
Computer-Aided Design & Applications, 9(2), 2012, 215-226
© 2012 CAD Solutions, http://www.cadanda.com

215

A Hybrid Hierarchical Procedure for Composing Trivariate NURBS Solids

Oluwole T. Morgan1, Ganesh Subbarayan2 and David C. Anderson3

1Purdue University, omorgan@purdue.edu
2Purdue University, ganeshs@purdue.edu

3Purdue University, dave@purdue.edu

ABSTRACT

With the emergence of novel NURBS-based iso-geometric modeling methodologies,
particularly the compositional approach of the Hierarchical Partition of Unity Field
Composition (HPFC), there is a need to compose trivariate NURBS solids and quickly
perform classifications of subdomains of the resulting composition. An algorithm and
accompanying data structure utilizing a hierarchical subdivision of the solids using
bounding constructs at different levels of refinements is presented. An overlap-box-
sweep algorithm is introduced for computing the actual intersection points. The result
of the composition is a hybrid representation containing the original trivariate NURBS
solids, a list of oriented intersection segments, a hierarchy of decomposed patches,
the partial triangulations and associated hierarchy of bounding constructs. For the
purposes of this discussion, we assume the bounding regions of the trivariate NURBS
solids can be trivially extracted and consider the boundaries of the solids as a
collection of non-trimmed outer NURBS patches. Several examples illustrating the
developed hybrid scheme are included.
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1 INTRODUCTION

With the emergence of novel NURBS-based iso-geometric engineering analysis methodologies,
particularly the compositional approach of the Hierarchical Partition of Unity Field Composition [1,2],
there is a need to compose trivariate NURBS solids and quickly perform classifications of subdomains
of the resulting composition. An algorithm and accompanying hierarchical data structure has been
developed to enable such compositions and provide support for the requirements of the analysis
procedure that maintains independent parameterization of the composed solids. Consequently, there
is a need for generating iso-parametric descriptions for geometric design and engineering analysis.

The Hierarchical Partition of Unity Field Composition is an evolution of the CSG-inspired analysis
methodology that was introduced in [1] and allows for the composition of behavioral fields on
primitive NURBS entities. This is done through the generation of smooth weight fields to allow for
coupling of the primitive fields and ensuring convergence.
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The reader is pointed to the referenced work [1] for the theoretical aspects that has motivated the
development of the algorithm presented here.

A number of approaches exist for constructing trivariate NURBS solids. Although, ab initio NURBS
solid construction from specific geometric operations are being developed [3], most are generated
from alternate data representation such as tetrahedral meshes [4] and imaging data [5]. The
generation methods provide the representations as composite trivariate NURBS solids that are
finalized. In this form, any modification to the original models would indiscriminately require that the
trivariate NURBS construction or generation procedure be re-initiated. This would be akin to a re-
meshing operation with conventional finite element analysis and constitute a relatively large
computational overhead. The HPFC computational methodology deals with topology and shape
changing events while ensuring minimal re-discretization; an efficient approach would require minimal
compositions and avoid complete boundary evaluations leading to static B-Rep models.

The above issues are illustrated with a simple example below. Consider Fig. 2 in which two
spherical NURBS solids are composed. The composition of the two solids results in a representation
that includes the original NURBS solids, decomposition of the boundary surfaces, a hierarchy of
bounding constructs terminating with overlap boxes, localized triangulations and merged intersection
line segments.

The hybrid hierarchical procedure involves analytic operations combined with linearized
operations. The procedure consists of six levels of operations resulting in an equal number of multi-
resolution approximations of the composed trivariate NURBS solids. The procedure includes the
following steps:

1. Boundary extraction – extraction of the exterior and non-degenerate boundary surfaces.
2. Bezier decomposition – decomposition of the boundary surfaces based on the original

parameterization into Bezier patches.
3. Overlap box construction – bounding boxes for the Bezier patches and overlap boxes
4. Selective tessellation – tessellation of patches within overlap boxes.
5. Kd-tree construction – construction of the kd-tree for fast determination of intersecting

triangles.
6. Segment merging – merging of the intersection points computed from the intersections

Fig. 1: (a) Isogeometric analysis and (b) the HPFC methodology for performing analysis using both
the boolean operators in analysis with primitives represented as NURBS solids. From [1,2].



