
 285

Offset Triangular Mesh Using the Multiple Normal Vectors of a Vertex

Su-Jin Kim1, Dong-Yoon Lee2 and Min-Yang Yang3

1Korea Advanced Institute of Science and Technology, sujinkim@kaist.ac.kr

2Korea Advanced Institute of Science and Technology, yunny@kaist.ac.kr
3Korea Advanced Institute of Science and Technology, myyang@kaist.ac.kr

ABSTRACT

This paper introduces and illustrates the results of a new method for offsetting triangular mesh by

moving all vertices along the multiple normal vectors of a vertex. The multiple normal vectors of a

vertex are set the same as the normal vectors of the faces surrounding the vertex, while the two

vectors with the smallest difference are joined repeatedly until the difference is smaller than

allowance. Offsetting with the multiple normal vectors of a vertex does not create a gap or overlap

at the smooth edges, thereby making the mesh size uniform and the computation time short. In

addition, this offsetting method is accurate at the sharp edges because the vertices are moved to

the normal directions of faces and joined by the blend surface. The method is also useful for rapid

prototyping and tool path generation if the triangular mesh is tessellated part of the solid models

with curved surfaces and sharp edges. The suggested method and previous methods are

implemented on a PC using C++ and illustrated using an OpenGL library.

Keywords: Offset, Triangular mesh, Multiple normal vectors

1. INTRODUCTION

Offsets are widely used in tool path generation for

numerical control machining, rapid prototyping, hollow

or shelled model generation, and access space

representations in robotics. In a numerical control

machining area, 2D and 3D offsets are particularly

important and useful for gouge-free and collision-free

tool paths [1,2]. In 2D milling, a contour is offset by the

size of the cutter radius, and invalid loops are removed

for a gouge-free tool path [1]. In 3D milling, a gouge can

be removed by computing the cutter location (CL)

surface [2].

Since the SLT file format is widely used in the field, the

development of an effective offsetting method for

triangular mesh is important for numerical control

machining and rapid prototyping. To offset triangular

mesh, each triangular face is moved by the size of the

cutter radius in its corresponding normal direction,

which is an exact offset of polyhedron [3]. This process,

however, results in intersections or gaps between the

offset surfaces of two neighboring triangles, as shown in

Fig. 1(a). The problem can be avoided if the vertices,

instead of the triangular faces, are offset in their normal

direction, as shown in Fig. 1(b) [4,5]. Calculating vertex

offset vectors by averaging the normal vectors of

triangles connected to the vertex is an inaccurate

method for vertices on sharp edges [4]. Thus, a method

was developed to calculate offset vectors for vertices by

using the weighted sum of the normal vectors of the

connection triangles [5]. The vertex offset method works

well for small offset values on mesh with smooth edges

where local and global intersections do not normally

occur. However, the weighted sum of normal vectors at

sharp edges is so large that unwanted interference can

occur and the shell thickness becomes larger than the

smooth edges at the rapid prototyped part.

The triangular mesh offset methods that move faces

along the face normal vectors result in intersections or

gaps among offset faces; other methods that move the

vertices along the single normal direction of vertices are

not precise at sharp edges. Consequently, a new offset

method for triangular mesh is needed to make no gaps

or overlaps between the triangular faces tessellated from

the smooth surface and the precisely offset sharp edges.

In this paper, a new offset method for triangular mesh is

introduced that moves the vertex to the multiple normal

vectors of a vertex computed by the normal vectors of

the faces surrounding the vertex. The vertices are moved

along the multiple normal directions of a vertex and the

gaps at sharp edges along with the vertices are filled by

a blending mesh, as shown in Fig. 1(c). The multiple

normal vectors of a vertex are introduced and the

computation methods that use the normal vectors of the

 286

triangular faces connected to the vertex is explained.

The offsetting process of a triangular mesh that uses the

multiple normal vectors of a vertex is detailed to create

cutter location mesh.

2. MULTIPLE NORMAL VECTORS

The normal vector of a vertex in triangular mesh has

been defined to a single vector and the offset method

has been using the normal of faces or the single normal

vector of a vertex. In this section, the multiple normal

vectors of a vertex are introduced and the computation

methods that use the normal vectors of the triangular

faces connected to the vertex is explained.

