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ABSTRACT

In this paper, a novel visual and geometry-based simplification approach is proposed
for simplifying polygonal meshes. This approach is driven by a visual importance
weighted quadric error metric, which measures not only the geometry differentiation
but also the local surface variation. We define the visual importance of one vertex
based on its vertex curvature entropy which reflects the visually variation of the region
centered at this vertex. We observe that such a definition of visual importance is
capable of capturing visually interesting regions on a mesh. By combining the visual
importance and quadric error metric to measure the edge collapse error, this
algorithm produces simplified model closer to the original one according to visual
similarity. One main application of this algorithm is the simplification of models for
video games where the models are usually geometrically not very complex, and in
which visual similarity is the most important requirement.
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1 INTRODUCTION

With the advance in scanning technology, highly detailed three-dimensional (3-D) mesh models are
easily acquired. However, such highly detailed models often post difficulties in the transmission,
storage and rendering of the model. A variety of simplification algorithms have been proposed to
reduce the complexity of the models to achieve higher efficiency. Most commonly used simplification
methods use a technique based on geometric distance as a quality measure between the original mesh
and the one obtained from simplification. With these methods we can achieve meshes with higher
fidelity. However after a drastic simplification, most of these algorithms lose important shape features
and induce visual degeneration. On the other hand, there are applications which require simplified
meshes that appear visually similar to the original ones (e.g. video games).

In this paper, we introduce a novel visual and geometry-based simplification approach for
polygonal meshes. This method uses a visual importance weighted quadric error metric to quantify
the cost of an edge collapse. We define a visual importance for every vertex in the original model. The
visual importance is an indicator that reflects the local variation of the region centered at this vertex.
By combining the visual importance and quadric error metric, our method yields better visual and
geometric performance than QSlim-based simplifications [8].
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The rest of this paper is organized as follows. In Section 2, we survey the edge contraction and
other works, the basic quadric error metric and entropy measures. Section 3 presents the definition of
visual importance. In section 4, we describe our simplification algorithm. Results are shown in section
5. Finally, we conclude the paper in section 6.

2 BACKGROUND AND RELATED WORK

In this section, we review related work especially some methods based on edge contraction, basic
quadric error metric and entropy measure.

2.1 Related Work

A number of algorithms have been published, which simplify models using topological operations such
as vertex decimation[6],[18],[19], vertex clustering [14],[17], iterative edge contraction
[5],[8],[10],[11],[20],[22] and face constriction [2],[21]. Edge contraction is the most common operator.
Algorithms based on this operation can generate multi-resolution model supporting progressive
transmission and rendering.

The first method using edge contraction operation was proposed by Hoppe [11]. In this algorithm,
an energy function is defined to measure the quality of the simplified mesh. This method generates
high quality representation of a given model, but the process of finding an optimal solution of the
energy function is very slow. This scheme is hence not suitable for time-critical applications. Then,
Hoppe extended his initial work [11] and proposed a new quadric metric that incorporates colors,
normal and texture coordinates and introduced a progressive mesh scheme for storing and
transmitting arbitrary triangle meshes [10]. Cohen et al. [5] developed an algorithm based on a texture
deviation metric that samples the vertex position, normal and color attributes of the original mesh and
then converts them to normal and texture maps. One of the notable methods based on edge
contraction is Garland and Heckbert’s QEM [8]algorithm which uses quadric error metric to evaluate
the cost of vertex-pair contraction. Both the speed and efficiency of this algorithm are promising.
Recently, Wu [22] gives a modified QEM based approach to define the contraction cost of every edge.
Wei [20] presents a new method for feature preserving based on feature sensitive (FS) metric which
extends quadric error to a high-dimentional FS space to measure both the geometric distance and
surface normal variation.

Lindstrom et al. [13] introduced an image-driven simplification framework and addressed the
problem of visual similarity by developing a pure image-based metric. Luebke et al. [15] presented a
method to perform a view-depended polygonal mesh simplification using perceptual metrics. Zhang et
al. [23] proposed a new view-independent algorithm based on the visibility function between the
surfaces and a surrounding sphere of cameras.