Computer-Aided Design & Applications, 9(2), 2012, 215-226
© 2012 CAD Solutions, http://www.cadanda.com

217

between triangles and as well as neighboring overlap boxes.

Steps 1-3 are considered exact decomposition and the remaining three steps are based on a
linearization.

A fast algorithm and the data structures for composing trivariate NURBS solids with minimal
coupling between the two solids are described. The resulting hierarchical data structure enables
classification of regions within the composed solid as either belonging to one of the trivariate solids or
the intersection of both of the solids. Thereby it is possible to define CSG operations with trivariate
solid NURBS as primitives and utilize the resulting model for other processing operations such as
volumetric visualization. The algorithm is based on a decomposition of the boundaries of the
trivariate NURBS solids using bounding constructs, selective triangulation of regions under the overlap
boxes. The data structure stores multiple refinements of the Bezier patches of the bounding surfaces
and the triangulation of the surfaces. The connectivity information between the bounding surfaces
and the intersection curves provides sufficient information for classification of the composed model.
The composition approach described can be extended to ensure closure on composed models; that is,
given trivariate NURBS solids, the algorithm and data structures can be resolved over pair-wise
compositions.

Fig. 2: Composition of two spheres: results in the two NURBS solids, the decomposed boundary
surfaces, overlap boxes, partial triangulations and merged intersection lines.

*
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Further utility of the resulting data structures (in addition to the domain classification) are the
ability:

 to handle incremental modifications to the composition, e.g., analysis driven evolution of the
primitives forming the composition.

 to provide starting point for further tessellation of the entire domain for applications such as
analysis and visualization.

 to provide geometric structure for enriching the input solid model with additional CAD
operations.

 to provide a central data structure for iso-geometric CAD-CAE integration.

2 RELATED WORK

2.1 Surface Intersection Computation

Surface intersection computation has been considered a challenging computational task in computer-
aided design and its applications, particularly when the representation of the surfaces are exact
representation using rational polynomials such as NURBS. Although, exact analytical results have been
shown to exist [6, 7], the problem of degree explosion of the resulting intersection curves and
robustness issues are still ongoing areas of exploration [8-11]. Utilizing polyhedral approximations
have been known to simplify the intersection problem [12, 13].

2.2 Trimmed NURBS

Trimmed parametric surfaces are surfaces for which valid regions in the parameter space of the
parametric surfaces are limited. Trimmed surfaces provide a convenient and efficient representation
of surface patches that are not four-sided [16]. The trimmed parametric surface representation is also
used in boundary representation of freeform solid models [17]. The boundary representation utilizes
the trimmed parametric surfaces consisting of trimming curves and the parametric domains as
geometric entities attached to its topological data structure.

Most CAD software and geometric modeling kernels are based on this organization of data
through edge-based or vertex-based data structures [18]. The approach of generation of the trimmed
surface representation of a boundary representation from Boolean CAD operations is termed
boundary evaluation. The surface intersection computation procedure by Manocha et al. serves as an
approach of boundary evaluation [9]. Ultimately, the boundary representation is used for both
rendering and a basis for additional CAD operations.

Since, the trimming approach utilized is primarily a surface-modeling procedure, it becomes
necessary to develop methods that are suitable for a more direct representation of solids. This work
attempts to find such a means of providing a suitable representation for trivariate NURBS solids that
is sufficient, minimal and provides additional utility for downstream CAD and analysis operations.

3 BOUNDARY EXTRACTION

The composition operation on trivariate NURBS solids is a prerequisite step for Boolean operations
that provides sufficient geometric structure for rendering the actual Boolean operations. Obtaining
the non-degenerate boundary surfaces from a trivariate NURBS representation is trivially achieved by
obtaining the boundary control grid of the representation. This depends primarily on the structure of
the trivariate NURBS representation and the expectation that there are no self-intersections.

