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ABSTRACT 

 
Recently point set model is getting increasing research attention in many geometric modeling 
application areas including computer graphics and CAD/CAM.  This paper presents a novel 
approach to directly slicing point set model with the focus on making rapid prototyping part out of 
point set model without making any mesh or surface. Main challenge in handling point set model 
lies in how to interpret inter-point empty space and implicit quadric surfel is used in this research.  
This paper also explains how to utilize the quadric surfel for slicing the point set, so as to obtain 
contour curves for RP.  Also described in this paper is how to extract smooth curve(s) out of the 2D 
point cloud obtained by slicing the 3D point set model. 
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1. INTRODUCTION 

Thanks to the recent advancement in 3D shape 
scanning technology, 3D point set model can be easily 
obtained. Point set, also often called point-cloud, is one 
of the most fundamental shape representation methods, 
and is having increasing attention, mainly due to its 
simplicity – very simple geometry (only points) and no 
topology. The main challenge in dealing with point set 
model is how to fill in the gap between sampled points. 
Traditional ways are to construct triangular mesh 
connecting the points or to fit smooth surface passing 
the point set.  However, it is by no means a simple task 
to construct such global models (either triangular mesh 
or surface fitting) with high fidelity. 
In computer graphics area, recently, a number of 
research results have been published on rendering and 
hierarchically organizing point set for faster display of 
shape without hassling with complex geometry or 
connectivity [3][9][10].  Recent trend in handling point 
set model for graphics purpose is to locally interpret the 
gap in-between points, such as surfel [17] or moving 
least square [3]. 
As depicted in [13], RE (reverse engineering) and RP 
(rapid prototyping) are two important technologies to 
connect the physical world and the digital world bi-
directionally. While RE process is to construct a 
computational geometric model from a physical object, 
RP process is to make a physical model from a digital 
model.  Most of contemporary RP technologies use 
layered manufacturing, which is to accumulate thin 
slices in order to build a 3D object. For more detailed 

information on RP technology, the readers are referred 
to [20].  RE process needs to be combined directly with 
RP process in some application areas, for example, such 
as making a copy or a scaled model of a physical part.  
Fig.1 shows a typical RE-RP combined process.  As one 
can see on the right side of the figure, many 
troublesome steps in the combined process can be 
avoided if the point set model can be directly sliced to 
create contours for RP.  In this paper, we present a high 
fidelity direct point set slicing algorithm. 
 

 
Fig. 1. RE-RP combined process 

 

[10] proposed visualization and tool path generation 
algorithms for point-set based CAD/CAM.  But, his 
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definition of point set is restricted to have regular grid 
type arrangement.  [12] and more recently [16] 
presented methods for tool path generation from point 
set model.  However, both papers assume that input 
point set is organized as a series of measured point 
sequence curves, which is a valid assumption when 
using contact-type CMM (coordinate measuring 
machine) or line type laser scanner.  Though, if area 
type scanner is to be used, the assumption will not be 
satisfied.  In this paper, we do not make any assumption 
on the underlying scanning method and the structure of 
point set. 
[11], [13] and [19] are very closely related to this paper.  
In [11], they pre-processes the point set to obtain 
vertical feature curves first, then slice the feature curves 
to obtain slice contours.   In their approach, the number 
of vertical feature curves depends on user’s choice and 
so the accuracy of the resulting contour curve does.  
[13] takes a different approach.  They first subdivide the 
point set into a series of slabs, and then select 
representative feature points by thinning the projected 
image. Then the feature points are connected together 
to form a net of feature curves.  Finally, contour curves 
are obtained by cutting the curve net with slicing plane.  
[19], another paper by the same research group, 
explains a very similar approach, but with the focus on 
how to determine the slice thickness adaptively within 
given tolerance. 
In this paper, we present a direct slicing algorithm to 
obtain contour curves with high fidelity. The next section 
explains the overall procedure, followed by details for 
each step, then examples and conclusion. 
 
2. OVERALL PROCEDURE 

As mentioned earlier, most of RP technologies utilize 
layered manufacturing, which is to make very thin layers 
and accumulate them [20]. The best building direction 
and layer thickness depend on the underlying 
technology, and hence here we assume that the building 
direction, which is perpendicular to the slicing plane, 
and the slice interval (layer thickness) is given as input.  
We further assume that the building direction is Z-axis, 
for the simplicity.   Fig. 2 shows the overall flow of the 
algorithm. 
 
