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ABSTRACT 

 

This paper introduces and illustrates the results of a new method for offsetting triangular mesh by 

moving all vertices along the multiple normal vectors of a vertex. The multiple normal vectors of a 

vertex are set the same as the normal vectors of the faces surrounding the vertex, while the two 

vectors with the smallest difference are joined repeatedly until the difference is smaller than 

allowance. Offsetting with the multiple normal vectors of a vertex does not create a gap or overlap 

at the smooth edges, thereby making the mesh size uniform and the computation time short. In 

addition, this offsetting method is accurate at the sharp edges because the vertices are moved to 

the normal directions of faces and joined by the blend surface. The method is also useful for rapid 

prototyping and tool path generation if the triangular mesh is tessellated part of the solid models 

with curved surfaces and sharp edges. The suggested method and previous methods are 

implemented on a PC using C++ and illustrated using an OpenGL library. 
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1. INTRODUCTION 

Offsets are widely used in tool path generation for 

numerical control machining, rapid prototyping, hollow 

or shelled model generation, and access space 

representations in robotics. In a numerical control 

machining area, 2D and 3D offsets are particularly 

important and useful for gouge-free and collision-free 

tool paths [1,2]. In 2D milling, a contour is offset by the 

size of the cutter radius, and invalid loops are removed 

for a gouge-free tool path [1]. In 3D milling, a gouge can 

be removed by computing the cutter location (CL) 

surface [2]. 

Since the SLT file format is widely used in the field, the 

development of an effective offsetting method for 

triangular mesh is important for numerical control 

machining and rapid prototyping. To offset triangular 

mesh, each triangular face is moved by the size of the 

cutter radius in its corresponding normal direction, 

which is an exact offset of polyhedron [3]. This process, 

however, results in intersections or gaps between the 

offset surfaces of two neighboring triangles, as shown in 

Fig. 1(a). The problem can be avoided if the vertices, 

instead of the triangular faces, are offset in their normal 

direction, as shown in Fig. 1(b) [4,5]. Calculating vertex 

offset vectors by averaging the normal vectors of 

triangles connected to the vertex is an inaccurate 

method for vertices on sharp edges [4]. Thus, a method 

was developed to calculate offset vectors for vertices by 

using the weighted sum of the normal vectors of the 

connection triangles [5]. The vertex offset method works 

well for small offset values on mesh with smooth edges 

where local and global intersections do not normally 

occur. However, the weighted sum of normal vectors at 

sharp edges is so large that unwanted interference can 

occur and the shell thickness becomes larger than the 

smooth edges at the rapid prototyped part. 

The triangular mesh offset methods that move faces 

along the face normal vectors result in intersections or 

gaps among offset faces; other methods that move the 

vertices along the single normal direction of vertices are 

not precise at sharp edges. Consequently, a new offset 

method for triangular mesh is needed to make no gaps 

or overlaps between the triangular faces tessellated from 

the smooth surface and the precisely offset sharp edges. 

In this paper, a new offset method for triangular mesh is 

introduced that moves the vertex to the multiple normal 

vectors of a vertex computed by the normal vectors of 

the faces surrounding the vertex. The vertices are moved 

along the multiple normal directions of a vertex and the 

gaps at sharp edges along with the vertices are filled by 

a blending mesh, as shown in Fig. 1(c). The multiple 

normal vectors of a vertex are introduced and the 

computation methods that use the normal vectors of the 
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triangular faces connected to the vertex is explained. 

The offsetting process of a triangular mesh that uses the 

multiple normal vectors of a vertex is detailed to create 

cutter location mesh. 

 

2. MULTIPLE NORMAL VECTORS 

The normal vector of a vertex in triangular mesh has 

been defined to a single vector and the offset method 

has been using the normal of faces or the single normal 

vector of a vertex. In this section, the multiple normal 

vectors of a vertex are introduced and the computation 

methods that use the normal vectors of the triangular 

faces connected to the vertex is explained. 

