
 109

Direct Slicing of a Point Set Model for Rapid Prototyping

Hayong Shin, Seyoun Park and Eonjin Park

Dept of Industrial Engineering, KAIST, hyshin@kaist.ac.kr

ABSTRACT

Recently point set model is getting increasing research attention in many geometric modeling
application areas including computer graphics and CAD/CAM. This paper presents a novel
approach to directly slicing point set model with the focus on making rapid prototyping part out of
point set model without making any mesh or surface. Main challenge in handling point set model
lies in how to interpret inter-point empty space and implicit quadric surfel is used in this research.
This paper also explains how to utilize the quadric surfel for slicing the point set, so as to obtain
contour curves for RP. Also described in this paper is how to extract smooth curve(s) out of the 2D
point cloud obtained by slicing the 3D point set model.

Keywords: point set model, rapid prototyping, reverse engineering, surfel, slicing

1. INTRODUCTION

Thanks to the recent advancement in 3D shape
scanning technology, 3D point set model can be easily
obtained. Point set, also often called point-cloud, is one
of the most fundamental shape representation methods,
and is having increasing attention, mainly due to its
simplicity – very simple geometry (only points) and no
topology. The main challenge in dealing with point set
model is how to fill in the gap between sampled points.
Traditional ways are to construct triangular mesh
connecting the points or to fit smooth surface passing
the point set. However, it is by no means a simple task
to construct such global models (either triangular mesh
or surface fitting) with high fidelity.
In computer graphics area, recently, a number of
research results have been published on rendering and
hierarchically organizing point set for faster display of
shape without hassling with complex geometry or
connectivity [3][9][10]. Recent trend in handling point
set model for graphics purpose is to locally interpret the
gap in-between points, such as surfel [17] or moving
least square [3].
As depicted in [13], RE (reverse engineering) and RP
(rapid prototyping) are two important technologies to
connect the physical world and the digital world bi-
directionally. While RE process is to construct a
computational geometric model from a physical object,
RP process is to make a physical model from a digital
model. Most of contemporary RP technologies use
layered manufacturing, which is to accumulate thin
slices in order to build a 3D object. For more detailed

information on RP technology, the readers are referred
to [20]. RE process needs to be combined directly with
RP process in some application areas, for example, such
as making a copy or a scaled model of a physical part.
Fig.1 shows a typical RE-RP combined process. As one
can see on the right side of the figure, many
troublesome steps in the combined process can be
avoided if the point set model can be directly sliced to
create contours for RP. In this paper, we present a high
fidelity direct point set slicing algorithm.

Fig. 1. RE-RP combined process

[10] proposed visualization and tool path generation
algorithms for point-set based CAD/CAM. But, his

RE

Process

Measurement

Registration

Triangulation

Surface fitting

Tessellation

Slicing

Build
RP model

Tri-mesh

Physical object

Contours

 Point set

Tri-mesh

Surfaces

Combined

point set

Direct

slicing

RP

Process

 110

definition of point set is restricted to have regular grid
type arrangement. [12] and more recently [16]
presented methods for tool path generation from point
set model. However, both papers assume that input
point set is organized as a series of measured point
sequence curves, which is a valid assumption when
using contact-type CMM (coordinate measuring
machine) or line type laser scanner. Though, if area
type scanner is to be used, the assumption will not be
satisfied. In this paper, we do not make any assumption
on the underlying scanning method and the structure of
point set.
[11], [13] and [19] are very closely related to this paper.
In [11], they pre-processes the point set to obtain
vertical feature curves first, then slice the feature curves
to obtain slice contours. In their approach, the number
of vertical feature curves depends on user’s choice and
so the accuracy of the resulting contour curve does.
[13] takes a different approach. They first subdivide the
point set into a series of slabs, and then select
representative feature points by thinning the projected
image. Then the feature points are connected together
to form a net of feature curves. Finally, contour curves
are obtained by cutting the curve net with slicing plane.
[19], another paper by the same research group,
explains a very similar approach, but with the focus on
how to determine the slice thickness adaptively within
given tolerance.
In this paper, we present a direct slicing algorithm to
obtain contour curves with high fidelity. The next section
explains the overall procedure, followed by details for
each step, then examples and conclusion.

