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ABSTRACT 
 

This paper presents an efficient approach that uses rational Bézier motions to generate 5-axis tool 
path for sculptured surface machining (finish cut) with a flat-end cutter. A method is proposed in 
which dual quaternion is used to represent a spatial displacement. The representation of kinematic 
motions for the cutter bottom circle of the flat-end cutter is then formulated. Based on that, a new 
approach for tool path generation using rational Bézier cutter motions is described, in which key 
issues such as interference avoidance and surface accuracy requirement are addressed.  
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1. INTRODUCTION 

In modern manufacturing, 5-axis machining is 
commonly used in automotive, aerospace and tooling 
industries. Compared to 3-axis machining, 5-axis 
machining offers many advantages, including the ability 
to manufacture complex parts with free form surface, 
better material-removal rates, improved surface finish, 
reduced number of set-ups and thus increased 
productivity [1]. However, for the moment, 5-axis 
machining tool path generation remains a difficult task, 
which is mainly due to the complicated tool movements 
and the irregular curvature distributions of sculptured 
surfaces.  
 

In order to overcome the problems of 5-axis tool path 
generation, different approaches have been developed 
over the last decade. Dragomatz and Mann [2] provided 
a classified bibliography of the literature on NC tool path 
generation. Choi and Jerard [3] also gave an extensive 
introduction of the 5-axis machining. Some approaches 
focus on tool path planning strategies, such as iso-
parametric machining [4], iso-planar machining [5] and 
constant scallop height machining [6,7], while some 
focus on geometric issues, such as the scallop height 
[8,9] and effective cutting shape [10]. Much efforts 
focused on obtaining the optimal cutter orientations to 
improve the efficiency of the tool path generation 

process [11,12]. Much work also focuses on the 
detection and avoidance of gouging and collision 
[13,14,15]. Gouging occurs when portions of the 
cutter’s bottom extends below the part surface, while 
collision is regarded as the global gouging in which the 
cylindrical portion of the cutter interferes with the part 
surface or the machine tool. To date, most of the 
previous efforts focused on the development of the 
algorithms for gouging and collision avoidance. 
 
In general, most of the reported tool path generation 
methods are numerical and discrete in nature [16]. They 
basically follow a two-step approach:  

(1)  Given a surface description (either in NURB 
representation or triangular polyhedral meshes), a 
set of cutting contact (CC) points is generated based 
on a machining strategy and the given surface error 
tolerance. 

(2) For each CC point, the cutter location (CL) is 
determined that avoids gouging and collision and is 
within the machine’s axis limits. 

In order to satisfy the surface error tolerance, the 
number of CC points is generally very large. At the same 
time, algorithms that search for a feasible CL for a CC 
point are iterative in nature, which normally leads to 
extremely long computation time. A further drawback of 
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this kind of approach is that the complete elimination of 
gouging or collision between the neighbouring CLs is 
not guaranteed. Instead of focusing on a particular 
instant of the tool motion and studying local geometric 
issues at the instant, tool path can be generated as 
envelopes of moving cutter. Wang and Joe [17] 
presented that surfaces can be generated by sweeping a 
profile curve along a given spline curve. Juttler and 
Wagner [18,19] proposed a method to generate rational 
motion-based surface emphasizing the special cases of a 
moving cylinder of cone of revolution. Ge and 
Srinivasan [20] presented two algorithms for fine-tuning 
rational B-spline motions suitable for computer aided 
design. Xia and Ge [21 ， 22] provided the 

representation of the boundary surfaces of the swept 
surface undergoing rational Bézier and B-spline motions 
and proposed a corresponding method for 5-axis tool 
path generation. It provides an efficient approach to 
generate the tool path, and at the same time, allows an 
accurate representation of the swept surface generated 
by the cutter.  However, their work has not yet explicitly 
dealt with the issue related to interference detection and 
avoidance. The work reported in this paper advances 
their work by developing an algorithm for generating an 
entire tool path for a given designed surface while 
avoiding interference. 
 