To offset triangular mesh, which is an approximation of

a solid model with piecewise smooth surfaces and sharp

edges, a vertex has no single normal vector but more

than one vertex normal vector referred to in this paper

as the multiple normal vectors of a vertex. The vertex on

smooth geometries has one normal vector calculated by

the weighted sum of the normal vectors of the faces

around the vertex, while the vertex on the sharp edge

has more than two normal vectors that are almost the

same as the normal vectors of surrounding faces.

To compute the multiple normal vectors of a vertex, the

normal vectors of a vertex are set the same as the face

normal vectors surrounding the vertex and replaced to

one vector if the cross product of vectors is smaller than

allowance. In Fig. 2(a), the vertex normal vector v1,2,3 is

computed by averaging the three normal vectors of the

faces around the vertex because all the cross products of

the normal vectors of the faces are smaller than

allowance. In Fig. 2(b), the vertex normal vector v1 is set

the same as the face normal vector f1 because the

direction differs from the other normal vectors of the

faces around the vertex. Because the cross product

between f2 and f3 is smaller than allowance, the vertex

normal vectors v2 and v3 are replaced to the vector v2,3

which is the average of the two vectors. Vector v4,5 is

also the average of vectors f4 and f5, which have almost

the same values. The three vectors v1, v2,3 and v4,5,

called the multiple normal vectors of a vertex, are

computed from five normal vectors of the faces around

the vertex. The computation method for the average

vector was developed so that the distance from any

original triangular surface to the offset surface would be

exactly the same as the offset distance, as shown in Fig.

2(c) [5].

22112,1
vvv ww +=

 if
δ<×

21
vv

 (1)

vi is the normal vector of vertex Vi

δ the allowance

(a)

(b)

(c)

Fig. 1. Offsetting surfaces and vertices: (a) offsetting surfaces

along face normal directions; (b) offsetting vertices along the

single normal direction of a vertex; (c) offsetting vertices along

the multiple normal directions of a vertex.

(a)

(b)

f1

f2

f3

v1,2,3

Multiple normal vectors

Sharp Smooth

Single vertex normal

Overlaps

Gaps

f1

f2

f3

f4 f5

v1

v2

v4

 287

(c)

Fig. 2. The multiple normal vectors of a vertex are computed

by averaging the face normal vectors: (a) a smooth vertex has

one normal vector; (b) three vertex normal vectors computed

from five face normal vectors; (c) computation method for the

average vector.

(a)

(b)

(c)

(d)

Fig. 3. Offset edge using the multiple normal vectors of a vertex:

(a) smooth edge; (b) the blend surface of three normal vectors;

(c) the blend surface fills the gap at the convex edge; (d) the

overlap at the sharp concave edge.

3. TRIANGULAR MESH OFFSET

3.1 Offset of faces

For offsetting triangular faces, the vertices of the faces

are moved to the multiple normal directions of vertices.

No gaps or overlaps appear between the faces with

similar normal directions because the vertex surrounded

by the faces has a single normal vector. The complexity

of offsetting these faces is O(n), where n is the number of

vertices on the triangular mesh. The multiple normal

vectors with different directions occur at the vertices

surrounded by the faces with very different normal

vectors. The multiple normal vectors produce a precise

offset distance and they do not significantly deform the

face of the triangle. The gaps and overlaps are joined by

the blend surface, thereby making the shell thickness

uniform in layered manufacturing and producing a

smooth tool path.

3.2 Offset of edges

The edges that join two adjacent triangular faces are

offset by moving two vertices along the normal

directions of each vertex. As shown in Fig. 3(a), the

smooth edge with the two single vertex normal vectors

v1,2 and v3,4 is offset by moving the two end vertices

along the normal direction of the vertices. No gap or

overlap occurs between the faces because the edge

joining the faces is moved along the single direction.

The edge shown in Fig. 3(b) with the multiple normal

vectors v1, v2 and the single normal vector v3,4 is offset

by moving the vertices along each direction; the gap

near the vertex with the multiple normal vectors is

joined by a conic bland surface. The sharp edge shown

Figs 3(c) and 3(d) with the two double vertex normal

vectors v1, v2, v3, and v4 is offset by moving each end

vertex along two different directions, which makes offset

distance precise but creates gap or overlap. The blend

surface joins the gap between the two faces if the edge is

convex as shown in Fig. 3(c). The blend surface is

computed by recursively dividing the two vertex normal

vectors at each end point of the edges while the cross

product of the vectors is less than allowance.

