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ABSTRACT 
 

The goal of virtual orthodontic treatment planning is to re-position the teeth in 
a digital dental model so that the desired alignment of the teeth on each dental 
arch and occlusion (i.e., matching) of the upper and lower arches is achieved. 
The input to the planning process is a collection of individual tooth objects 
obtained by segmenting a noisy 3D surface mesh that is generated by laser-
scanning a plaster model of the dental arch built from patient-specific dental 
impressions. A key step in the planning is the identification of features on the 
surface of the teeth such as cusps, grooves, incisal edges, marginal ridges, and 
occlusal surface boundary, that are important both for carrying out the 
alignment and evaluating its quality. This paper presents a collection of 
techniques to identify such features automatically, with minimal user 
intervention. Experimental results are presented that show the effectiveness of 
the approach.  
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1 INTRODUCTION 

Orthodontic treatment planning seeks to re-position the teeth in the dental arches of a patient in 
order to achieve an outcome that is both aesthetically pleasing and functionally optimal. Technological 
advances now make it possible for the treatment plan to be simulated virtually (in 3D) and allow the 
clinician to choose between multiple alternatives in order to achieve the best possible outcome. Virtual 
planning begins with the acquisition of a 3D surface mesh of each arch. This mesh is generated by 
building a plaster model of each arch from patient-specific dental impressions and then laser-
scanning the model. The mesh is then segmented into individual tooth objects (i.e., submeshes), using, 
for instance, the algorithms in [11, 12]. These tooth objects are the input to the alignment process, 
which involves proper repositioning of teeth relative to one another in each arch and proper matching 
of the contact regions between teeth in different arches. 
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1.1 Dental Features and their Importance 

Proper orthodontic tooth alignment and functionality (e.g., chewing) depend on a number of intrinsic 
features on the tooth surface, including cusps, grooves, incisal edges, ridges, occlusal contact region, 
etc. (These terms are defined in Section 2.) These features are important for many reasons: They 
provide a set of landmarks that can be used to define alignment requirements quantitatively (e.g., 
height difference between adjacent marginal ridges) [18]. Also, the features themselves do not change 
over time (as they are intrinsic to the tooth surface), so they can be used to monitor the progress of the 
alignment. Moreover, since certain (derived) features need to remain invariant throughout treatment 
(e.g., the distance between canine tips), the intrinsic features dictate the best possible alignment that 
can be achieved and provide a means for evaluating a computed alignment. Finally, features such as 
number of cusps are useful in classifying teeth automatically (e.g., molars, premolars, etc.). 
Dental features have applications in other related areas. In the field of computer-aided planning and 
simulation in craniomaxillofacial surgery, the correct dental occlusion or the maximum intercuspation 
of digital 3D representations of the arches of a patient must be reestablished. This is in general 
difficult in a virtual environment and is approximately computed by aligning the grooves and marginal 
ridges of the upper arch with the corresponding cusps and incisal edges of the lower arch [4]. Also, 
finer dental occlusion depends on getting a close fit in the areas of contact between the surface of the 
two arches [4, 8]. It is known that only the tooth surface regions bounded by the occlusal and marginal 
ridges participate in occlusal contacts. Thus, these features can significantly speed up the surface 
matching and alignment algorithms in virtual surgical planning. 

1.2 Goals and Contributions 

The identification of a relevant feature set is crucial for orthodontic treatment planning. However, 
identifying features manually, by having a clinician “eyeball” each tooth is labor-intensive, time-
consuming, and prone to error. Our goal is to identify intrinsic tooth surface features (cusps, ridges, 
grooves, etc.) automatically, with intervention by the clinician to verify or correct identified features 
only in difficult or unusual cases. In this paper, we discuss the computational issues associated with 
automatic feature identification and present a collection of algorithms to do this effectively. Our 
algorithms are based on curvature analysis, clustering on 2D cross-sections of tooth surfaces, and an 
adaptation of the watershed method for segmentation. We have incorporated our algorithms in a 
software tool and we present experimental results that show that our methods are effective at 
automatic feature identification on noisy and incomplete real-world datasets. 

1.3 Challenges in Feature Identification 

The input to the feature identification task is a collection of meshes representing individual tooth 
objects (Figure 1). The feature identification task is complicated by the fact that the meshes are almost 
always noisy and incomplete. This is due to the limitations (resolution) of the laser scanning process 
itself in the presence of malocclusions and crowding of teeth, as well as variations across different 
types of scanners. A practical requirement of the feature identification algorithms that we seek is that 
they should be robust to noise and missing information. 

1.4 Organization of the Paper 

Section 2 defines relevant anatomical terms and the features of interest. Section 3 describes an 
algorithm for cusp identification based on the familiar watershed method. Section 4 introduces a 
general approach based on curvature analysis and clustering on 2D cross-sections of tooth surfaces 
for identifying other features such as incisal edges, grooves, marginal ridges, and occlusal surface 
boundary. Section 5 discusses how these features are identified and presents the results on some 
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cases. Section 6 describes the identification of some derived features and Section 7 discuss the 
evaluation of the developed techniques on real-world clinical data. Section 8 offers concluding 
remarks. 
 