3. PREPROCESSING 
In this step, the points are first sorted along Z-axis for 
efficient proximity query processing.   For even faster 
retrieval of neighboring point, voxel binning method 
(also known as bucketing) can be applied. 
The main task of this step is to construct a local surface 
element (surfel) for each point, which approximates the 
neighborhood of the point.  Surfels will be used for 
computing the cross section in the next section.  Though 
the simplest type of surfel would be a plane (i.e. tangent 

plane), we use a quadric surface so as to achieve high 
fidelity for the given point set.   For a given point p∈S 
where S is the input point set, a quadric surface Q(p) is 
computed by weighted least square fitting of its local 
neighborhood N(p), which is a set of points around p. 
The quality of resulting surfel heavily depends on how 
we choose N(p). If N(p) is too small, the surfels become 
sensitive to noise.  On the other hand, if N(p) is too big, 
then small features can be eroded away.  Hence it is 
difficult task to select appropriate neighbor size.  In this 
paper, we simply set N(p) as the m-nearest neighbors, 
(and used m = 20 for the examples).  
 

 
 

Fig. 2. Overall procedure 

 

 
Fig. 3. Neighborhood N(p) and Surfel Q(p) 

 

Once N(p) is identified, computing Q(p) is more or less 
straightforward. A generic quadric surface can be 
represented in an implicit form as : 

2 2 2 2( ) 0ax by cz fxy gyz hzx ux vy wz d+ + + + + + + + + =   (1) 

By letting d = -1, the above equation is normalized and 
can be rewritten in a matrix form as below : 
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Let N(p) = {q1, q2, …, qm}. Then, the standard least 
square formulation for quadric surface fitting problem is:   
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And the solution can be easily obtained by 
differentiating the objective function in equation (3) with 
respect to the coefficient vector c : 

T -1 T( )=c A A A b               (4) 

If we further consider that the impact of each point qi 
should be different according to its distance from p, we 
can introduce the weight factor wi for each point qi :  

2

2

exp( )i
i

d
w

σ
= −                                                         (5) 

, where di = dist (p, qi) and σ is the attenuation factor. 
We can use the standard deviation of di’s for σ.  After 
taking the weights into account, the error vector e in 
equation (3) becomes : 
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And the solution to the weighted least square problem is 
similar to equation (4) with a little change : 

T -1 T( )=c A WA A Wb                                               (7) 

Once the quadric surfel is computed for each point, the 
surfel (i.e. the coefficients c) are stored along with the 
point, so that it can be used in the subsequent step. 
 

4. CROSS SECTIONING 

Since virtually no point in general is exactly located on a 

given slicing plane ππππ (z = k), we need more information 
from the proximate points, and hence next step is to 
project the nearby points onto ππππ.  Wu et al [19] used 
perpendicular projection, which may result in wide-band 
2D image as shown in Fig. 4.   The band width becomes 
larger as the slope of the object surface gets closer to 
slicing plane.   
 

 
Fig. 4. Perpendicular projection in [19] 

 
To overcome the above mentioned problem, we 
introduce ‘voting along the surfel’ approach, which is 

illustrated in Fig. 5.   For a point p closed to ππππ, the 
voting plane ττττ is defined as the plane passing p and 
spanned by two vectors : surfel normal vector np and z-
axis vector. (Note that np can easily obtained by the 

gradient of the quadric surfel Q(p).  Also note that ττττ is 
perpendicular to ππππ.)  If np is nearly parallel to z-axis (i.e. 
p has almost horizontal surfel), p is discarded from the 
projection.  The intersection curve C(p) between ττττ and 
Q(p) is called voting curve.  In other words, the point p 

moves along C(p) toward ππππ and makes a vote vp on ππππ.  
C(p) is a conic section curve and may have 0, 1, or 2 
intersection(s) with ππππ.  If no intersection is found, p does 
not participate in voting.  If 2 intersections are found, 
the closer one from p is selected as vp.  To obtain C(p) 
efficiently, we can use coordinate transformation. By 
denoting a point in homogeneous coordinate, the 
equation (2) can be rewritten in a matrix form : 
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Fig. 5. Voting along the surfel 
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Now consider a local coordinate system L with the 
origin at p, z-axis vector Z = ∇Q(p) / |∇Q(p)|, y-axis 
vector Y being the unit normal vector of the voting 

plane ττττ, and x-axis vector X = Y×Z.  Then, the 4x4 
coordinate transform matrix T is defined as :  