Recently, Lee et al. [12] introduced the idea of mesh saliency as a measure of regional importance
for graphics meshes and incorporated it into mesh simplification. Their approach consists in
generating a mesh saliency map, and then constructing the edge collapse cost to be a function of the
saliency of this edge. Though this approach can generate simplified meshes with visually interesting
features, however, it sometimes does not consider the contour of the mesh models especially when the
model is simplified to a high level.

2.2 Quadric Error Metric

In [8], Garland and Heckbert defines the QEM (quadric error metric) scheme on every vertexݒas the sum
of the squared distance ofݒto its adjacent planes ݈ܽ) ݊ .((ݒ)ݏ݁ By representing the coordinate of a vertex
in its homogeneous form, e.g.ݒ= ்[ݖ,ݕ,ݔ] is represented asݒ= ,ݖ,ݕ,ݔ] 1]், the distance from a vertexݒto
a plane can be written asܦଶ(ݒ) = ,ଶ(ݒ்) where= [ ,ܽ ,ܾ ,ܿ݀]்represents the plane defined by ݔܽ + ݕܾ +
ݖܿ + ݀ = 0 and ଶܽ + ଶܾ + ଶܿ = 1. So the error at vertex ݒ is defined as a quadric form:

(ݒ)∆ = ∑ ఢ௦(௩)(ݒ)ଶܦ = ∑ ఢ௦(௩)ݒ(்)்ݒ = ∑൫்ݒ ఢ௦(௩)் ൯ݒ= ∑൫்ݒ ݇ఢ௦(௩) ൯v (2.1)

Where ݇is the matrix:



Computer-Aided Design & Applications, 9(2), 2012, 167-176
© 2012 CAD Solutions, LLC, http://www.cadanda.com

169

This fundamental error quadric ݇can be used to find the squared distance of any point in space to the

plane. By summing these fundamental quadrics together and representing an entire set of planes by a
single matrixܳ. The Eqn. (2.1) can be rewritten as:

(ݒ)∆ = ݒ்ܳݒ (2.2)

For an edge collapse(ݒଵ,ݒଶ) → ,ҧݒ the optimal position of the newly formed vertexݒҧis calculated by

solving
ப∆

ப୶
=

ப∆

ப୷
=

ப∆

ப
= 0 and is equivalent to:

Whereݍdenotes the element of row a݅nd column i݆n matrixܳ. The quadric for the simplified vertexݒҧis

calculated simply by adding the two quadrics:

തܳ= ܳଵ +ܳଶ(2.3)

Where ܳଵis the quadric of ,ଵݒ ܳଶ is the quadric of ଶandݒ the error for the new vertex is:

(ҧݒ)∆ = ҧݒҧ்ܳതݒ (2.4)

2.3 Entropy Measure

Letܺ = ,ଶݔ,ଵݔ} … }beݔ, a set of discrete random variables with the probability distribution{ଵ,ଶ, … {,
where= ܺ}ݎ = ∋݅{ݔ {1,2, … , }݊denoting the probability that the random variableܺtakes on the valueݔ.
The entropyܪ(ܺ) of this set is defined as:

(ܺ)ܪ = − ∑ log(ݔ) ௫∈((ݔ)) (2.5)

All logarithms are base 2 and the convention0log0 = 0is adopted [7]. The term – log ((ݔ)) represents
the self-information of random variableݔ, which is a measure of the information content associated
with the outcome of the random variableݔ. The amount of self-information contained in a probabilistic
event depends on the probability of that event: the smaller its probability, the larger the self-
information associated with receiving the information that the event indeed occurred. The
entropyܪ(ܺ)measures the average amount of information expressed by the whole random variables.
The entropy indicates the global statistical property of the information source and is the measurement
of medial uncertainty of the entirety. There is a unique entropy value for a certain source and the
entropy may vary as its statistical properties changes.