   
Fig. 1: Input to the feature identification task. A segmented lower arch is shown on the left and the 
individual meshes, representing tooth objects, are shown on the right. One can note the highly 
irregular occlusal surfaces of molars and premolars that tend to create problems for the detection of 
ridges, grooves and cusps. 

2 DENTAL ANATOMY AND DENTAL FEATURES 

2.1 Dental Anatomy 

Teeth are classified as incisors, canines, premolars and molars. Each dental arch, i.e., row of teeth, can 
be divided into a left and a right side. Each side has two incisors (central and lateral), one canine, two 
premolars (first and second) and three molars (first, second and third). The incisors and canines are 
collectively called anteriors and are used in cutting action. The premolars and molars are called 
posteriors and are involved in chewing action.  
The inner (resp. outer) part of the tooth on the tongue (resp. face) side is called the lingual (resp. facial) 
side. The face side on posteriors (resp. anteriors) is called the buccal (resp. labial) side. A tooth’s 
surface towards the front (resp. back) of the arch, i.e., towards (resp. away from) the central incisors, is 
called the mesial (resp. distal) side.  
A suitably chosen line through the mesial and distal side of each tooth defines the mesiodistal line of 
the tooth. Similarly, the lingual and buccal (or labial) sides define the buccolingual line. These lines are 
important in feature identification and in understanding tooth functionality. All definitions above are 
illustrated in Figure 2. 
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Fig. 2: Dental anatomy. 

 

2.2 Dental Features  

Now, we define some of the features on tooth surfaces that are important in orthodontic treatment 
planning. The surface of the teeth resembles a terrain with “mountain peaks", “ridges" and “valleys". 
For the ease of understanding, it is convenient to define dental features in terms of these terrain-like 
features. More details on dental anatomical features can be found in textbooks such as [23]. 

Incisal edges:    These are the sharp ridges on the anteriors (incisors and canines) running along the 
mesiodistal line. Figure 3 shows an example.  

 

  

Fig. 3: Incisal edges on the anterior teeth (shown as red curves).  

 

Cusps:    On premolars and molars these are the mountain peak-like structures on the surface, at the 
corners of the tooth. Each cusp has cusp ridges radiating from its tip, similar to ridges that connect 
mountain peaks to valleys on a terrain; these can be used to define other features such as the occlusal 
surface boundary (explained below).  

Canines have a single cusp which plays an important role in determining the overall quality of the 
alignment. The premolars (resp. molars) have 2 or 3 (resp. 4 or 5) cusps depending on the arch (upper 
or lower) and the individual. These cusps are named according to their position on the tooth surface. 
For example, a molar would have a mesiolingual cusp situated on the mesial and lingual side of the 
tooth. Similarly, for mesiobuccal, distolingual, distobuccal, lingual and buccal cusps. Some of these 
cusps are shown in Figures 4 and 5. 
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Occlusal surface and marginal ridges:    The occlusal surface of a posterior tooth is the area of the 
tooth surface where chewing occurs. This is also the contact area between corresponding posterior 
teeth from opposing arches (Figure 4). Thus, the occlusal surface complements the functionality of 
incisal edges.  

The marginal ridges are located at the mesial and distal ends of the occlusal surface. These are the 
regions where the mesial or distal walls of a tooth make contact with the occlusal surface (Figure 4). 
Thus, each tooth has a mesial and a distal marginal ridge. For incisors, the marginal ridges are on the 
vertical sides of the teeth since the occlusal surface of incisors is the lingual (resp. labial) surface on 
the upper (resp. lower) arch. 

The occlusal surface of a posterior tooth is bounded on the buccal and lingual sides by the cusp ridges 
(inclusive of the cusps). On the mesial and distal sides, the occlusal surface is bounded by the two 
marginal ridges. This provides a boundary around the occlusal surface area called occlusal surface 
boundary (Figure 4). Thus, the occlusal surface boundary is a curve on the tooth surface that connects 
the marginal ridges, cusp ridges, and the cusp peaks.  

  

  

Fig. 4: Cusps, marginal ridges, and occlusal surface boundary in an upper arch, as found by our feature 
identification algorithms. Note the difference in the marginal ridges on incisors and posteriors. 

 

Grooves:    These are the depressions and fissures on the occlusal surface of a posterior tooth that 
resemble riverbeds and valleys on a terrain. There are various types of grooves and corresponding 
classification and naming conventions. For our study, we are interested in the long grooves running 
along the mesiodistal line of the tooth, called central developmental grooves, or just central grooves. 
Figure 5 shows some examples of (approximations of) grooves that are useful for orthodontic 
purposes.  

Figure 5 also highlights the difference between the grooves on the premolars on the upper and lower 
arch (these are more curved). On the other hand, the grooves on lower arch molars are much more 
straight than their upper arch counterparts. Additional groove types and their uses can be found 
in [23]. 
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Fig. 5: Grooves on the molars and premolars of the lower and upper arch. Many different types of 
grooves can be defined on the tooth surface based on their position and dimensions. The images above 
show the approximation of the central grooves that are believed to be the most relevant for 
orthodontic treatment planning. The circles indicate the cusps on teeth. 