,
0 0 0 1

 
=  
 

X Y Z p
T                                                   (9) 

where X, Y, Z, and p are all 3x1 column vectors in 
global coordinate frame (See Fig. 6).  Hence the 
conversion between q (in global coordinate frame) and 
qL (in local coordinate frame L) is q = TqL.  By 
substituting this into (8), we get : 

T T  0,  where .L L
′ ′= =q A q A T AT                              (10) 

Now, we have the quadric surfel equation QL(p) in the 
local coordinate frame L, and CL(p) is obtained by 
setting y=0 (the voting plane ττττL) in QL(p), which yields 
a quadratic equation of x and z.  By applying the 
coordinate transformation to the slicing plane ππππ : z = k, 
ππππL becomes the plane m

TxL = k – pz, where m = (Xz, 
Yz, Zz)

T. is the normal vector of ππππL and xL is any point in 
L.  Finally, the voting point vp is obtained by intersecting 
QL(p) with ππππL, which yields a simple quadratic equation. 
 

 
Fig. 6. Local coordinate transformation 

 

For each vote vp on ππππ, we store additional information : 
the weight αp and the tangent vector tp.  The weight αp 
represents the importance of the vote according to the 
distance between p and vp, and is computed by 
exponential function, which is similar to equation (5) :  

2
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σ
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where dp = dist (p, vp) and σ is the standard deviation 
of dp’s.  The tangent vector tp is obtained by cross 

product of ∇Q(vp) with z-axis vector (the normal of 
slicing plane).  The 3-tuple Vp = (vp, tp, αp) is called the 
vote by p, and each element in the 3-tuple plays an 
important role in the contour curve fitting to be 
explained in the next section. 

 

 
(a) Helmet model 

   
 
     
 

Fig. 7. Comparison of two projection methods 
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(b) |pz-k| < 2             (c) |pz-k| < 5 

 

 
(d) |pz-k| < 10 

 
Fig. 8. Effect of voting participants range 

 
As αp decreases exponentially, we can restrict the voting 
participants for a given slicing plane by considering the 
distance between the point and the plane.  For example, 
3 times of layer thickness works well.  If we consider too 
many points for a slice plane, not only it takes much 
computation time, but also the resulting votes have 
undesired noise since our voting model is based on the 
surfel obtained by local approximation of neighborhood. 
Fig.7 shows the comparison of the two projection 
methods : Fig.7(b) is the resulting 2D image obtained by 
perpendicular projection approach taken by [19], while 
Fig.7(c) is the result of our approach, which is much 
more concentrated than (b).  Fig.8 exemplifies the effect 
of enlarging the range of voting participants. (Note that 
the point set model used in Fig.8 is very sparse.)  
Though we can see many outliers in Fig.8(c) and (d), 
they have very small weights due to the distance from 
the original points to their votes. (Note that points are 
displayed with relative size proportional to their 
weights.) 
 
5. SEPARATION AND CURVE FITTING 

Once the voting is done for a given slicing plane, the 
next step is to construct contour curves out of the voting 
results.  Since the resulting 2D image may consists of 
more than one contours as shown in Fig. 9, we should 
first separate the votes into groups, each of which 
belongs to a contour curve. [2] proposed a powerful 
algorithm called crust for separating and curve 
reconstruction.  However, their method cannot be 