For a trivariate NURBS solid,
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(3.1)

(3.2)

with . The trivial boundary is

(3.3)

The non-degenerate exterior boundary for fully closed and partially closed solids is a subset of this
collection.

In the case for which degeneracies exists, such as a trivariate representation that contains collapsed
surfaces, the surfaces are simply not considered. The degenerate cases are those for which any of the
six surfaces in Equation (3.3) collapse. An example would be a trivariate solid sphere defined as
shown in Fig. 3.

Fig. 3: A trivariate NURBS solid representation of a sphere with collapsed boundaries. The interior
section displays the arrangement of the interior control structure.
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4 HYBRID HIERARCHICAL REPRESENTATION

4.1 Level 1 – Bezier Decomposition

The next set of representations depends on a decomposition of the extracted boundary into Bezier
patches. The decomposition of NURBS surfaces to Bezier patches is done initially using the current
parameterization of the surfaces, i.e., the current knot spacing of the NURBS surface. This leads to a
natural set of Bezier patches of the NURBS surface. For a NURBS surface with degree in the

parameter direction and degree in the parameter direction, the Bezier patches have

control points, . The superscripts denote the indices in the knot intervals containing the Bezier

patch, where the range of the indices is between 0 and ends with the maximum number of unique
knots.

Each of the Bezier patches lead to two implicit bounding constructs – the convex hull of the
control points, and the axis-aligned bounding box.

For the quick determination of intersections, only the bounding boxes are stored along side the
Bezier patches in the hierarchical representation.

A secondary decomposition of the Bezier patches is possible by further refinement of the Bezier
patches. Although not done explicitly, this refinement can obtained through a series of knot
insertions in the and knot vectors of the primary NURBS surface. The refined Bezier patch is
defined with the same number of control points and indexing scheme as the Level 1 patch.

Fig. 4: Extraction of a refined Bezier curve through a series of knot refinements.

4.2 Level 2 – Overlap Boxes

Now, given two hierarchical representations derived from different NURBS solids, a Level 1
composition results in pairs of interacting bounding constructs. The overlap box resulting from the
interacting bounding boxes of a pair of Bezier patches from the composed solids is the intersection of
the bounding boxes.

A non-empty overlap box and positive intersection of the overlap box with both patches indicates
possible interaction region and all further operations are confined to within this region. The portions
of the Bezier patches that intersect the overlap box are further decomposed into overlap Bezier
patches.
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Fig. 5: Overlap box obtained as the intersection of the bounding boxes.

4.3 Level 3 - Tessellation

The subdivided Bezier patches contained within the overlap boxes are triangulated. The triangulation
occurs in the parameter domain of the Bezier patches and follows an approach similar to [19]. For the
decomposition in the parameter space, a grid of points is computed in the parameter space to match
the degree of the original NURBS surface. Additionally, the corner points selected to ensure that the
cord lengths of the edges of the quadrilateral partition in the model space are equal. The partitioning
or subdivision is repeated until a flatness metric (Equation (4.1)) defined on the quadrilateral
{ , , , } satisfies a specified threshold value.

=
( ( − ) × ( − ) . ( − ))

‖ − ‖
(4.1)

Finally, the partitions are triangulated and bounding constructs for each of the triangles are stored.
The triangles at this level are stored in a lightweight vertex-based data structure that only explicitly
stores the vertices and faces. Each face corresponds to a triangle and stores references to a triad of
vertices and the vertices store references back to each of the triangles. This structure is sufficient for
incremental construction of a triangulation; although the faces are such that they can store additional
lists of arbitrary data.