 

Other derived features:     In addition to the above-mentioned features, which are intrinsic to the 
tooth surface, there are other features that are derived from these intrinsic features and are important 
in alignment. These include the archform and the occlusal plane [23]. 

The archform is defined as an appropriate smooth curve through the incisal edges of anteriors, canine 
cusps and the buccal cusps of molars and premolars (Figure 6). The archform determines the overall 
quality achievable by the alignment process.  

The occlusal plane is defined as a smooth surface passing through the occlusal or biting surfaces of the 
teeth. It is an imaginary surface at which the upper and lower arches meet and is important in 
establishing the vertical positioning and the buccolingual orientation of teeth in the final alignment. 

  

  

Fig. 6: Archform of a dental model. 
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3 CUSP IDENTIFICATION 

This section describes the identification of cusps on tooth surfaces. Our approach is based on the 
watershed class of algorithms [15] for mesh segmentation, reviewed briefly in Section 3.1. 

3.1 Watershed-based Mesh Segmentation  

This is a class of mesh segmentation algorithms that partition the mesh using the analogy of flooding 
of the mesh [15]. As an illustration, consider the one-dimensional curve shown in Figure 7. Each point 
on the curve is assigned a real-valued height using a height function : ( , )H v x y R . In Figure 7, the 
height is simply the point’s vertical elevation from the base (i.e., its y-coordinate). Imagine that each 
point on this curve has a drop of water stored as initialization. During the course of the algorithm, the 
water drop flows towards its most steep neighbor (with respect to the height function) until it reaches 
a minima point. The initial positions of the water drops are shown as the filled circles in Figure 7 along 
with the direction of their flow. The water is thus collected in catchment basins which are defined by a 
single local minimum point shown as an empty circle at the bottom of the curve. All the points that are 
visited by a water drop during its flow to a minimum point are given the same label, which is denoted 
by the minimum point. This process partitions the curve into regions defined by the labels as shown in 
Figure 7. In the vicinity of a flat (i.e., zero-slope) portion of the curve, we can choose to arbitrarily 
advance the flow in either direction so that a valid partitioning is achieved.  
This technique was generalized to segmentation of 3D surfaces by Mangan and Whitaker [15] who used 
the surface curvature value for the height function. The algorithm in the form described is 
cumbersome to implement because we have to keep track of each flow and also use placeholders for 
assigning labels to vertices on its path because the final local minima of the flows are not known 
beforehand. Many improved implementation schemes have been suggested in the literature to 
overcome these difficulties [19]. 
These algorithms do not compare well with negative minima-based approaches for mesh segmentation 
as they are not very good at finding partition boundaries in arbitrary meshes (see [19, 20] for details). 
However, they are good at finding the different local minima of a given height function, but often lead 
to over-segmentation (i.e., a large number of partitions). Thus, to obtain large meaningful partitions, it 
is often necessary to merge small-sized spurious partitions with other partitions in their 
neighborhood. For example, Figure 7 shows a set of three initial partitions resulting from the 
procedure described above. However, if the goal is to find less than three partitions, we may merge 
partitions 1 and 2 instead of partitions 2 and 3 (depending on the depth, i.e., the smallest height 
difference between the minimum of a partition and any boundary point of that partition) to reduce the 
number of final partitions.  

  

Fig. 7: Example illustrating the watershed-based approach to segmentation. 
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3.2  Watershed-based Cusp Detection 

As mentioned in Section 3.1, watershed-based techniques are well-suited to find the cusps on the 
tooth surface which are defined as vertices corresponding to local minima for some intuitively defined 
height function. (For teeth on the upper arch, cusps are local minima while for those on the lower arch 
they are local maxima; we treat both cases uniformly, as local minima, by negating vertex coordinates 
in the latter case.) 
The key to watershed-based cusp extraction is designing a good height function H. Most generic mesh 
segmentation schemes define H solely on the basis of surface curvature, so as to be able to segment 
meshes from a variety of sources. Here we take advantage of the fact that we are dealing with tooth 
surfaces and we define H on the basis of both surface curvature and the elevation of the vertices (i.e., 
their z-coordinates, since the scanned meshes are provided with a base that is parallel to the xy-
plane). More precisely, for a vertex v  on the surface of a tooth in the upper arch, we define its height 
as (1 ) ( )v v zH K v       , where zv   is v’s z-coordinate, K

v
 is the surface curvature at v [16], and    

is a parameter that controls the relative influence of K
v
 and v

z
 on H

v
. In our implementation, we found 

that choosing  from the interval [0.4, 0.6] worked well for all the models tested. 

3.3 Results and Discussion 

Figure 8 shows the result of applying the cusp identification algorithm with the above height function 
on three different models. Figure 8(a) shows a lower arch in which teeth are not well-aligned. 
Figures 8(b) and 8(c) show two upper arches where the molars are rotated away from the vertical z-axis 
by different amounts. Note that the number of cusps for teeth on the lower arch can be four or five, 
and we may sometimes have to deal with partially erupted molars.   
 