3 VISUAL IMPORTANCE COMPUTATION

Lindstrom and Zhang’s [13],[23] methods are effective techniques for computing visual similarity or
visibility measures based on 2D images. Lee [12] introduces a method to calculate a saliency map for
3D meshes. He defines mesh saliency in a scale-dependent manner. However, it is difficult to
determine multiple scales to express an exact mesh saliency. Information theory tools have been used
to study scene visibility [3]. Our method for computing visual importance for 3D meshes uses the
center-surround mechanism as [12].

One of the features we associate with the visual quality of a 3D mesh is the amount of information
it provides us with. Unlike images, where color is the most important information, for 3D meshes, the
geometry and its variation of 3D meshes is the most important contributor to the mesh information.
Intuitively, the changes in the curvatures on the mesh well reflect the characteristics of the mesh
model [12]. We are also encouraged by the success of entropy technique on measuring variation of an
event. This has led us to formulate visual importance in terms of the mean curvature used with the
center-surround mechanism and entropy measurement.
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The first step of the visual importance computation involves computing surface curvatures. There
are a number of excellent approaches that generalize differential-geometry-based definition of
curvatures to discrete meshes [1],[9],[16]. One can use any of these to compute the curvature of a
discrete mesh at a vertex. We have tried several methods and found that the method presented in [1]
gave us better results and that is what we use here.

Let the neighborhood of a vertexݒbe the set of verticesܺ = ൛ݒబ,ݒభ, … ℎݓൟݒ, ݎ݁݁ బݒ = whichݒ is

composited of the vertex in consideration and its associated vertices. The vertex curvatures of this set
can beܭ = { ݇బ, ݇భ, … , ݇}. Then we define vertex curvature entropy for the vertexݒas:

=ܪ  − ∑ ೕ

ୀ ݈݃ ೕ (3.1)

Whereೕ =
ೕ

∑ ೕ

ౠసబ

and we normalize it by computingܥ=
ு

ு, ೌೣ
=

ି ∑ ೕ

ೕసబ ೕ

 (ାଵ)
to generate its value within

[0,1].

Letܫ(ݒ) denotes the visual importance of the vertexݒ, and we define it as:

(ݒ)ܫ = ܥ (3.2)

The visual importance of the vertex is based on the distribution of curvatures of all these vertices

in its adjacent planes. ೕ =
ೕ

∑ ೕ

ౠసబ

represents the geometry importance (i.e. feature or information) of

vertexݒ with respect to the region it locates.ܥ (i.e. normalizedܪ)measures the average geometry
information the region contains. The larger the visual importance is, the region around this vertex
contains more geometry information, e.g. a relatively big variation, so visually we will pay more
attention to the content of this surface area. So the visual importance of the vertex continuously
reflects the local feature of the mesh model. As an example, Fig. 1 shows the visual map of the cow
model which is measured by using Eqn. (3.2).

(a)Front (b)Back

Fig. 1: Visual map of the cow model. Warmer colors (reds and yellows) show high visual importance
and cooler colors (greens and blues) show low visual importance.

We can see from Fig. 1 that this visual importance metric can capture the visually significant features
and surface variations of the model, e.g. eyes, nose, silhouette of mandible and abdomen of the cow
model.

4 SIMPLIFICATION ALGORITHM

We combine visual importance measure and the basic quadric error metric to formulate a new visual
and geometry-based hybrid approach for polygonal mesh simplification. Obviously, visually important
surface regions should be preserved in the early simplification process in order to produce simplified
models with high fidelity.
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4.1 Error Metric

Let(ݒ)ܧdenotes the edge collapse error in our algorithm. For vertexݒ, we define it according to Eqn.
(2.2) as:

(ݒ)ܧ = (ݒ)ܫ)்ݒ ∗ ܳ) ݒ (4.1)

This metric not only measures the geometry differentiation of the surface model but also the local
surface variation by multiplying the quadric errorܳof each vertex by its visual importance. Vertices
with high visual importance will have higher edge collapse costs while vertices with low visual
importance will have lower edge collapse costs. The differentiation between vertices with high visual
importance and the ones with low visual importance will be increased. The characteristic surface
features are mostly concentrated in regions with high visual importance, therefore the characteristic
surface features are retained by using this error metric.