2. REPRESENTATION OF KINEMATIC 
MOTIONS FOR THE FLAT-END CUTTER 
 
2.1 Representing a Spatial Displacement with a 
Dual Quaternion 
A dual quaternion is the combination of dual number 

and quaternion, which has the form of 0ˆ qqq ε+= . The 

symbol ε represents the dual unit which has the property 
ε2=0, and the real part q and the dual part q0 are all 
quaternions.  The quaternion is a hypercomplex number 
consisting of a real part and 3 imaginery parts: 

q=q1i+ q2j+ q3,k+ q4   (1) 
where qi (i=1, 2, 3, 4) are real numbers, called the 
components of q, and four quaternion units 1, i, j, k 
satisfy the relations i2 = j2 = k2 = -1 and ij = -ji = k. A 

unit quaternion is a quaternion with 122 =∑= iqq . 

Traditionally, translation is represented by a 
vector d and rotation is represented by an orthogonal 
matrix [A]. Thus, a spatial displacement in Euclidean 
three-space E3 is commonly expressed by [A] and d as: 
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where P
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 and P are homogeneous coordinates of a 
point measured in the fixed and moving reference 

frames. Dual quaternion can also be used to represent 
spatial displacement. The 4 components of q is 
expressed by the homogeneous Euler parameters of 
rotation as: 
q=(q1,q2,q3,q4)=(s1sin(θ/2),s2sin(θ/2),s3sin(θ/2),cos(θ/2))

 (3) 
where (s1, s2, s3) define the unit vector s along the axis of 
rotation and θ denotes the angle of rotation. Eq. (3) 
contains the information of rotational component of a 
spatial displacement. The 4 components of the dual part 
q0 is another quaternion whose components are defined 
as:  
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where d=(dx, dy, dz) is the translation vector. q0 includes 
the information of the translation of a spatial 
displacement. 
 Since the real part of q̂  represents the rotation 

and the dual part represents the translation of a spatial 
displacement, dual quaternion is capable of representing 
transformation. A spatial displacement in E3 is expressed 
by:  

PqqqqqPqP )(
~ 00

4
*** p −+=

     (5) 
where”*”denotes the conjugate of a quaternion.  As with 

matrices, the multiplication of two dual quaternions p̂  

and q̂  using quaternion algebra is still a dual quaternion 

that composes the two basic transformations. 
 
2.2. Representing Point Trajectory using Rational 
Bézier Dual Quaternion 
Given a moving frame OM  - XMYMZM, a fix frame OF -

XFYFZF, and a point P in the moving frame, one can get 
the point trajectory of P through the motion of the 
moving frame relative to the fix frame, as shown in Fig. 
1. Points PA and PB are on the point trajectory and 
represent the intermediate position for point motion. 

Denoting P
~

and P as homogeneous coordinates of a 
point measured in the fixed and moving frames, one can 

obtain the transformation between P
~

 and P using dual 

quaternion q̂  according to section 2.1. Therefore, when 

point P moves to point PA, transformation between 

AP
~

and PA can be represented by Aq̂ ; similarly, the 

transformation between BP
~

and PB can be represented 

by Bq̂ . 
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Fig. 1.  Point trajectory of P generated by the motion of frame 
OF -XFYFZF 

 

Given a set of dual quaternion iq̂ that represents 

transformation between point P
~

 and P at different point 
positions as point P is undergoing motions, one can 
construct a B-spline dual quaternion curve that 
represents the motions of point P. Therefore one can 

interpolate the transformation between point P
~

 and P at 
arbitrary position. As a result, according to Eq. (5), one 
can determine the coordinate of point P in the fix frame 
at arbitrary position. 
In order to construct the rational Bézier dual quaternion 

curve that passes through a set of quaternion iq̂ (i 

=1,…n), a set of control dual quaternion  
∧
d j (j = 1,…n) 

needs to be obtained first. Then the rational Bézier dual 
quaternion curve is given as: 
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where (t)B n

j denotes the rational Bézier basis functions. 

According to Eq. (5) and (6), we can get the coordinate 
of point P in the fix frame as: 
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For details, please refer to [23]. 
 
2.3. Representation of Cutter Bottom Circle 
Undergoing a Rational Bézier Motion 
From the rational Bézier representation of point motion, 
we can determine the representation of a flat-end 
cutter’s bottom circle undergoing a rational Bézier 
motion (see Fig. 2) by applying the same principle. 
 