            

                      (a)                                                 (b)                                                   (c)  

Fig. 8: Cusps (shown red) identified using watershed method. 

After the cusps have been identified automatically, our software tool allows the user to fine-tune the 
results manually (for very difficult cases) by clicking on the tooth surface to add/delete (hence move) 
cusps. For instance, a click to add a cusp triggers a search for the local minimum in a small 
neighborhood of the surface around the location of the click and places a cusp at this minimum. Thus 
the user does not have to “eyeball” the mesh to find the exact location of the desired cusp. 

4 A GENERAL APPROACH TO FEATURE IDENTIFICATION 

In this section we discuss how to identify the remaining features of interest (beyond cusps), i.e., incisal 
edges, central grooves, marginal ridges, and occlusal surface boundary. It turns out that these features 
can all be identified using a general approach that is based on computing certain 2D cross-sections of 
the tooth surface, analyzing the curvatures of the (piecewise-linear) curves that define these cross-
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sections to determine points of sufficiently high (positive or negative) curvature, and identifying 
clusters of such points that form the features of interest.  
Our approach starts by creating a sequence of parallel planar cross-sections of the tooth surface, one 
set oriented along the mesiodistal line and one along the buccolingual line. For each cross-section in 
each set, we perform 2D curvature analysis at the vertices of the piecewise-linear curve that defines 
the cross-section and identify points of high curvature and cluster these to identify regions of interest 
on each curve. Then appropriate regions are selected from each curve and stitched together with those 
from curves of neighboring parallel cross-sections to obtain a connected and coherent feature (e.g., a 
ridge or groove). Thus, this approach provides a means to extract the desired 3D features in a “guided” 
fashion from a set of 2D regions of interest on individual cross-sections. This has several advantages 
over an approach that attempts to extract features directly, via curvature analysis in 3D, as we will 
discuss in Section 4.5. We will now explain the main steps of the approach in detail. 

4.1 Computing a Medial Curve 

Consider the left side of the arch in Figure 2. We can define a curve that passes suitably through the 
mesial and distal sides of each tooth on the left side starting from the last molar and ending at the 
central incisor. A similar curve can be defined for the right side of the arch. These two curves meet at 
the mesial sides of the two central incisors. We define the medial curve of the arch as the curve 
obtained by joining the curves from the left and right sides of the arch. (The term “medial curve” 
signifies that the curve involves both the mesial and distal sides of each tooth on the arch.) The medial 
curve will guide the feature identification process outlined above. The medial curve represents an 
approximate layout of all the teeth on the arch and also provides a mesiodistal line for each tooth that 
will be needed to compute the mesiodistal cross-sections, as we will see in Section 4.2. 
  

          

           (a)                                       (b)                                     (c)                                     (d)  

Fig. 9: Computation of a medial curve (shown green): (a) Initial fit of the arch with a cubic curve. (b) 
Computed medial curve for arch in (a). Additional examples of medial curves on an upper arch (c) and 
a lower arch (d). 

The medial curve is not unique since many different curves can satisfy the given definition. For our 
purposes, it suffices to have an approximate medial curve that reliably identifies the mesial, distal, 
buccal (labial) and lingual sides of a tooth. Accordingly, we compute the medial curve as shown below. 
Figure 9 shows the results of this algorithm.  

Computing medial curve of an arch 

1. Project the triangular faces on each tooth surface to a set of triangles, F
xy
, on the xy-plane.  

2. Find a cubic curve C
fit
 that best fits the 2D projections of the vertices in F

xy
 (Figure 9(a)).  
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3. Sample the length of C
fit
 at suitably small intervals to get an ordered sequence, 1 2, , , nP p p p …  of 

points on C
fit
.  

4. At each point ip P , define a line l
i
 orthogonal to C

fit
 (Figure 9(a)). Find the median point, m

i
, of 

the intersection points of l
i
 with F

xy
. Output the medial curve as the piecewise-linear curve that 

connects the ordered sequence, 1 2, , ,med nC m m m …  of medians (Figure 9(b)).  

4.2 Computing Planar Cross-Sections 

Using the medial curve described above, we compute an approximation, L
md

 of the mesiodistal line, of a 
given tooth by finding the best-fitting line segment for the section of the medial curve segment that 
goes through the tooth. We can also compute an approximation, L

bl
, of the buccolingual line of the 

tooth by taking the line orthogonal to the mesiodistal line and passing through the centroid of the xy-
projection of the tooth. We will refer to the approximation of the mesiodistal (resp. buccolingual) line 
as simply the mesiodistal (resp. buccolingual) line. 

We define the cross-section of (the mesh of) a tooth object with respect to a plane as the piecewise-
linear curve obtained by intersecting the plane with the triangular faces of the mesh. A plane that is 
parallel to both L

md
 and the z-axis and intersects the tooth object generates a mesiodistal cross-section. 