2. OVERALL PROCEDURE

As mentioned earlier, most of RP technologies utilize
layered manufacturing, which is to make very thin layers
and accumulate them [20]. The best building direction
and layer thickness depend on the underlying
technology, and hence here we assume that the building
direction, which is perpendicular to the slicing plane,
and the slice interval (layer thickness) is given as input.
We further assume that the building direction is Z-axis,
for the simplicity. Fig. 2 shows the overall flow of the
algorithm.

3. PREPROCESSING
In this step, the points are first sorted along Z-axis for
efficient proximity query processing. For even faster
retrieval of neighboring point, voxel binning method
(also known as bucketing) can be applied.
The main task of this step is to construct a local surface
element (surfel) for each point, which approximates the
neighborhood of the point. Surfels will be used for
computing the cross section in the next section. Though
the simplest type of surfel would be a plane (i.e. tangent

plane), we use a quadric surface so as to achieve high
fidelity for the given point set. For a given point p∈S
where S is the input point set, a quadric surface Q(p) is
computed by weighted least square fitting of its local
neighborhood N(p), which is a set of points around p.
The quality of resulting surfel heavily depends on how
we choose N(p). If N(p) is too small, the surfels become
sensitive to noise. On the other hand, if N(p) is too big,
then small features can be eroded away. Hence it is
difficult task to select appropriate neighbor size. In this
paper, we simply set N(p) as the m-nearest neighbors,
(and used m = 20 for the examples).

Fig. 2. Overall procedure

Fig. 3. Neighborhood N(p) and Surfel Q(p)

Once N(p) is identified, computing Q(p) is more or less
straightforward. A generic quadric surface can be
represented in an implicit form as :

2 2 2 2() 0ax by cz fxy gyz hzx ux vy wz d+ + + + + + + + + = (1)

By letting d = -1, the above equation is normalized and
can be rewritten in a matrix form as below :

iqp

()Q p

()N p

id

Point set

for each slicing plane

Cross sectioning

Separation &

Curve fitting

Sorting

Preprocessing

Contours

Quadric surfel

 111

[]

2 2 2

T

(, ,) 1 0,where

 2 2 2 2 2 2 ,

e x y z

x y z xy yz zx x y z

a b c f g h u v w

= − =

 =  

=

ac

a

c

 (2)

Let N(p) = {q1, q2, …, qm}. Then, the standard least
square formulation for quadric surface fitting problem is:

2 T

()

min () ,
i

iE e
∈

= =∑
q N p

q e e (3)

where

 (, ,) : neighbor point, i i i ix y z=q

[]T1 2 () () () : error vectorme e e= = −e q q q Ac bL

2 2 2
 2 2 2 2 2 2i i i i i i i i i i i i ix y z x y y z z x x y z =  a

1

2

1

1
 , and

1m

   
   
   = =
   
   

  

a

a
A b

a

M M

And the solution can be easily obtained by
differentiating the objective function in equation (3) with
respect to the coefficient vector c :

T -1 T()=c A A A b (4)

If we further consider that the impact of each point qi
should be different according to its distance from p, we
can introduce the weight factor wi for each point qi :

2

2

exp()i
i

d
w

σ
= − (5)

, where di = dist (p, qi) and σ is the attenuation factor.
We can use the standard deviation of di’s for σ. After
taking the weights into account, the error vector e in
equation (3) becomes :

[]T1 1 2 2

1 2

() () () (),

where diagonal (, , ,).

m m

m

w e w e w e

w w w

= = −

=

e q q q W Ac b

W

L

L

 (6)

And the solution to the weighted least square problem is
similar to equation (4) with a little change :

T -1 T()=c A WA A Wb (7)

Once the quadric surfel is computed for each point, the
surfel (i.e. the coefficients c) are stored along with the
point, so that it can be used in the subsequent step.

4. CROSS SECTIONING

Since virtually no point in general is exactly located on a

given slicing plane ππππ (z = k), we need more information
from the proximate points, and hence next step is to
project the nearby points onto ππππ. Wu et al [19] used
perpendicular projection, which may result in wide-band
2D image as shown in Fig. 4. The band width becomes
larger as the slope of the object surface gets closer to
slicing plane.