To offset triangular mesh, which is an approximation of 

a solid model with piecewise smooth surfaces and sharp 

edges, a vertex has no single normal vector but more 

than one vertex normal vector referred to in this paper 

as the multiple normal vectors of a vertex. The vertex on 

smooth geometries has one normal vector calculated by 

the weighted sum of the normal vectors of the faces 

around the vertex, while the vertex on the sharp edge 

has more than two normal vectors that are almost the 

same as the normal vectors of surrounding faces. 

To compute the multiple normal vectors of a vertex, the 

normal vectors of a vertex are set the same as the face 

normal vectors surrounding the vertex and replaced to 

one vector if the cross product of vectors is smaller than 

allowance. In Fig. 2(a), the vertex normal vector v1,2,3 is 

computed by averaging the three normal vectors of the 

faces around the vertex because all the cross products of 

the normal vectors of the faces are smaller than 

allowance. In Fig. 2(b), the vertex normal vector v1 is set 

the same as the face normal vector f1 because the 

direction differs from the other normal vectors of the 

faces around the vertex. Because the cross product 

between f2 and f3 is smaller than allowance, the vertex 

normal vectors v2 and v3 are replaced to the vector v2,3 

which is the average of the two vectors. Vector v4,5 is 

also the average of vectors f4 and f5, which have almost 

the same values. The three vectors v1, v2,3 and v4,5, 

called the multiple normal vectors of a vertex, are 

computed from five normal vectors of the faces around 

the vertex. The computation method for the average 

vector was developed so that the distance from any 

original triangular surface to the offset surface would be 

exactly the same as the offset distance, as shown in Fig. 

2(c) [5]. 
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Fig. 1. Offsetting surfaces and vertices: (a) offsetting surfaces 

along face normal directions; (b) offsetting vertices along the 

single normal direction of a vertex; (c) offsetting vertices along 

the multiple normal directions of a vertex. 
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(c) 

Fig. 2. The multiple normal vectors of a vertex are computed 

by averaging the face normal vectors: (a) a smooth vertex has 

one normal vector; (b) three vertex normal vectors computed 

from five face normal vectors; (c) computation method for the 

average vector. 
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(d) 

Fig. 3. Offset edge using the multiple normal vectors of a vertex: 

(a) smooth edge; (b) the blend surface of three normal vectors; 

(c) the blend surface fills the gap at the convex edge; (d) the 

overlap at the sharp concave edge. 

 

3. TRIANGULAR MESH OFFSET 

 

3.1 Offset of faces 

For offsetting triangular faces, the vertices of the faces 

are moved to the multiple normal directions of vertices. 

No gaps or overlaps appear between the faces with 

similar normal directions because the vertex surrounded 

by the faces has a single normal vector. The complexity 

of offsetting these faces is O(n), where n is the number of 

vertices on the triangular mesh. The multiple normal 

vectors with different directions occur at the vertices 

surrounded by the faces with very different normal 

vectors. The multiple normal vectors produce a precise 

offset distance and they do not significantly deform the 

face of the triangle. The gaps and overlaps are joined by 

the blend surface, thereby making the shell thickness 

uniform in layered manufacturing and producing a 

smooth tool path. 
 

3.2 Offset of edges 

The edges that join two adjacent triangular faces are 

offset by moving two vertices along the normal 

directions of each vertex. As shown in Fig. 3(a), the 

smooth edge with the two single vertex normal vectors 

v1,2 and v3,4 is offset by moving the two end vertices 

along the normal direction of the vertices. No gap or 

overlap occurs between the faces because the edge 

joining the faces is moved along the single direction. 

The edge shown in Fig. 3(b) with the multiple normal 

vectors v1, v2 and the single normal vector v3,4 is offset 

by moving the vertices along each direction; the gap 

near the vertex with the multiple normal vectors is 

joined by a conic bland surface. The sharp edge shown 

Figs 3(c) and 3(d) with the two double vertex normal 

vectors v1, v2, v3, and v4 is offset by moving each end 

vertex along two different directions, which makes offset 

distance precise but creates gap or overlap. The blend 

surface joins the gap between the two faces if the edge is 

convex as shown in Fig. 3(c). The blend surface is 

computed by recursively dividing the two vertex normal 

vectors at each end point of the edges while the cross 

product of the vectors is less than allowance. 