Let P
md

 be a set of such uniformly-spaced planes and let the set of corresponding cross-sections 
generated be M. Similarly, a plane that is parallel to both L

bl
 and the z-axis and intersects the tooth 

object generates a buccolingual cross-section. Let P
bl
 be a set of such uniformly-spaced planes and let 

the set of corresponding cross-sections generated be B (see Figure 10).  

 

   

                         (a)                                            (b)                                            (c) 

Fig. 10: Examples of planar cross-sections on the tooth surface (shown in cyan): (a) Buccolingual cross-
sections. (b) Mesiodistal cross-sections. (c) Buccolingual cross-section of a molar. 

4.3 Computing 2D curvatures of cross-sections  

For any point p on a planar curve C, the curvature at p can be defined as the reciprocal of the radius of 
the osculating circle at the point, which is the largest circle tangent to the curve on the concave side of 
p [10]. The 2D curvature of C at p can also be defined as the rate of change, at p, of the angle between 
the tangent vector to the curve at p and the positive x-axis [10]. It measures how sharply the tangent to  
C rotates at the given point. Thus, the curvature at point p of the curve shown in Figure 11 can be 
defined as, 

 
0

( ) lim
2( )s

p
s



 





  (1) 
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where s  is a small length along the curve and   is the angle between the tangents at points p s    
and p s   along the curve. 

 

Fig. 11: Curvature of point p on a planar curve is defined rate of change, at p  of the angle between the 
tangent vector to the curve at p and the positive x-axis. It is also defined as 1/r , where r is the radius 
of the osculating circle at p (shown in red). 

The curves in real-world applications may not have a reasonable analytical form and are often 
represented as a sequence of points sampled along the curve (Figure 12). Some examples of these are 
the contours in images, boundaries of shapes and, as in our case (Section 4.2), the intersection of a 
plane and a tooth surface. For these piecewise-linear curves, we have to approximate the curvature at 
its sampled points. A natural solution to this would be to first get a smooth spline approximation to 
the given curve followed by computing the curvature analytically using the first and second derivatives 
at each sampled point. However, this becomes an expensive operation for large numbers of points and 
as we need to compute the curvatures for a large number of curves, we need an alternative method to 
compute approximate curvatures efficiently. 

In analogy with Equation 1, the approximate curvature of the point �� (see Figure 12) on a planar curve 
can be evaluated as       

 
1 1

( )i
i i i i

p
p p p p




 





 (2) 

where 1ip   (resp. 1ip  ) is the previous (resp. next) point with respect to ip on the curve C and i jp p is 

the length of the edge from ip to jp . If the curve is not closed we define the curvatures to be zero at 

the start and the end. Also, we use the signed angle to define positive and negative curvatures at 
points. The points corresponding to the positive (resp. negative) curvatures form the convex (resp. 
concave) regions on the curve with respect to the plane containing the curve (Figure 10(c)).   

 

Fig. 12: Planar curve represented as a sequence of points. 
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4.4 Clustering of High Curvature Regions  

Given the buccolingual and mesiodistal cross-sections of a tooth, we find the vertices on the curves for 
which the magnitude of the 2D curvature is greater than a specified threshold, T

curv
. The sign of the 

curvature threshold may be positive or negative depending on the targeted feature (e.g., ridges (resp. 
grooves) have high positive (resp. negative) curvatures). The set, S, of high-curvature vertices resulting 
from the thresholding serves as the input to the clustering algorithm. 

Our goal behind clustering is to aggregate the vertices in S into connected components of high-
curvature vertices that correspond to features of interest. The extracted clusters reveal these features 
and also cause noise regions to be grouped into small isolated components. The latter can be identified 
and deleted easily using a threshold, T

noise
, on the number of noise vertices.  

We compute the connected components as follows. Initially all vertices in S are taken to be singleton 
components. Starting with this, we repeatedly merge a pair of components if the closest distance 
between them is less than a specified threshold, T

ccd
. The closest distance between two components is 

defined as the minimum of the pairwise distances between their corresponding vertices. 

The clustering method requires three user-specified threshold parameters: T
curv

, T
noise  

and T
ccd

.We have 
observed experimentally that, for each feature type of interest, values of these parameters can be 
found that work across a broad range of patient datasets. Thus, the parameter values can be 
predetermined and our algorithm does not, in general, require user input during routine operation. 
Section 5 below, which describes how the methods of this section can be used to identify various 
features, provides the specific parameter values that our implementation uses.  

4.5 Discussion 

The features of interest to us could be defined naturally in terms of the curvatures at the mesh vertices 
(relative to the underlying 3D surface) [6, 9, 14, 16, 22]. For example, cusps, incisal edges, and ridges 
consist of clusters of vertices of high positive curvature (convex regions), whereas grooves consist of 
clusters of vertices of high negative curvature (concave regions). Hence, it is natural to wonder if 3D 
curvature analysis can be used for feature recognition.  