 
 
 
 
 

 
 
 
 
 

 

 

 

Fig. 2. Position of cutter bottom circle in the moving frame 

We first construct a circle in the moving frame. Assume 
that the axis of the cylinder is along the Z-axis and 
choose P0=(r,0,0,1), P1=(0,-r,0,0), P2=(-r,0,0,1), as the 
homogeneous coordinates of three Bézier control points, 
as shown in Fig. 2. The half circle C1 below X-axis can be 
expressed as: 
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Similarly, the circular arc C2 above X-axis can be 
represented by the same formula except P1=(0,r,0,0). 
Substitute Eq. (8) into Eq. (7), the circular arc 
undergoing the rational Bézier motion can be expressed 
as: 
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3. THE GEOMETRY OF FIVE-AXIS MACHINING 
Here, the designed surface to be machined is a B-spline 
surface. A flat-end cutter is used for machining. Fig. 3 
shows the geometry of the surface and cutter in 5-axis 
machining. In Fig. 3, OG-XGYGZG is the global coordinate 
system, which is fixed on the workpiece. OL-XLYLZL is 
the local coordinate system that is centred at the CC 
point. The CL point is the centre of the bottom of the 
cutter, while a CL includes the CL point as well as the 
orientation of the cutter. XL is in the direction of the 
tangent vector at the CC point along current cutting 
direction. ZL is in the direction of the normal of the 
surface at the CC point. OT-XTYTZT is the cutter 
coordinate system that is obtained by first rotating angle 
λL around YL and second angle ω L around ZL, and then 
translating –r along XL, where r is the cutter radius. The 
transformation between the cutter and global frames can 

be represented by dual quaternion q̂  as: 

q̂= rqqqq trωrλtrLG −⋅⋅⋅ ˆˆˆˆ               (10) 

where trLGq̂  is the dual quaternion that represents the 

transformation from the local frame to the global frame; 

rωq̂ is the dual quaternion that represents rotation of 

angle ω L around ZL; rλq̂ represents rotation of angle λL 
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around YL; tr−q̂  represents the translation of –r along 

XL. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. The geometry of 5-axis milling 

 
4. ISO-PARAMETRIC TOOL PATH 
GENERATION USING RATIONAL BÉZIER 
MOTION  
Here, we present a method for iso-parametric tool path 
generation using rational Bézier cutter motion. The 
rational Bézier dual quaternion curve is constructed to 
obtain the mathematic forms of the cutter motion along 
the surface curve; thus, the computation of huge number 
of discrete CC points is avoided. Since the swept surface 
of cutter’s bottom circle undergoing rational Bézier 
motion can be expressed in Eq. (9), gouging checking 
can be considered as finding interference between the 
swept surface of cutter bottom undergoing rational 
Bézier motion and the designed surface, while gouging 
avoidance can be considered as modifying the swept 
surface of cutter bottom motion so that the interference 
between the swept surface and the designed surface no 
longer exists. 
 
The algorithm is implemented in three steps. Given an 
iso-parametric curve on the design surface, the first step 
is to find the dual quaternions correspond to several 
discrete CLs, which is used to construct the motion curve 
of cutter bottom and consequently construct the swept 
surface of cutter bottom circle undergoing ration Bézier 
motion.  In the second step, the rational Bézier dual 
quaternion curve for the cuter motion is constructed and 
the swept surface of cutter bottom circle is obtained. 
After that, fitness and interference checking between the 
swept surface of the cutter bottom and the designed 
surface is performed and correction of the rational Bézier 
dual quaternion curve is carried out if the tool path is 
unsatisfactory. Finally, a satisfactory tool path is 
obtained. 
 
4.1. Determining Dual Quaternions of CLs on the 
Tool Path 

In order to construct the swept surface of cutter bottom, 
the control dual quaternions must be determined first. In 
our application, we calculate the dual quaternion 
between global coordinate system and the cutter 
coordinate system (see Fig. 3). To determine the dual 
quaternions between these two coordinate systems, we 
must know the position of the point in each of the 
coordinate system.  Since the global coordinate system is 
fixed, we can determine the dual quaternion when we 
know the location of the cutter coordinate system. 
Therefore, the problem of finding the discrete dual 
quaternions is equivalent to find several CLs on the tool 
path. This can be solved in two steps: (1) find several CC 
points on the surface curve, and (2) construct the 
gouging and collision free CLs associated with the CC 
points. 
 