3.3 Offset of vertices

Since a smooth vertex with the single normal vector v1,2,3

is moved along one direction, no gap or local

interference occurs between the faces that surround the

vertex shown in Fig. 4(a). As shown in Fig. 4(b), a

vertex with the two normal vectors v1,2 and v3 is moved

along each normal direction but no gap is generated

because it is filled with the blend surface of the edges. As

shown in Figs 4(c) and 4(d), the sharp vertex with the

different normal vectors v1, v2, and v3 is divided into

three vertices and moved along each normal direction

v1 v2

v3 v4

v1 v2

v3
v4

v1

v3,4

v2

v1,2

v3,4

v1 v2

v1,2

 288

that makes a gap or overlap between the offset faces.

The gap at sharp concave vertex is filled by the blend

surfaces. The vertex normal vectors are used to compute

the blend surface of the sharp vertices by recursively

dividing the three vertices while the cross product of the

vertices is less than allowance. The STL model with

concave and convex edges and vertices is shaded with

the multiple normal vectors of a vertex in Fig. 5(a). All

vertices are moved along the multiple normal vectors of

the vertices, and the gaps at the sharp vertices and

edges are joined by the triangular faces, as shown in Fig.

5(b).

(a)

(b)

(c)

(d)

Fig. 4. Offset vertex using the multiple normal vectors of a

vertex: (a) a smooth vertex with a single normal vector; (b) a

vertex with two normal vectors; (c) the blend surface fills a gap

at the convex vertex; (d) the overlap at the sharp concave

vertex

(a)

(b)

Fig. 5. Offsetting of sharp edges and vertices; (a) enlarged

triangle mesh and the multiple normal vectors of a vertex; (b)

offset using the multiple normal vectors of a vertex.

3.4 Slicing and loop removal

There are two possible ways to remove the self-

intersections on the offset triangular mesh. One

complicated way is to remove the self-intersection in 3D

spaces. The other way is to remove the self-intersection

in 2D spaces after slicing by a series of planes; this way

is a suitable method for 3-axis numerical control

machining and a layer-based manufacturing process.

The offset triangular mesh is sliced by a series of planes

to get the tool path lines. Since all the gaps between the

faces are joined by the blend surface, the sliced lines of

the offset triangular mesh is connected a continuous

loop. An invalid loop can be removed by a loop

removal method of 2D milling [1].

4. COMPARATIVE EXAMPLES

The C++ language and an OpenGL library were used

for the implementation of the proposed offset method

and two previous methods. The shaded model in Fig. 6

is triangular mesh generated from a complete solid

model by a commercial CAD system. In Fig. 7(a), the

face normal vectors of the mesh are shown as black lines

at the vertices of the triangular faces. The normal vectors

of vertices were computed by averaging the normal

vectors of the faces shown in Fig. 7(b). The multiple

normal vectors of a vertex are computed by joining face

normal vectors surrounding the vertex, as shown at Fig.

7(c). The smooth vertices and edges in the surfaces of

the model have a single normal vector. The sharp

vertices and edges at the edge of the rectangle and

cylinder have the multiple normal vectors of a vertex

directing the normal direction of each face.

v2

v3 v2

v1

v3

v2

v3
v1,2

v1,2,3

 289

Using each normal vector (namely, the normal vector of

a face, the normal vector of a vertex and the multiple

normal vectors of a vertex), the triangular faces and

vertices are moved to offset the triangular mesh. In Fig.

7(a), all the faces are moved along the normal direction

of the faces by the length of the offset distance [3]. This

process produces an exact offset of the triangular faces

but with too many gaps and overlaps between the

triangular faces, thereby making a long computation time

for joining and trimming between the faces. The small

faces that join the gaps make the offset mesh and tool

path nonuniform. In Fig. 7(b), all vertices are moved

along the average vertex normal directions of the normal

vectors of the surrounding faces [4, 5]. No gaps occur

between the faces but the large geometrical deformation

of the triangular faces and the offset errors at the sharp

edges are unsatisfactory for numerical control machining.

The blended surface at the sharp edge is better than the

sharp offset edges for uniform shell thickness and for the

tool path of high-speed milling. In Fig. 7(c), all vertices

are moved along the multiple normal directions of a

vertex. At the smooth vertices and edges, no gap or local

interference occurs, and the triangular faces and the

block length of the tool path block are uniform. The

normal vector of a vertex is computed not by using the

simple average of face normal vectors but by using the

weighted sum of face normal vectors; in this way, the

offset triangular mesh is precise. At the sharp edges and

vertices, no large deformation of the faces occurs

because the multiple normal vectors of a vertex move

the vertices along the face normal directions. The tool

path that passes the sharp edges is precise and smooth

because it is joined by the blend surfaces. The gaps at

the sharp vertices and edges are joined by the blend

surface. The sliced lines form loops, enabling easy

handling by methods for removing 2D invalid loops. The

compared results of three offset methods in Table 1 show

that multiple normal methods is better than previous two

methods for tool path generation. The offset results of

various models in STL formats also are illustrated in Fig.