We implemented this approach and found that, unfortunately, it did not perform well on most 
datasets. There are several reasons for this:  

• Tooth surfaces tend to exhibit sharp changes in curvature over small neighborhoods. This 
makes it difficult to compute 3D curvatures reliably and use them to identify partitioning ridges 
and valleys.  

• For each feature type, the 3D curvature threshold settings vary quite considerably from one 
model to the next (in contrast to the situation in the 2D approach); this requires users to set the 
thresholds on a case-by-case basis and imposes an undue burden. 

• The presence of spurious ridge- and groove-like structures on the occlusal surface and very 
close to the target features makes the identification and cleanup of actual features difficult. We 
tried using skeletonization methods for 3D meshes that are based on morphological 
operators [21], but these did not perform well given the nature of the problem. Moreover, as 
Figure 13 shows, the sizes of these noise regions are comparable to those of actual features, 
which makes identification of true features extremely difficult.  
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(a)          (b) 

   

(c)            (d) 

Fig. 13: Examples of poor feature recognition using 3D surface curvatures on a lower and an upper 
arch. The sizes of noise regions are comparable to those of actual features. 

It is for these reasons that we chose to develop the 2D method, based on cross-sections, outlined 
earlier. It is easy to see that using a large number of cross-sections effectively reproduces the entire 
tooth surface to high accuracy. Since the cross-sections are generated by a set of parallel planes, this 
process can be thought of as a “guided” reconstruction of the 3D surface. An advantage of this is that 
we now have the flexibility to select only those parts of the cross-sections that yield interesting 
information. For example, on a buccolingual cross-section of a molar, the outermost convex regions 
corresponds to the mesial and distal cusp ridges and the innermost concave regions correspond to the 
grooves (Figure 10(c)). The notions of “outermost” and “innermost” are easy to define relative to the 
natural directionality provided by a 2D curve, but it is not clear how to do this on a surface. 
Furthermore, the parallel orientation of the cross-sections makes it easy to stitch together the portions 
of features found on each cross-section into a 3D feature. 

5 FEATURE IDENTIFICATION 

This section describes how the techniques of Section 4 can be used to automatically identify features 
other than cusps, such as incisal edges, grooves, marginal ridges, and occlusal surface boundary. (Cusp 
identification, via a different approach, was discussed in Section 3.) The purpose here is to provide the 
reader with a qualitative feel for how the proposed algorithms perform on real-world data, using 
sample meshes obtained from scanners such as emodel [25] and 3Shape [26].  Quantitative validation 
results are given in Section 7. 
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5.1 Incisal Edges 

These can be extracted as a cluster of vertices of high positive curvature (i.e., convex regions) on the 
buccolingual cross-sections of the anterior teeth. The results of our incisal edge detection algorithm 
are shown in Figure 14 for two pairs of upper and lower arches. Note that the algorithm performs 
correctly even when the tooth is in a rotated position from the global archform (Figures 14(b) 
and 14(d)).  

As mentioned in Section 4.4, there are three parameters that control the clustering process. Their 
specific values for incisal edge identification are as follows: T

curv
=0.6 (the curvatures are normalized to 

the range [-1,1] here and later), T
noise

=1/10 of the number of buccolingual cross-sections and T
ccd

=0.5 
mm. (We reiterate that these parameters work well on all models tested here and later, and do not 
require adjustment by the user.) 

 

   

(a)          (b) 

   

(c)          (d) 

Fig. 14: Incisal edges (shown red) on anteriors identified using buccolingual cross-sections. Upper 
arches shown in (a) and (b); lower arches in (c) and (d). 

5.2 Grooves 

Grooves are found on the posterior teeth and are extracted as a cluster of vertices of high negative 
curvature (i.e., concave regions) in the middle-section of the buccolingual cross-sections (Figure 10(c)). 
As mentioned in Section 2, there are many types of grooves on the posteriors, especially the molars. 
We are interested in the central grooves that run along the mesiodistal line of the tooth. Figure 15 
shows the results of our groove identification algorithm on two pairs of upper and lower arches. As 
expected, the grooves on the upper arches have more variation than the ones on the lower arches and 
consist of multiple “branches”. For the purpose of treatment planning, one may choose to approximate 
these grooves by a straight line segment or a curve. 
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The specific parameter values used for groove identification are as follows: T
curv

=-0.4, T
noise

=1/10 of the 
number of buccolingual cross-sections and T

ccd
=0.5 mm. 

 

   

(a)          (b) 

   

(c)          (d) 

Fig. 15: Central grooves (shown brown) on posteriors identified using buccolingual cross-sections. 
Note the difference in the groove patterns between the lower arches ((a), (b)) and upper arches ((c), (d)). 

5.3 Marginal Ridges 

These are extracted as a cluster of vertices of high positive curvature on the mesiodistal cross-sections 
of the tooth surface. Figure 16 shows the results of our algorithm on two pairs of upper and lower 
arches. The marginal ridges on the lower arch premolars are difficult to identify because they are not 
easily separable from the cusp ridges and also may not be properly aligned with the mesiodistal line 
(see Figure 16(a) and (b)). Also, the distal marginal ridge on the last available molars often cannot be 
accurately identified because of the inherent ambiguities in the structure of these teeth.  