4.1.1. Determining the cutter contact (CC) points 
There are two methods to determine the CC points: one 
is to find the evenly distributed CC points along the 
surface curve, and the other is to find the CC points 
which could reflect the shape of the surface curve. The 
second approach is employed, i.e., the number and 
distribution of these CC points depends on the curvature 
of the surface curve. 
 
Given the current CC point Ci, one need to find the next 
CC point Ci+1 on S(u0,v) and  to ensure that the fitting 
error between two neighbouring CC points is within the 
fitting tolerance τ. In this stage, the fitting tolerance τ 
should be chosen carefully. To avoid a large number of 
CC points, we use a rather relaxed bound as the fitting 
tolerance. In our approach, the CC points chosen in this 
stage only serve as a starting set and the final surface 
error will only be accurately checked and ensured after 
the whole tool path is generated.  
 
Two steps are involved in determining the next CC 
point. First, a search for the adaptive step size Li is 
conducted, which is based on the local curvature of 
surface curve at the i-th CC point and the pre-defined 
fitting tolerance τ. After that, the conversion from the 
step size Li to the increment of parameter vi is performed 
and the next CC point is obtained. Li can be calculated 
by [14]: 

n

n
iL

κ
κττ 248 −

=   (11) 

where  κn  is the curvature of the intersection curve 
between the surface and the plane containing the surface 
normal n and f [24]. Li is then converted to Δvi, and the 
next CC point is S(u0,vi+Δvi). Δvi (see Fig. 4b) is 
determined by [9]: 
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Δvi is only an approximated value since the surface curve 
S(u0,v) at the vicinity of Ci is considered as a circular 
curve.  Therefore, we need to calculate the maximum 
deviation dmax between the points on surface curve 

S(u0,v), where vi ≤ v ≤ vi,+ Δvi, and the linear segment 
connected by S(u0, vi) and S(u0, vi,+ Δvi), as shown in 
Fig. 4c. If dmax is larger than τ, decrease the parameter 

increment Δvi, and re-calculate dmax again until it is less 
than τ. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 4. The geometry of surface curve S(u0,v) at the vicinity of 

Ci 

 
4.1.2. Obtaining the associate gouging-free and 
collision-free cutter locations (CLs) 
Given a set of CC points calculated in section 4.1.1, one 
can obtain the CLs if the orientations (the inclination 
angle λL and tilting angle ωL) of the cutter are given at 
each CC point. In order to have less modification later, 
gouging and collision are avoided when determining the 
orientations of the cutter. The proposed method follows 
a checking-correction approach. The default inclining 
and tilting angles are assigned, followed by a checking 
procedure for interference. If interference exists, a 
correction procedure is applied to change these two 
angles.  
 
Intersection checking between two surfaces is not a trivial 
task. We simplify this problem by converting the cutter 
bottom plane into a limited number of circles (see Fig. 
5a), and then checking the intersection between the 
circles and the designed surface. Similarly, we also 
simplify the intersection checking between the cylindrical 
surface of the cutter and the designed surface by 

converting the cylindrical surface into a limited number 
of circles (see Fig. 6a), and then checking the intersection 
between the circles and the designed surface. 
 
To check the possible intersection between a circle and 
the designed surface, we calculate the minimal distance 
between the circle and the surface. The Downhill 
Simplex method [25] is employed. For gouge checking, 
denote the identified point on the cutter bottom as Q 
and the point on the designed surface as P, the existence 
of gouging is one of the following:  
(1) If the minimum distance is closed to 0 (|P – Q| < 

ρ, where ρ is a very small value) and Q is outside 
the vicinity of CC point, gouging is said to occur.  

(2) If |P – Q| ≥ ρ, there are two possibilities. The 
first is that no interference exists (see Fig. 5b) and 
the second is that the cutter bottom is completely 
below the designed surface (see Fig. 5c). To 
distinguish these two scenarios, we calculate the 
angle, φ, between vector PQ and the normal 
vector at P, i.e., n. If φ ≤ 90˚, as shown in Fig. 
5b, there will be no gouging. If, however, φ > 
90˚, gouging will occur.  