8. The tool path generated by slicing the offset mesh is

verified by NC machining simulation and the results

shown in Fig. 8 (d) insure that the proposed offset

method is also applicable for NC machining.

Fig. 6. Shaded view of triangular mesh with 4,200 faces and

0.1mm tolerance.

(a)

 290

(b)

(c)

Fig. 7. Normal vectors of triangular mesh and offset mesh: (a)

offsetting surfaces along face normal vectors, 12,600 gaps,

48,842 faces; (b) offsetting vertices along the single normal

vectors of a vertex, 3.6mm error; (c) offsetting vertices along the

multiple normal vectors of a vertex, 1,676 gaps, 13,923 faces.

(a)

(b)

 291

(c)

 (d)

Fig. 8. The offset results of various triangular meshes using the

multiple normal vectors of a vertex: (a) STL model and offset

mesh of cylinder; (b) Cow; (c) Anchor; (d) STL model, offset

mesh, tool path and simulation of injection mold.

 Face

normal

Vertex

normal

Multiple

normal

Complexity
O(n)+bO(n)

[0.375s]

O(n)

[0.031s]

O(n)+bO(s)

[0.094s]

Number

of faces

Increase

[48,842]

Same

[4,200]

Increase

[13,923]

Number

of gaps

All edges

[12,600]

No

[0]

Sharp E.

[1,676]

Uniformity Poor Good Good

Precision
Exact

[0mm]

Poor

[3.5mm]

Allowable

[0.1mm]

Tool path Good Poor Better

STL model with 4,200 faces, 0.1mm tolerance

n is the count of faces

b is the time complexity of blending

s is the count of sharp edges & vertices (s<<n)

[] is the result of the example, shown in Fig.7

Tab. 1. The comparison of offset methods.

5. CONCLUSION

A triangular mesh offset algorithm that moves vertices

along the multiple normal vectors of a vertex is

introduced and implemented. The multiple normal

vectors of a vertex are set the same as the normal vectors

of the faces that surround the vertex, and two vectors

with the smallest difference are replaced to an average

vector repeatedly until the difference is smaller than

allowance. All the vertices are moved along the multiple

normal directions, and the gaps at the sharp edges and

vertices are filled with blend mesh computed by recursive

subdivision.

The offsetting using the multiple normal vectors of a

vertex does not create a gap or overlap at the smooth

edges, thereby making the mesh size uniform and the

computation time short. The method is precise at the

sharp edges because the vertices are moved to each face

normal direction and joined by the blend surface. The

method is useful for rapid prototyping and numerical

control machining for triangular mesh that is the

tessellated part of solid models with smooth surfaces and

sharp edges. The possible disadvantage of this method is

that the triangular mesh needs to form a complete solid

because the multiple normal vectors of a vertex and the

blend surfaces at the sharp edges are calculated using

topology between the faces, edges, and vertices.

6. REFERENCES

[1] Hansen, A. and Arbab, F., An Algorithm for

Generating NC Tool Paths for Arbitrary Shaped

Pockets with Islands, ACM Transactions on

Graphics, Vol. 11, No. 2, 1992, pp 152-182.

[2] Choi, B.-K., Kim, D.-H. and Jerad, R.-B., C-Space

approach to tool path generation for die and mold

machining, Computer-Aided Design, Vol. 29, No. 3,

1997, pp. 657-669.

[3] Jun, C.-S, Kim, D.-S. and Park, S.-H., A new curve-

based approach to triangle machining, Computer-

Aided Design, Vol. 34, No. 5, 2002, pp 379-389.

[4] Koc, B. and Lee, Y.-S., Non-uniform offsetting and

hollowing objects by using biarcs fitting for rapid

prototyping process, Computers in Industry, Vol.

47, 2002, pp 1-23

[5] Qu, X. and Stucker, B., A 3D surface offset method

for STL-format models, Vol. 9, No. 3, 2003, pp

133-141.