The specific parameter values used for marginal ridge identification on an upper arch is T
curv

=0.3, 
T

noise
=1/10 of the number of mesiodistal cross-sections and T

ccd
=0.5 mm. The mesial and distal walls 

on the lower arch posteriors are higher than those on the upper arch and, thus, we set T
curv

=0.6. The 
threshold for T

noise
 and T

ccd
 are the same as for the upper arch. 
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(a)          (b) 

   

(c)          (d) 

Fig. 16: Marginal ridges (shown red) identified on posterior teeth using mesiodistal cross-sections. 

 

   

(a)          (b) 

   

(c)          (d) 

Fig. 17: Occlusal surface boundary identification on posterior teeth using buccolingual cross-sections. 
The occlusal surface is bounded by the marginal ridges found earlier (shown red) and the cusp ridges 
on the buccal and lingual sides (shown cyan). 
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5.4 Occlusal Surface Boundary 

The occlusal surface boundary of a posterior tooth is defined by the marginal ridges on the mesial and 
distal sides, and the cusp ridges on the buccal and lingual sides (Section 2). Section 5.3 describes how 
to identify the marginal ridges. Cusp ridges on the buccal and lingual sides are also identified via 
buccolingual cross-sections, employing an approach similar to that for the incisal edges, but using 
both the buccal and the lingual sides of the cross-sections. Figure 17 shows the result of our cusp 
ridge identification algorithm. 

The specific parameter values used for the cusp ridge identification are T
curv

=0.5, T
noise

=1/10 of the 
number of buccolingual cross-sections, and T

ccd
=0.5 mm.  

6 IDENTIFICATION OF DERIVED FEATURES  

This section describes the estimation of derived features (archform and occlusal plane) from the 
already identified intrinsic features (cusps and incisal edges). 

6.1 Archform 

The archform is defined as an appropriate smooth curve through the incisal edges of anteriors, canine 
cusps, and the buccal cusps of molars and premolars. There have been several attempts to 
mathematically describe the archform, the most relevant ones being based on catenary curves [7], cubic 
splines [2, 5] and beta functions [3]. However, due to the large variation in the shape of the archform 
among humans with normal occlusion (square, tapered, ovoid, etc. [17]), it is difficult to formulate a 
single mathematical expression to describe all archforms.  

Moreover, in most situations, an orthodontist is very likely to make a few minor changes to the 
archform during virtual treatment planning. Thus, our approach is to compute an initial approximation 
to the archform using the intrinsic features and allow the user to modify it using five control points 
along the archform curve (Figure 18). 

We use the experimentally derived equation in [3] to compute the initial approximation to the archform 
as: 

0.8 0.8
1 1

3.0314
2 2

X X
Y D

W W

   
          
      

        (3) 

where W is the distance between the distobuccal cusps of the first molars and D is the perpendicular 
distance between the line joining these cusps and the most anterior point between the two central 
incisors (this is computed as the midpoint between the incisal edges of central incisors). See Figure 
18(a). We note that our definition of W follows common orthodontic practice and is slightly different 
than the one in [3], where W  is measured as the distance between the distobuccal cusps of the second 
molars. This change is motivated by the fact that the second molars may not have completely erupted 
in many patients. 

As mentioned above, our software interface provides five control points (Figure 18) to modify the 
archform. Once one of these control points is moved, the archform latches on to the five control points 
and is then computed as a cubic spline through these control points, which is another popular way to 
describe the archform in dental literature. (The control points can be moved symmetrically, in pairs or 
independent of one another.) 
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                         (a)                     (b) 

Fig. 18: (a) An approximation to the dental archform (shown green) and the parameters of the beta 
function that describe it (shown as W and D). The archform can be modified using the five control 
points (shown yellow). (b) Archform of a lower arch. 

6.2 Occlusal Plane 

The occlusal surface is the surface of contact between teeth from opposing arches. Generally, even 
though the occlusal surface is not planar in normal-occlusion arches, a flat occlusal plane is set as the 
treatment goal in orthodontics [1]. This is based on a natural tendency of the teeth to rotate away from 
this plane (thus deepening the curve of Spee, which is a smooth curve connecting the posterior buccal 
cusps, canine cusps and the incisal edges on a single side of the arch [23]). 

We approximate the occlusal surface as a plane through the mesiolingual cusps of the first molars and 
the midpoint of the incisal edges on the two central incisors (Figure 19). As in the case of the archform, 
a user may want to adjust the orientation and the height of the occlusal plane and we provide the 
required interface in our system to accomplish this. 

 

   

                                         (a)                                                                      (b)    

Fig. 19: Two views of the occlusal surface of an arch approximated as a plane through the mesiolingual 
cusps of the first molars and the midpoint of the central incisors (shown cyan). 