4.4 Level 4– Binary Space Partitioning Tree (Kd-tree)

The representation of the composed field contains at some levels, exact geometric representation as
Bezier patches of the extracted boundary of the trivariate solids. Below this level in the hierarchy or
tree, localized planar approximations of the surfaces around the regions where intersections with
adjacent solids are likely stored. However, to perform the check for actual intersection of the planar
approximations the, kd-tree (see Figure 6), is constructed over the vertices of the triangles for one of
the triangulations in the pair associated with the overlap boxes in Level 2.
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Fig. 6: Kd-tree construction over a triangulation.

4.5 Level 5– Intersection Curves

Associated with the composition is a set of intersection curves determined from the triangulations,
both in the real space as well as the parametric domain of the extracted boundaries or localized Bezier
segments of the overlap boxes. It is noted that the intersection curves are obtained from merged
discrete line segments of the intersecting triangles. The procedure for computing the intersection
segments is discussed in the next section.

5 INTERSECTION SEGMENT COMPUTATION AND MERGING

The intersect segment computation procedure initiates with localized triangulations with axis-aligned
bounding constructs and a kd-tree defined over the vertices of one of the triangulations as show in
Fig. 6. In this case, we consider the kd-tree construction is over the vertices of the triangulation of the
first element of the overlap pair, Level 2 elements. The overlap box is swept [20] and the triangles are
queued and processed by testing their bounding boxes against the kd-tree. In the event of a
successful hit, all triangles for which the vertex belongs are then tested against the triangle using the
bounding boxes and then the triangles themselves. The intersection results in line segments
associated with each triangle with a reference to the line segments maintained by the triangles.

The computed line segments also store the intersecting triangles and are merged into bi-direction
lists during the intersection computation. Consequently, a list of triangles of the two patches is also
merged. The combination of the bidirectional intersection segments, and the sweep allows closed
loops to be formed quickly without further processing.

A second level of merging is done over the different overlap regions. The hanging intersection
segments from each of the neighboring overlap regions are checked and merged appropriately. The
merging of the line intersection is terminated when no hanging segments remain. The merge across
different overlap regions coincide over bounding regions around intersection triangles since each of
the triangulations might not be in perfect alignment. These triangles defined as the merge triangles
are locally refined and the computed line intersections are merged.
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Fig. 7: Fast intersection computation using a kd-tree and an overlap box sweep algorithm.
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6 INTERSECTION CORRECTIONS

The intersection segments computed using the method described gives an approximate representation
of the exact intersection curves. An obvious gap exists between the intersection line, the exact
surfaces and the actual intersection curve. The gap can be quantified piecewise as the triangular area
between a point of the intersection line segments, and the projection of the intersection points onto
the exact Bezier patches. By computing the triple plane intersection of the plane containing the
original intersection point and the projected points on the two Bezier patches

; and the tangent planes at the project points

, , the result can be improved. The

computation can be repeated until the distance between the two project points is within a specified
tolerance. An efficiency improvement can be made by avoiding multiple projections and instead use
an approximation to the Taylor series to determine the step size in the parametric space.

7 EXAMPLES AND DISCUSSION

Using a composition of two trivariate NURBS toroidal solids shown in Fig. 8, the result and final data
structure is illustrated. The toroidal solids are defined as triquadratic NURBS with an extraction of a
single double closed NURBS surface. Each of the extracted NURBS surfaces are decomposed into 16
bezier segments, with 17 overlap boxes, 26 set of subdivided Bezier segments and triangulations and
two computed intersection loops. Figure 7 illustrates composition of two turbine blades.

Fig. 8: Composition of two misaligned tori: results in the two NURBS solids, the decomposed boundary
surfaces, overlap boxes, partial triangulations and merged intersection lines.
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8 CONCLUSION AND FUTURE WORK

A hybrid data structure for representing composed trivariate NURBS solids using exact and selective
triangulation has been presented. This representation is a preprocessed output that can be utilized
for performing quick classification for boolean operations. The need for such a representation is
motivated by downstream operations for compositional analysis for which the boundary
representation or trimmed representation is not available and would be inadequate without mesh
generation.

A natural progression of this work would be carrying the presentation for use in analysis such as
numerical integration over the composed domain or directly rendering of the Boolean output of the
representation.
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