 

3.3 Offset of vertices 

Since a smooth vertex with the single normal vector v1,2,3 

is moved along one direction, no gap or local 

interference occurs between the faces that surround the 

vertex shown in Fig. 4(a). As shown in Fig. 4(b), a 

vertex with the two normal vectors v1,2 and v3 is moved 

along each normal direction but no gap is generated 

because it is filled with the blend surface of the edges. As 

shown in Figs 4(c) and 4(d), the sharp vertex with the 

different normal vectors v1, v2, and v3 is divided into 

three vertices and moved along each normal direction 
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that makes a gap or overlap between the offset faces. 

The gap at sharp concave vertex is filled by the blend 

surfaces. The vertex normal vectors are used to compute 

the blend surface of the sharp vertices by recursively 

dividing the three vertices while the cross product of the 

vertices is less than allowance. The STL model with 

concave and convex edges and vertices is shaded with 

the multiple normal vectors of a vertex in Fig. 5(a). All 

vertices are moved along the multiple normal vectors of 

the vertices, and the gaps at the sharp vertices and 

edges are joined by the triangular faces, as shown in Fig. 

5(b). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Offset vertex using the multiple normal vectors of a 

vertex: (a) a smooth vertex with a single normal vector; (b) a 

vertex with two normal vectors; (c) the blend surface fills a gap 

at the convex vertex; (d) the overlap at the sharp concave 

vertex 

 

 

    
(a) 

    
(b) 

Fig. 5. Offsetting of sharp edges and vertices; (a) enlarged 

triangle mesh and the multiple normal vectors of a vertex; (b) 

offset using the multiple normal vectors of a vertex. 

 

3.4 Slicing and loop removal 

There are two possible ways to remove the self-

intersections on the offset triangular mesh. One 

complicated way is to remove the self-intersection in 3D 

spaces. The other way is to remove the self-intersection 

in 2D spaces after slicing by a series of planes; this way 

is a suitable method for 3-axis numerical control 

machining and a layer-based manufacturing process. 

The offset triangular mesh is sliced by a series of planes 

to get the tool path lines. Since all the gaps between the 

faces are joined by the blend surface, the sliced lines of 

the offset triangular mesh is connected a continuous 

loop. An invalid loop can be removed by a loop 

removal method of 2D milling [1]. 

 

4. COMPARATIVE EXAMPLES 

The C++ language and an OpenGL library were used 

for the implementation of the proposed offset method 

and two previous methods. The shaded model in Fig. 6 

is triangular mesh generated from a complete solid 

model by a commercial CAD system. In Fig. 7(a), the 

face normal vectors of the mesh are shown as black lines 

at the vertices of the triangular faces. The normal vectors 

of vertices were computed by averaging the normal 

vectors of the faces shown in Fig. 7(b). The multiple 

normal vectors of a vertex are computed by joining face 

normal vectors surrounding the vertex, as shown at Fig. 

7(c). The smooth vertices and edges in the surfaces of 

the model have a single normal vector. The sharp 

vertices and edges at the edge of the rectangle and 

cylinder have the multiple normal vectors of a vertex 

directing the normal direction of each face. 
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Using each normal vector (namely, the normal vector of 

a face, the normal vector of a vertex and the multiple 

normal vectors of a vertex), the triangular faces and 

vertices are moved to offset the triangular mesh. In Fig. 

7(a), all the faces are moved along the normal direction 

of the faces by the length of the offset distance [3]. This 

process produces an exact offset of the triangular faces 

but with too many gaps and overlaps between the 

triangular faces, thereby making a long computation time 

for joining and trimming between the faces. The small 

faces that join the gaps make the offset mesh and tool 

path nonuniform. In Fig. 7(b), all vertices are moved 

along the average vertex normal directions of the normal 

vectors of the surrounding faces [4, 5]. No gaps occur 

between the faces but the large geometrical deformation 

of the triangular faces and the offset errors at the sharp 

edges are unsatisfactory for numerical control machining. 