directly applied to this problem since their model does 
not take into account the weight factor, which is very 
important information in our application in that the 
resulting contour curve should be more influenced by 
the vote from closer points. 
 For the separation purpose in this research, we assume 
that the point set is dense and so is the vote set on a 
given slicing plane.  Let v1 and v2 be vote points that 
should belong to different contour curves.  Then, it is 
assumed that dist (v1, v2) > r, where r is the user 
specified separation tolerance value. 
We first construct Euclidean minimum spanning tree 
(EMST for short) of votes on the plane.  This can be 
done in O(n log n) time, where n is the number of vote 
points [15].  Or approximate EMST can be constructed 
with sub-linear time complexity [6]. Then we examine 
each edges of the EMST, and cut all edges longer than r, 
resulting in possibly several connected components, {Gi, 
i=1..g} where Gi is a set of connected votes with edge 
length smaller than r.  Each Gi serves as a candidate 
group of votes for a contour curve. Gi is discarded if Gi 
is too small either in its geometric size or in its 
importance.  Geometric size of Gi can be measured by 
the radius of the bounding circle compared to the user 
specified minimum feature size.  The importance of Gi is 
determined by the sum of weight αp of all votes in Gi, 
since Gi with small weight sum means that Gi consists of 
less important votes. 
As for extracting a smooth curve approximating Gi, we 
first make a polygonal approximation using EMST 
information and tangent vectors of the votes in Gi.  The 
initial polygon is constructed by connecting the votes 
with higher weights in the order suggested by the 
tangent vector tp of the votes in Gi.  Then the current 
polygon is checked against the remaining votes to see if 
any important votes are far from the polygon by the 
combined measure of distance to the polygon and the 
weight.  The polygon is refined to incorporate those 
important leftover votes until all votes are within 
tolerance in terms of the combined measure.  If a 
smooth curve model is required, then the final polygon 
is used for assigning parameters for the votes in Gi, the 
weighted least square approximation method is applied 
to Gi so as to get a B-spline curve [18]. 
 
6. EXAMPLE 

Fig.9 shows a bike helmet model consisting of 54000 
points. In order to compute quadric surfel for a point p, 
we chose 20-closest points as N(p). The helmet model 

was sliced at 100 layers.  For each layer, points within ± 
3 mm fro the slicing plane participated in voting.  It took 
about 10 minutes with Pentium P4 computer, about 80 
seconds of which was consumed in surfel computation 
requiring a lot of proximity query.  With more 
sophisticated hierarchical structure, we believe the surfel 
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computation can be much improved.  In the current 
implementation, most of the computation time is spent 
on curve separation step, which has a lot of room to be 
improved in terms of computational efficiency. 
 
7. CONCLUDING REMARKS 

In this paper, we have focused on slicing point set model 
directly for RP application.  Creating contour curves for 
RP from point set allows us to bypass unnecessary 
intermediate models when RP is to be combined with 
RE.  Contour curves with high fidelity makes more sense 
when thick-layer RP is to be used as in [1] and [8].  
While thin layer RP technologies makes and 
accumulates vertically-sided layers as shown in Fig.10 
(a),  it is critical for thick layer RPs to make either slanted 
or curved sides for each layer in order to reduce the 
shape deviation (see Fig.10 (b) and (c)).  The algorithm 
proposed in this paper generates quality contour curves 
efficiently.  Nevertheless, the algorithm still needs to be 
further refined in that there are some parameter values 
to be determined in ad-hoc manner, such as 
neighborhood size for surfel computation, weight 
attenuation factor for voting, and curve separation 
tolerance.  This paper assumes smooth (G1-continuous) 
objects. In order to apply the approach presented in this 
paper to the objects with sharp edges, the point set 
should be segmented first so that the surfel can be 
constructed from the points in the same segment. 
Finding a smooth curve approximating unorganized 
point data is not a trivial task.  Main difficulty in using B-
spline curve model for approximation is to determine 
parameterization for each data point.  Well-known 
methods such as chord length parameterization or 
centripetal parameterization can be applied only after 
the point sequence is determined, which is the hardest 
part to be implemented in a robust manner.  In the 
section 5, we only explained the curve fitting method 
implemented in this research, however, there are many 
other alternative avenues.  Using radial basis function 
[4] is one of the strong candidates, because 
parameterization is not required.  Another alternative is 
to use tensor voting framework [14]. 
The application area of point based technique is ever 
expanding not only in computer graphics area but also 
in manufacturing industry.  For example, reverse 
engineering for car design could also take benefit from 
point based technique in computing cross section curves 
and characteristic curves directly from the point data 
scanned from the clay model. 
 