Fig. 4. Perpendicular projection in [19]

To overcome the above mentioned problem, we
introduce ‘voting along the surfel’ approach, which is

illustrated in Fig. 5. For a point p closed to ππππ, the
voting plane ττττ is defined as the plane passing p and
spanned by two vectors : surfel normal vector np and z-
axis vector. (Note that np can easily obtained by the

gradient of the quadric surfel Q(p). Also note that ττττ is
perpendicular to ππππ.) If np is nearly parallel to z-axis (i.e.
p has almost horizontal surfel), p is discarded from the
projection. The intersection curve C(p) between ττττ and
Q(p) is called voting curve. In other words, the point p

moves along C(p) toward ππππ and makes a vote vp on ππππ.
C(p) is a conic section curve and may have 0, 1, or 2
intersection(s) with ππππ. If no intersection is found, p does
not participate in voting. If 2 intersections are found,
the closer one from p is selected as vp. To obtain C(p)
efficiently, we can use coordinate transformation. By
denoting a point in homogeneous coordinate, the
equation (2) can be rewritten in a matrix form :

[]

T

T

 0,

 where 1

 and .

1

x y z

a f h u

f b g v

h g c w

u v w

=

=

 
 
 =
 
 

− 

q Aq

q

A

 (8)

Fig. 5. Voting along the surfel

(a) Slicing
planes

(b) Projecting
points

(c) Projected
image

p
n

p
v

slicing
plane π

voting
plane τ

p

()C p

pt

()Q p

 112

Now consider a local coordinate system L with the
origin at p, z-axis vector Z = ∇Q(p) / |∇Q(p)|, y-axis
vector Y being the unit normal vector of the voting

plane ττττ, and x-axis vector X = Y×Z. Then, the 4x4
coordinate transform matrix T is defined as :

,
0 0 0 1

 
=  
 

X Y Z p
T (9)

where X, Y, Z, and p are all 3x1 column vectors in
global coordinate frame (See Fig. 6). Hence the
conversion between q (in global coordinate frame) and
qL (in local coordinate frame L) is q = TqL. By
substituting this into (8), we get :

T T 0, where .L L
′ ′= =q A q A T AT (10)

Now, we have the quadric surfel equation QL(p) in the
local coordinate frame L, and CL(p) is obtained by
setting y=0 (the voting plane ττττL) in QL(p), which yields
a quadratic equation of x and z. By applying the
coordinate transformation to the slicing plane ππππ : z = k,
ππππL becomes the plane m

TxL = k – pz, where m = (Xz,
Yz, Zz)

T. is the normal vector of ππππL and xL is any point in
L. Finally, the voting point vp is obtained by intersecting
QL(p) with ππππL, which yields a simple quadratic equation.

Fig. 6. Local coordinate transformation

For each vote vp on ππππ, we store additional information :
the weight αp and the tangent vector tp. The weight αp
represents the importance of the vote according to the
distance between p and vp, and is computed by
exponential function, which is similar to equation (5) :

2

2

exp() ,
d

α
σ

= − p

p
 (11)

where dp = dist (p, vp) and σ is the standard deviation
of dp’s. The tangent vector tp is obtained by cross

product of ∇Q(vp) with z-axis vector (the normal of
slicing plane). The 3-tuple Vp = (vp, tp, αp) is called the
vote by p, and each element in the 3-tuple plays an
important role in the contour curve fitting to be
explained in the next section.

(a) Helmet model

Fig. 7. Comparison of two projection methods

(a) Bone model

| | 2z k− <p

| | 10z k− <p | | 5z k− <p

p

x

y

z

T

m

=pn ZX

Y

World coordinate

Local coordinate

Slicing

plane

(c) Voting along
 the surfel

(b) Perpendicular
 projection

| | 5zp k− <

 113

(b) |pz-k| < 2 (c) |pz-k| < 5

(d) |pz-k| < 10

Fig. 8. Effect of voting participants range

As αp decreases exponentially, we can restrict the voting
participants for a given slicing plane by considering the
distance between the point and the plane. For example,
3 times of layer thickness works well. If we consider too
many points for a slice plane, not only it takes much
computation time, but also the resulting votes have
undesired noise since our voting model is based on the
surfel obtained by local approximation of neighborhood.
Fig.7 shows the comparison of the two projection
methods : Fig.7(b) is the resulting 2D image obtained by
perpendicular projection approach taken by [19], while
Fig.7(c) is the result of our approach, which is much
more concentrated than (b). Fig.8 exemplifies the effect
of enlarging the range of voting participants. (Note that
the point set model used in Fig.8 is very sparse.)
Though we can see many outliers in Fig.8(c) and (d),
they have very small weights due to the distance from
the original points to their votes. (Note that points are
displayed with relative size proportional to their
weights.)