By using our error metric, the order of edge collapses is used to generate a simplified surface
model with a low geometric and visual error. As an example, one step of the simplification process of
a simple model with 5 vertices and 6 faces using our error metric is shown in Fig. 2(a) and the quadric
error metric [8] is shown in Fig. 2(b). The wireframe of the models are shown in the bottom row of Fig.
2(a) and (b). The highlighted red edges are the edges to be collapsed at this iteration. ݒandݒ are the

end points of the edges. In this example, we use the half-edge collapse, i.e. (ݒ,ݒ) → .Fromݒ Fig. 2, we

can see that our algorithm changes the order of edge collapses and the simplified model generated by
using our error metric is visually almost the same as its original model and its geometric error
measured by Metro [4], a public tool that evaluates the difference between the original mesh model
and its simplified representation, is 0.028338, while the geometric error of the simplified model in Fig.
2(b) is 0.047106.

(a)Our error metric (b)Quadric Error Metric

Fig. 2: Comparison of simplified model using our error metric and quadric error metric.

4.2 The Algorithm

Our simplification algorithm is based on half-edge contractions. Original modelܯ is represented using
an adjacency graph structure, which stores a table of vertices and encodes edges and faces as doubles
and triples of indices into the vertex table. In practice, the index representations are more flexible even
though memory access is indirect: using indices into vertices enables efficient memory relocation and
simpler and more compact memory management.So the space complexity in our algorithm is
proportional to the complexity of the model or the number of vertices in the model just as QSlim’s
method [8]. In our algorithm scheme, we use simple vertex curvature estimation which only needs
traversal of the vertex table and gets information adjacent to a vertex from the system adjacency
graph structure. The running time in our algorithm is also proportional to the complexity of the model.
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Our algorithm is as follows: at first, the visual importanceܫandܳmatrices are computed for all the

initial vertices. Then we compute the contraction target for the edge൫ݒ,ݒ൯by calculating the two

possibilitiesܧ(ݒ) = ݒ
(ݒ)ܫ)் ∗ ܳ+ (ݒ)ܫ ∗ ܳ) =൯ݒ൫ܧandݒ ݒ

(ݒ)ܫ)் ∗ ܳ+ (ݒ)ܫ ∗ ܳ) ݒ and applying the

direction൫ݒ→ (ݒ)ܧ൯ifݒ < ݒ൯or൫ݒ൫ܧ → (ݒ)ܧ൯ifݒ > .൯ݒ൫ܧ The algorithm iteratively contracts the pair

with the minimum contraction cost. In each iteration after an edge collapse, we choose a small group
of edges that are affected by the edge collapse and then recalculate the cost for these edges that are
adjacent to the vertices belonging to the collapsed edge. The algorithm can be summarized as:

/*Build an initial priority queue for edge collapses, M represents the mesh model*/

For(݁∈ ܯ )

Determine contraction target of edge݁= (ݒ,ݒ)

Compute edge collapse costܧ

Insert the duple( ,݁ in(ܧ queue ݍ

End for

/*Update the mesh*/

While (queue notݍ empty)

Delete the edge w݁ith the lowest cost ܧ from the queue

Perform the collapse ofedge ݁and update the triangles adjacent to edge ݁

Recalculate the cost of every edge in the neighborhood ofedge a݁nd update the queueݍ

End while

5 RESULTS

We have implemented our algorithm using C++ language and carried out tests with various models
including low complexity models from CAD programs. All the experimental results are obtained by
running the algorithm on a 2.4 GHz machine with 4.00 GB RAM. We compare our results obtained at
the same simplification level to the results with QSlim [8], using the half-edge collapse. Some aspects
such as geometry error, visual quality and speed are analyzed in the comparison.