        
(a) Point set model                     (b) Image of votes on 

slices 

 
(c) Curves obtained from (b) 

 
Fig.9. Cycle Helmet example 

 

 
(a) vertically-sided      (b) layers with          (c) layers with 

layers                           slanted sides             curved 
sides 

 
Fig.10. Comparison of layer side shapes [7] 

 

ACKNOWLEDGEMENT 

The research was supported in part by Korean 
Government through a NRL Grant. 
 

REFERENCES 

[1] DG Ahn, SH Lee, DY Yang, "Development of 
transfer type variable lamination manufacturing" 
International Journal of Machine Tools & 
Manufacture, 42(14), pp.1577-1587, 2002. 

[2] N Amenta, M Bern, D Eppstein, “The crust and the 
β-skeleton : combinatorial curve reconstruction”, 



 115 

Graphical Models and Image Processing, 60(2), 
pp.125-135, 1998. 

[3] M Alexa, J Behr, D Cohen-Or, S Fleishman, D 
Levin, C Silva, “Computing and rendering point set 
surfaces”, Proceedings of IEEE Visualization 2001, 
pp.21-28, 2001. 

[4] JC Carr, RK Beatson, JB Cherrie, TJ Mitchell, WR 
Fright, BC McCallum, TR Evans, “Reconstruction 
and representation of 3D objects with radial basis 
functions”, Proceedings of ACM SIGGRAPH 2001, 
pp.67-76, 2001. 

[5] RJ Cripps, “Algorithms to support point-based 
CADCAM”, International Journal of Machine Tools 
and Manufacture, to appear in 2003 (Article in 
press) 

[6] A Czumaj, F Ergun, L Fortnow, A Magen, I 
Newman, R Rubinfeld, C Sohler, “Sublinear-time 
approximation of Euclidean minimum spanning 
tree”, Proceedings of the 14th annual ACM-SIAM 
symposium on discrete algorithms, pp.813-822, 
2003. 

[7] I Horvath, J Vergeest, Z Rusak, Z Kovacs, G 
Kuczogi, “Building very large complex shapes using 
a flexible blade cutter”, Machining Impossible 
Shapes (Proceedings of SSM’98 conference), USA, 
1998. 

[8] I Horvath, J Vergeest, JJ Broek, Z Rusak, B Smit, 
“Tool profile and tool path calculation for free-form 
thick-layered fabrication”, Computer-Aided Design, 
30(14), pp.1097-1110, 1998. 

[9] O Kreylos, KL Ma, B Hamann, “A multi-resoultion 
interactive previewer for volumetric data on 
arbitrary meshes”. 

[10] J Krivanek, “Representing and rendering surfaces 
with points” 

[11] KH Lee, H Woo, “Use of reverse engineering 
method for rapid product development”, Computers 
in Industrial Engineering, 35(1), pp.21-24, 1998 

 [12] A Lin, HT Liu, “Automatic generation of NC cutter 
path from massive data points”, Computer-Aided 
Design, 30(1), pp.77-90, 1998 

[13] GH Liu, YS Wong, YF Zhang, HT Loh, “Error-
based segmentation of cloud data for direct rapid 
prototyping”, Computer-Aided Design, 35(7), 
pp.633-645, 2003 

[14] G Medioni, MS Lee, CK Tang, A Computational 
Framework for Segmentation and Grouping, 
Elsevier, 2000. 

[15] J O’Rourke, Computational Geometry in C, pp.188-
190, Cambridge Univ. Press, 1993. 

[16] S Park, YC Chung, “Tool path generation from 
measured data”, Computer-Aided Design, 35(5), 
pp.467-475, 2003. 

[17] H Pfister, M Zwicker, J Baar, M Cross, “Surfels : 
Surface elements as rendering primitives”,  

Proceedings of SIGGRAPH 2000, pp.335-342, 
2000. 

[18] L Piegl, W Tiller, The NURBS Book, pp.410-419, 
Springer, 1995. 

[19] YF Wu, YS Wong, HT Loh, YF Zhang, “Modeling 
cloud data using an adaptive slicing approach”, 
Computer-Aided Design, 36(3), pp.231-240, 2004 

[20] X Yan, P Gu, “A review of rapid prototyping 
technologies and systems”, Computer-Aided 
Design, 28(4), pp.307-318, 1996. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