For collision checking, denote the identified point on the 
cutter cylindrical surface as Q and the point on the 
designed surface as P, the existence of collision is 
determined in the following scenarios (see Fig. 6b,c,d): 
(1) If the minimum distance is closed to zero (|P – Q| 

< ρ, where ρ is a very small value) collision is said 
to occur.  

(2) If |P – Q| ≥ ρ, we transform the point P on the 
designed surface in the global frame to the cutter 
frame. If the transformed PT is within the volume of 
the cutter, collision occurs. Otherwise, there is no 
collision. 

If gouging or collision exists, the corresponding CL needs 
to be adjusted. The strategy for adjusting the inclining 
and tilting angles is given as follows: 

(1) Increase λL by a small amount and keep ωL 

unchanged. Check the existence of gouging and 
collision. 

(2) If no gouging and collision exists, output λL and ωL, 
stop. Otherwise, check if the machine limit for λL is 
reached. If so, go to step (3). If not, go back to step 
(1). 

(3) Increase ωL by a small amount and keep λL at its 
default value. Go back to step (1). 

It is worth mentioning that in the above procedure, 

there is no checking for the machine limit for ωL . This is 
based on an assumption that for a given CC point, an 
interference-free pair of λL and ωL always exists. 
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  (a)   (b) 

 
 
 
 
 

 
 

 

(c) 

Fig. 5. Check interference between the cutter bottom and the 
designed surface 

 
 
 
 
 
 
 
 
 
 

       (a)                  (b) 

 
 
 
 
 
 
 
 
 
     (c)       (d) 
 

Fig. 6. Interference checking of designed surface and cutter 
cylindrical surface 

 
4.2. Construct the Dual Quaternion Curve of 
Cutter Motion for One Tool Pass 
Given a set of CLs, their dual quaternion representation 

iq̂  can be obtained using Eq. (10). In this section, we 

construct a rational Bézier motion that interpolates or 
approximates the arbitrary cutter location on one tool 

path using the dual quaternion representation iq̂  of 

these CLs. It can be considered as a curve construction 
problem, and there are several methods for curve 
interpolating and approximation [26]. The problem can 

be described as follows: Given a set of dual quaternion 

iq̂ (0≤ i≤ n) generated from the CLs for one tool path, 

and corresponding knot sequence xi (0 ≤ i ≤ n), find a 
segmented cubic rational Bézier dual quaternion curve Q 
determined by the knots sequence and a set of control 

dual quaternion 1
ˆ
−d ,… 1

ˆ
+nd  such that Q(xi)= iq̂ . We 

can obtain the relationship between the control dual 

quaternion id̂  and the known dual quaternion iq̂  using 

de Casteljau algorithm [26]. For implementation details, 
please refer to [23]. 
  
4.3. Tool Path Verification and Modification 
The dual quaternion curve of cutter motion generated 
represents a complete tool pass. Over this tool pass, 
however, the cutter positions between the seed 
neighbouring CLs may cause out-of-bound surface error 
and/or collision and gouging. Therefore, verification of 
the complete tool path on surface error, gouging and 
collision must be carried out. Here, we use the swept 
surface generated by the cutter bottom and the 
underlying surface to check the existence of these two 
problems. The swept surface of the bottom of a cutter 
undergoing rational motion is considered to be formed 
by two types of surfaces: one by the rational motion of 
bottom circle (type- II) and the other by the bottom 
surface within the bottom circle (type-I). For gouging 
problem, we need to check whether there is any 
interference between the swept surface (both type-I and 
type-II) and the designed surface. For surface error, 
however, we only need to check the deviation between 
type-II surface and the designed surface. This is because 
that the final generated surface must be the swept 
surface formed by the motion of the bottom circle if the 
tool path is gouging-free. The surface fitness and gouging 
checking are carried out on a number of selected CLs. 
The deviation between type-II surface and the designed 
surface is checked first. If it is out of tolerance, the 
respective CLs are recorded. Gouging and collision 
checking is subsequently carried out over the same set of 
CLs and the interference CLs are also recorded. These 
problematic CLs are then modified and the quaternion 
motion curve is reconstructed. Subsequently, fitness and 
interference checking are carried out again. This process 
goes on until a gouging-free and collision-free tool path 
with a satisfactory fitness is achieved. The algorithms are 
described in the following sections. 
 
