapers significantly, with 

the worst cases being corners which are less than 45° or 

greater than 135°. Using a simple grid overlay to 

generate the mesh does not suffice in such cases and 
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modification to the mesh is required. Research work is 

currently being undertaken in this area. 

 

Fig. 10. Hexahedral mesh generation using new grid-based 

algorithm and Laplacian-Isoparametric transformation 

 

4. CONCLUSION 

Using a fuzzy logic inference engine to derive the block 

Cartesian abstraction of a geometric model is a viable 

and effective approach. Such an abstraction is useful in 

applications like domain decomposition, feature 

extraction and mesh generation. This is especially so in 

the area of hexahedral mesh generation where boundary 

sensitivity is an important issue. This approach also 

facilitates the construction of a structured mesh. An issue 

which requires further research effort is the problem of 

degeneracies which occur due to sharply varying 

geometry and shape. 

 

 

 

 

 

 

 

 

 

 

 

   

Fig. 11. Generation of structured mesh 
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