The blended surface at the sharp edge is better than the 

sharp offset edges for uniform shell thickness and for the 

tool path of high-speed milling. In Fig. 7(c), all vertices 

are moved along the multiple normal directions of a 

vertex. At the smooth vertices and edges, no gap or local 

interference occurs, and the triangular faces and the 

block length of the tool path block are uniform. The 

normal vector of a vertex is computed not by using the 

simple average of face normal vectors but by using the 

weighted sum of face normal vectors; in this way, the 

offset triangular mesh is precise. At the sharp edges and 

vertices, no large deformation of the faces occurs 

because the multiple normal vectors of a vertex move 

the vertices along the face normal directions. The tool 

path that passes the sharp edges is precise and smooth 

because it is joined by the blend surfaces. The gaps at 

the sharp vertices and edges are joined by the blend 

surface. The sliced lines form loops, enabling easy 

handling by methods for removing 2D invalid loops. The 

compared results of three offset methods in Table 1 show 

that multiple normal methods is better than previous two 

methods for tool path generation. The offset results of 

various models in STL formats also are illustrated in Fig. 

8. The tool path generated by slicing the offset mesh is 

verified by NC machining simulation and the results 

shown in Fig. 8 (d) insure that the proposed offset 

method is also applicable for NC machining. 

 

 

 
Fig. 6. Shaded view of triangular mesh with 4,200 faces and 

0.1mm tolerance. 
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(b) 

 

 

 

 

 
(c) 

 
Fig. 7. Normal vectors of triangular mesh and offset mesh: (a) 

offsetting surfaces along face normal vectors, 12,600 gaps, 

48,842 faces; (b) offsetting vertices along the single normal 

vectors of a vertex, 3.6mm error; (c) offsetting vertices along the 

multiple normal vectors of a vertex, 1,676 gaps, 13,923 faces. 
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(c) 

 

 

  
 (d) 

 

Fig. 8. The offset results of various triangular meshes using the 

multiple normal vectors of a vertex: (a) STL model and offset 

mesh of cylinder; (b) Cow; (c) Anchor; (d) STL model, offset 

mesh, tool path and simulation of injection mold. 

 

 

 

 Face 

normal 

Vertex 

normal 

Multiple 

normal 

Complexity 
O(n)+bO(n) 

[0.375s] 

O(n) 

[0.031s] 

O(n)+bO(s) 

[0.094s] 

Number 

of faces 

Increase 

[48,842] 

Same 

[4,200] 

Increase 

[13,923] 

Number 

of gaps 

All edges 

[12,600] 

No 

[0] 

Sharp E. 

[1,676] 

Uniformity Poor Good Good 

Precision 
Exact 

[0mm] 

Poor 

[3.5mm] 

Allowable 

[0.1mm] 

Tool path Good Poor Better 

STL model with 4,200 faces, 0.1mm tolerance 

n is the count of faces 

b is the time complexity of blending 

s is the count of sharp edges & vertices ( s<<n ) 

[ ] is the result of the example, shown in Fig.7 

 
Tab. 1. The comparison of offset methods. 

 

 

 

5. CONCLUSION 

A triangular mesh offset algorithm that moves vertices 

along the multiple normal vectors of a vertex is 

introduced and implemented. The multiple normal 

vectors of a vertex are set the same as the normal vectors 

of the faces that surround the vertex, and two vectors 

with the smallest difference are replaced to an average 

vector repeatedly until the difference is smaller than 

allowance. All the vertices are moved along the multiple 

normal directions, and the gaps at the sharp edges and 

vertices are filled with blend mesh computed by recursive 

subdivision. 

The offsetting using the multiple normal vectors of a 

vertex does not create a gap or overlap at the smooth 

edges, thereby making the mesh size uniform and the 

computation time short. The method is precise at the 

sharp edges because the vertices are moved to each face 

normal direction and joined by the blend surface. The 

method is useful for rapid prototyping and numerical 

control machining for triangular mesh that is the 

tessellated part of solid models with smooth surfaces and 

sharp edges. The possible disadvantage of this method is 

that the triangular mesh needs to form a complete solid 

because the multiple normal vectors of a vertex and the 

blend surfaces at the sharp edges are calculated using 

topology between the faces, edges, and vertices. 
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