4.3.1. Fitness and interference checking 
The deviation between the type-II surface and designed 
surface at a given CL can be defined as the minimal 
distance between the cutter bottom circle and designed 
surface. Here, we have chosen a sampling method based 
on the change of curvature of the type- II surface, i.e., 
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the part of surface with large curvatures is sampled 
densely; while the part of surface with small curvatures is 
sampled sparsely. In implementation, we use the curve 
of the CC point undergoing the same rational Bézier 
motion as an approximation. First, we obtain the 
equation of this curve. As shown in Fig. 2, since point c 
(CC point) is the start point of two circular arcs expressed 
in Eq. (8) and s = 0. Thus, according to Eq. (9), the 
curve generated by point c undergoing the rational 
Bézier motion is given by P(0,t) as: 
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            (13) 

The next step is to generate a set of CC points from P(0, 
t). For implementation, the method for CC-point 
generation described in section 4.1.1 is adopted, in 
which the designed surface S(u,v) and surface curve 
S(u0,v) are replaced by the swept surface  P(s,t) and  the 
curve P(0,t). The given surface error tolerance is used as 
the fitting tolerance for CC-point generation.  The 
generated CC-point set corresponds to a set of 
parameters {ti, i=1, 2, …, K}, which further corresponds 
to a set of CLs whose CC points can be represented as 
{P(0, ti), i=1, 2, …, K}. The calculation of the minimum 
distance between a CC point at ti and the underlying 
curve on the designed surface can be performed using 
the Downhill Simplex algorithm. The output gives a set 
of K points on S(u0,v), {S(u0, vi), i=1, 2, …, K}, that 
correspond to the minimum distances at the K CLs.  If 
the minimal distance at a CL is found to be larger than 
the surface error tolerance, the corresponding point, 
which belong to {S(u0, vi), i=1, 2, …, K}, that yield this 
distance is recorded into a supplementary CC-point set. 
The CLs that satisfy the tolerance are to be used for 
gouging and collision checking. 
 
Next, interference detection needs to be carried out at 
instant CLs. For simplicity, the instant CLs for 
interference detection are the same set of CLs 
determined in the process of fitness checking. At these 
CLs, interference detection is similar to the gouging and 
collision detection method introduced in section 4.1.2. 
However, there is still a little difference between them. 
The adjustment of the incline angle of cutter at instant 
location is no longer needed at this stage, since the 
adjustment will be done later by modifying the rational 
Bézier dual quaternion curve. Note that the minimal 
distance calculated for interference detection is between 
the cutter and the designed surface as a whole. If 
interference occurs at a CL (ti), the corresponding point 
on S(u0,v) should be found and added to the 
supplementary CC-point set. The requirement for this 

point is that by using it as a CC point, a feasible CL can 
be found to avoid interference. Therefore, there should 
be more than one solution to this point. Here, we use the 
point on S(u0,v) that corresponds to the minimal 
distance between P(0, ti) and S(u0,v), i.e., from {S(u0, 
vi), i=1, 2, …, K}, which is obtained during the above 
fitting checking procedure. Finally, the supplementary 
CC-point set is completed, which will be used to modify 
the curve that defines the cutter motion. 
 
4.3.2. Modification of the rational Bézier dual 
quaternion curve 
Having found the problematic CLs (on the dual 
quaternion curve), a direct modification approach is to 
use the points in the supplementary CC-point set to 
determine their CLs that are interference-free and have 
satisfactory fitting error. These CLs, together with the 
existing CLs, are then used to re-construct the dual 
quaternion curve.  
 
For implementation, the points in the supplementary 
CC-point set are considered as new CC points, and the 
corresponding cutter postures (CLs) at these positions 
are then obtained based on gouging and collision 
avoidance described in section 4.1.2. The newly 
generated CLs are converted to dual quaternion 
representation. Thus the control quaternions are 
modified and a new quaternion motion curve is 
generated from these modified quaternions. The swept 
surface of cutter undergoing the new quaternion motion 
will have more contact points with the underlying curve. 
It is therefore expected that the new tool path have less 
problems in terms of fitting error, gouging and collision. 
Fitness, gouging and collision checking will be carried 
out on the new tool path. This checking-modification-
checking process is repeated until fitting test, gouging 
and collision test are satisfactory. 
 