7 EVALUATION 

This section describes the software interface developed for evaluating the computed features and the 
results of the evaluation. 
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7.1 Setup 

A software tool for feature identification was developed by us and was used for feature evaluation by 
an expert. The tool is written in C++ using Qt Open-Source Edition 4.5. It consists of a simple, 
intuitive user interface that can be used to load dental models and compute their features using the 
techniques described above. Figure 20 shows a screenshot of the tool. Note that the initial 
computation of features does not require any input from the user; however, a user can subsequently 
modify the computed features using buttons shown on the upper portion of the rightmost window in 
Figure 20. 

 

 

Fig. 20: Screenshot of the feature evaluation tool. A model is shown along with its computed features 
in the central window. The checkboxes on the rightmost window are used to show or hide the different 
feature types. Each button on the upper-left window, when clicked, selects a type of feature to be 
evaluated using the window shown on the lower-left side. The expert can record the number of errors 
corresponding to that feature type and specify the teeth contributing to the errors using the 
checkboxes. The expert’s input are recorded in a file for later analysis. 



 

Computer-Aided Design & Applications, 9(6), 2012, 747-769 
© 2012 CAD Solutions, LLC, http://www.cadanda.com 

 

766 

7.2 Results 

The techniques for feature identification described in Sections 3 and 5 were evaluated on a set of 8 
lower and 8 upper arches. These presegmented arches were selected from a database of actual cases 
treated at the University of Minnesota's dental clinic. The models were obtained through the 
SureSmile® software [24] which provides a large number of models of real-world cases that will be 
useful for the subsequent study of orthodontic alignment of teeth using the features computed here 
[13]. The validation models represented a reasonable sample of real-world variation in tooth size, 
shape and orientation and were selected from actual patients being treated. The models represent real 
dentitions with the associated anatomical variation. (Recall that qualitative results were given in 
Section 5, using meshes obtained from a different set of scanners, i.e., emodel [25] and 3Shape [26].) 

All the features identified by the algorithms described earlier were evaluated by an experienced 
orthodontist. The criteria for evaluation was the accuracy of the detected feature with respect to the 
anatomy of the corresponding tooth and its purpose in the orthodontic alignment planning. For 
example, often the lower molars may have 4 or 5 prominent cusps all which must be detected. On the 
other hand, often due to wear, some cusps may not be prominent enough on a tooth. Thus, these will 
not be included in the target set of cusps. Similar issues exist with other features as well. 

The errors in features were classified into three categories: partially detected (e.g., only a portion of a 
ridge was identified), incorrectly detected (the feature was found in an incorrect part of a tooth) and 
missing (feature was not identified at all, e.g., an unidentified cusp). The aggregated results of the 
evaluation on the 16 input arches are shown in Table 1.  

 

Feature Type Partial Incorrect Missing Correct Total % Correct 

Cusps 3 3 23 383 412 92.9  

Marginal ridges 8 6 1 241 256 94.1 

Cusp ridges 8 5 0 243 256 94.9 

Incisal edges 2 0 0 94 96 97.9 

Grooves 1 1 0 126 128 98.4 

Tab. 1: Aggregated results of the evaluation of features on 16 different dental arches. 

 

Incisal edges and grooves:    The identification of incisal edges and grooves is extremely accurate as 
seen in the last two rows of Table 1. Each arch had 6 incisal edges (4 incisors and 2 canines) and 8 
grooves (4 posterior teeth on both left and right sides).  The difficulty in incisal edge identification is 
primarily due to malocclusions and tooth wear on the incisors. Similarly, groove identification is 
sometimes difficult due to irregular anatomy and tooth wear. Also, we are interested in approximating 
the central grooves on the posteriors (along the mesio-distal axis), which are quite curved on the lower 
premolars and the upper molars. 
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Cusps:   Table 1 shows the results of cusp identification. The number of true cusps varies across 
different arches, and the majority of errors is due to unidentified cusps on second molars (Figure 
21(a)). This is primarily due to incorrect orientation and insufficient anatomical details. It was observed 
that more than half of these errors came from only three different arches. 

Occlusal surface boundary:    Table 1 shows the results for identification of marginal and cusp ridges 
which constitute the occlusal surface boundary. Each arch has 8 posterior teeth with 2 marginal and 2 
cusp ridges. As with the other features, it is observed that most of the errors are from the second 
molars due to similar reasons (Figure 21(b) and 21(c)).  

  

                        (a)                                                                           (b) 

 

      (c) 

Fig. 21: These charts show the errors in feature identification with respect to the different tooth types 
shown on the �-axis): (a) Errors in cusps, (b) Errors in marginal ridges, and (c) Errors in cusp ridges.  

8 CONCLUSION 

We have presented techniques to automatically identify tooth surface features in noisy and incomplete 
dental mesh models. These features are important in virtual orthodontic treatment planning. Our 
methods use buccolingual and mesiodistal cross-sections of the tooth surface to facilitate a “guided” 
extraction of incisal edges, central grooves, marginal ridges, cusp ridges, and occlusal surface 
boundary. We also described a watershed-based cusp identification algorithm. The algorithms have 
been implemented and experiments on real-world datasets show that the methods are effective in 
automatic feature identification. 
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