5. SEPARATION AND CURVE FITTING

Once the voting is done for a given slicing plane, the
next step is to construct contour curves out of the voting
results. Since the resulting 2D image may consists of
more than one contours as shown in Fig. 9, we should
first separate the votes into groups, each of which
belongs to a contour curve. [2] proposed a powerful
algorithm called crust for separating and curve
reconstruction. However, their method cannot be

directly applied to this problem since their model does
not take into account the weight factor, which is very
important information in our application in that the
resulting contour curve should be more influenced by
the vote from closer points.
 For the separation purpose in this research, we assume
that the point set is dense and so is the vote set on a
given slicing plane. Let v1 and v2 be vote points that
should belong to different contour curves. Then, it is
assumed that dist (v1, v2) > r, where r is the user
specified separation tolerance value.
We first construct Euclidean minimum spanning tree
(EMST for short) of votes on the plane. This can be
done in O(n log n) time, where n is the number of vote
points [15]. Or approximate EMST can be constructed
with sub-linear time complexity [6]. Then we examine
each edges of the EMST, and cut all edges longer than r,
resulting in possibly several connected components, {Gi,
i=1..g} where Gi is a set of connected votes with edge
length smaller than r. Each Gi serves as a candidate
group of votes for a contour curve. Gi is discarded if Gi
is too small either in its geometric size or in its
importance. Geometric size of Gi can be measured by
the radius of the bounding circle compared to the user
specified minimum feature size. The importance of Gi is
determined by the sum of weight αp of all votes in Gi,
since Gi with small weight sum means that Gi consists of
less important votes.
As for extracting a smooth curve approximating Gi, we
first make a polygonal approximation using EMST
information and tangent vectors of the votes in Gi. The
initial polygon is constructed by connecting the votes
with higher weights in the order suggested by the
tangent vector tp of the votes in Gi. Then the current
polygon is checked against the remaining votes to see if
any important votes are far from the polygon by the
combined measure of distance to the polygon and the
weight. The polygon is refined to incorporate those
important leftover votes until all votes are within
tolerance in terms of the combined measure. If a
smooth curve model is required, then the final polygon
is used for assigning parameters for the votes in Gi, the
weighted least square approximation method is applied
to Gi so as to get a B-spline curve [18].

6. EXAMPLE

Fig.9 shows a bike helmet model consisting of 54000
points. In order to compute quadric surfel for a point p,
we chose 20-closest points as N(p). The helmet model

was sliced at 100 layers. For each layer, points within ±
3 mm fro the slicing plane participated in voting. It took
about 10 minutes with Pentium P4 computer, about 80
seconds of which was consumed in surfel computation
requiring a lot of proximity query. With more
sophisticated hierarchical structure, we believe the surfel

 114

computation can be much improved. In the current
implementation, most of the computation time is spent
on curve separation step, which has a lot of room to be
improved in terms of computational efficiency.

7. CONCLUDING REMARKS

In this paper, we have focused on slicing point set model
directly for RP application. Creating contour curves for
RP from point set allows us to bypass unnecessary
intermediate models when RP is to be combined with
RE. Contour curves with high fidelity makes more sense
when thick-layer RP is to be used as in [1] and [8].
While thin layer RP technologies makes and
accumulates vertically-sided layers as shown in Fig.10
(a), it is critical for thick layer RPs to make either slanted
or curved sides for each layer in order to reduce the
shape deviation (see Fig.10 (b) and (c)). The algorithm
proposed in this paper generates quality contour curves
efficiently. Nevertheless, the algorithm still needs to be
further refined in that there are some parameter values
to be determined in ad-hoc manner, such as
neighborhood size for surfel computation, weight
attenuation factor for voting, and curve separation
tolerance. This paper assumes smooth (G1-continuous)
objects. In order to apply the approach presented in this
paper to the objects with sharp edges, the point set
should be segmented first so that the surfel can be
constructed from the points in the same segment.
Finding a smooth curve approximating unorganized
point data is not a trivial task. Main difficulty in using B-
spline curve model for approximation is to determine
parameterization for each data point. Well-known
methods such as chord length parameterization or
centripetal parameterization can be applied only after
the point sequence is determined, which is the hardest
part to be implemented in a robust manner. In the
section 5, we only explained the curve fitting method
implemented in this research, however, there are many
other alternative avenues. Using radial basis function
[4] is one of the strong candidates, because
parameterization is not required. Another alternative is
to use tensor voting framework [14].
The application area of point based technique is ever
expanding not only in computer graphics area but also
in manufacturing industry. For example, reverse
engineering for car design could also take benefit from
point based technique in computing cross section curves
and characteristic curves directly from the point data
scanned from the clay model.