5. COMPUTER IMPLEMENTATION AND AN 
APPLICATION EXAMPLE 
The proposed method has been implemented on PC 
using VC++ and OpenGL. In this section, an example is 
used to illustrate the capability of the developed 
algorithm. The example surface is a rational Bézier 
surface with control points: 
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Fig. 7a shows the surface patch geometry. It can be seen 
that the patch is concave in general with an extrusion in 
the centre, which will cause the change of the tool 
postures in order to avoid interference. A flat-end cutter 
with the radius of 0.3 is used here. The position of the 
single tool pass is at u = 0.3. 
 
First, a set of CC points were generated on the surface 
curve S(0.3, v),  assigning the searching tolerance τ = 
0.05.  Fig. 7b shows the normal vectors of the CC points 
generated under the surface error tolerances.  
 
 
 
 
 
 
 
 
 
 
         (a)      (b) 

Fig. 7. (a) The designed surface patch (b) CC points with τ 

=0.05 

Second, the associated CLs associated to the CC points 
are generated.  The default inclining and tilting angles 
were chosen as λL=5° and ω L=0°. Fig. 8a shows the 
CLs before gouging avoidance (the left image shows the 
cutter postures and the right one shows the view from 
the back of the surface patch), from which we can see 
that there was some interference between the cutter and 
the designed surface. Fig. 8b shows the CLs after 
gouging avoidance, from which we can see that the 
interference no longer existed. 
 
After that, the rational Bézier dual quaternion curve of 
cutter motion was generated and then went through the 
tool path verification and correction process. The cutter 
undergoing the initially generated rational Bézier motion 
is shown in Fig. 9a and some interference exists. The 
cutters in yellow indicate the CLs where there is gouging 
problem; while the cutters in pink indicate the CLs with 
fitting problem. Fig. 9b and 9c show the resulted tool 
path after the first and second modification of the 
rational Bézier dual quaternion curve. The gouging and 
fitting problem abated as opposed to that in Fig. 9a. The 
tool path after the third modification is shown in Fig. 9d, 
in which we can see that neither gouging nor fitting 
problems were detected and, therefore, the whole tool 
path was generated. The final tool path has 24 CLs that 
are used to construct the rational Bézier motion of the 
cutter. 
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Fig. 8. The cutter locations: (a) before gouging avoidance; (b) 
after gouging avoidance 
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Fig. 9. The result of the cutter undergoing the rational Bézier 
motion 

(a) The initial tool path; (b) The 1st modified tool path;(c) The 
2nd modified tool path; (d) The 3rd modified tool path 
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6. CONCLUSIONS 
In this paper, a new method to generate 5-axis finishing 
tool path for sculptured surface is presented. The method 
employs the recently developed rational Bézier motions 
for NC tool path generation. Details on dual quaternion 
representation of a spatial displacement and the 
mathematic form of cutter bottom circle undergoing the 
rational Bézier motion are described. Critical issues in 5-
axis tool path generation such as gouging avoidance and 
accuracy requirement are discussed. The major 
advantages of rational Bézier motions for tool path 
representation include (a) the entire tool path can be 
represented using a much more compact set of control 
positions of the motion as opposed to a huge data set of 
discrete cutter positions; (b) Since the cutter motion 
representation is analytic, it provides an exact 
representation of effective cutting shape so that tool path 
verification can be carried out accurately. An algorithm 
for tool path generation, verification, and modification 
has been developed. Compared with conventional 5-axis 
tool path generation algorithms, our algorithms has the 
following advantages: (a) fewer CC points are involved 
thus less computation required; (b) since the tool path is 
represented analytically, complete elimination of 
interference and surface accuracy, to a large extent, can 
be guaranteed between neighbouring CLs.  Furthermore, 
in our method, the effective cutter shape used for the 
further generation of the cutter locations in the next tool 
path can be represented exactly. This could lead to an 
accurate computation of scallop height between two 
neighbouring tool paths. Currently, study on generating 
neighbouring tool path based on constant scallop height 
is underway. 
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