(a) Point set model (b) Image of votes on

slices

(c) Curves obtained from (b)

Fig.9. Cycle Helmet example

(a) vertically-sided (b) layers with (c) layers with

layers slanted sides curved
sides

Fig.10. Comparison of layer side shapes [7]

ACKNOWLEDGEMENT

The research was supported in part by Korean
Government through a NRL Grant.

REFERENCES

[1] DG Ahn, SH Lee, DY Yang, "Development of
transfer type variable lamination manufacturing"
International Journal of Machine Tools &
Manufacture, 42(14), pp.1577-1587, 2002.

[2] N Amenta, M Bern, D Eppstein, “The crust and the
β-skeleton : combinatorial curve reconstruction”,

 115

Graphical Models and Image Processing, 60(2),
pp.125-135, 1998.

[3] M Alexa, J Behr, D Cohen-Or, S Fleishman, D
Levin, C Silva, “Computing and rendering point set
surfaces”, Proceedings of IEEE Visualization 2001,
pp.21-28, 2001.

[4] JC Carr, RK Beatson, JB Cherrie, TJ Mitchell, WR
Fright, BC McCallum, TR Evans, “Reconstruction
and representation of 3D objects with radial basis
functions”, Proceedings of ACM SIGGRAPH 2001,
pp.67-76, 2001.

[5] RJ Cripps, “Algorithms to support point-based
CADCAM”, International Journal of Machine Tools
and Manufacture, to appear in 2003 (Article in
press)

[6] A Czumaj, F Ergun, L Fortnow, A Magen, I
Newman, R Rubinfeld, C Sohler, “Sublinear-time
approximation of Euclidean minimum spanning
tree”, Proceedings of the 14th annual ACM-SIAM
symposium on discrete algorithms, pp.813-822,
2003.

[7] I Horvath, J Vergeest, Z Rusak, Z Kovacs, G
Kuczogi, “Building very large complex shapes using
a flexible blade cutter”, Machining Impossible
Shapes (Proceedings of SSM’98 conference), USA,
1998.

[8] I Horvath, J Vergeest, JJ Broek, Z Rusak, B Smit,
“Tool profile and tool path calculation for free-form
thick-layered fabrication”, Computer-Aided Design,
30(14), pp.1097-1110, 1998.

[9] O Kreylos, KL Ma, B Hamann, “A multi-resoultion
interactive previewer for volumetric data on
arbitrary meshes”.

[10] J Krivanek, “Representing and rendering surfaces
with points”

[11] KH Lee, H Woo, “Use of reverse engineering
method for rapid product development”, Computers
in Industrial Engineering, 35(1), pp.21-24, 1998

 [12] A Lin, HT Liu, “Automatic generation of NC cutter
path from massive data points”, Computer-Aided
Design, 30(1), pp.77-90, 1998

[13] GH Liu, YS Wong, YF Zhang, HT Loh, “Error-
based segmentation of cloud data for direct rapid
prototyping”, Computer-Aided Design, 35(7),
pp.633-645, 2003

[14] G Medioni, MS Lee, CK Tang, A Computational
Framework for Segmentation and Grouping,
Elsevier, 2000.

[15] J O’Rourke, Computational Geometry in C, pp.188-
190, Cambridge Univ. Press, 1993.

[16] S Park, YC Chung, “Tool path generation from
measured data”, Computer-Aided Design, 35(5),
pp.467-475, 2003.

[17] H Pfister, M Zwicker, J Baar, M Cross, “Surfels :
Surface elements as rendering primitives”,

Proceedings of SIGGRAPH 2000, pp.335-342,
2000.

[18] L Piegl, W Tiller, The NURBS Book, pp.410-419,
Springer, 1995.

[19] YF Wu, YS Wong, HT Loh, YF Zhang, “Modeling
cloud data using an adaptive slicing approach”,
Computer-Aided Design, 36(3), pp.231-240, 2004

[20] X Yan, P Gu, “A review of rapid prototyping
technologies and systems”, Computer-Aided
Design, 28(4), pp.307-318, 1996.