Simplification results of the cow, car and helicopter models without boundaries using our
algorithm and QSlim are shown in Fig. 3, Fig. 4 and Fig. 5. Results using our algorithm are shown on
the top row of Fig. 3, Fig. 4and Fig.5 while the results using QSlim’s methodare shown on the bottom
row. In Fig. 3, where the cow model is simplified to 50%, 80%, 90% and even 95% of the original cow
mesh model, the simplified shapes still look the same as its original one. Meanwhile, at different
simplification levels, some visually important features such as the eye, nose, silhouette of mandible
and abdomen of the cow model are better preserved than those in models simplified with QSlim. By
adjusting the order of edge collapses, our algorithm can generate simplified models with better mesh
quality than that generated withQSlim. The same analysis can also be obtained from the results of Fig.
4 and Fig. 5. For example, in the car model the contour and mesh are better preserved, and in the
helicopter model the same can be said for the main body and the wings.

Original 50% simplified 80% simplified 90% simplified 95% simplified

(5804 triangles) (2914 triangles) (1180 triangles) (602 triangles) (292 triangles)

(a)Simplification by our algorithm
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50% simplified 80% simplified 90% simplified 95% simplified

(2914 triangles) (1180 triangles) (602 triangles) (292 triangles)

(b)Simplification by QSlim

Fig. 3: Simplification results of cow models using our algorithm and QSlim.

Original50% simplified 70% simplified 90% simplified 95% simplified

(10474 triangles) (5240 triangles) (3142 triangles) (1056 triangles) (530 triangles)

(a)Simplification by our algorithm

50% simplified 70% simplified 90% simplified 95% simplified

(5240 triangles) (3142 triangles) (1056 triangles) (530 triangles)

(b)Simplification by QSlim

Fig. 4: Simplification results of car models using our algorithm and QSlim.

Original 50% simplified 70% simplified 80% simplified 90% simplified

(6448 triangles) (3247 triangles) (1920 triangles) (1358 triangles) (698 triangles)

(a)Simplification by our algorithm
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50% simplified 70% simplified 80% simplified 90% simplified

(3247triangles) (1920 triangles) (1358 triangles) (698 triangles)

(b)Simplification by QSlim

Fig. 5: Simplification results of helicopter models using our algorithm and QSlim.

Fig. 6 shows the simplification results of the face model which has boundaries on the mesh. We can see
that at different simplification levels, our algorithm can preserve the boundaries of the model as well
as QSlim [8]. However, our algorithm can generate more regular simplified mesh than QSlim.

Original 50% simplified 90% simplified

(a)Simplification by our algorithm

Boundary50% simplified 90% simplified
illustration

(b)Simplification by QSlim

Fig. 6: Simplification results of face models with boundaries using our algorithm and QSlim.

In Tab. 1 we present the geometric error committed in our experiments. These geometric errors are
measured by Metro [4], a public tool that evaluates the difference between the original mesh model
and its simplified representation. We can see that the cow, car and helicopter models generated by our
algorithm give smaller geometric error than those of QSlim at the same simplification level
respectively mainly because our algorithm preserves the visually important features better and
generates simplified models with better mesh quality than QSlim.
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Mesh Model Primitives Simplified (%)
Error

Our Algorithm QSlim
cow 5804 95% 0.133618 0.151724
car 10474 95% 0.011453 0.028257

helicopter 6448 90% 0.031697 0.039431

Tab. 1: Comparison of the geometry error of our algorithm with QSlim.

Tab. 2 summarizes the running time of our algorithm and QSlim using the models shown in this paper.
This time is proportional to the complexity of the model and the number of triangles in the simplified
model. Initialization time includes loading and displaying the mesh model, computing visual
importance and initial quadric error matrices, calculating edge collapse costs and building an edge
collapse list. Simplification time includes the iterative contraction of edges. In Tab. 2, the
simplification time is calculated by simplifying all the models to 50% of their original mesh models.
We can see that the QSlim algorithm is faster in the initializationstage, however, our algorithm takes
shorter time in the simplification stage. The reason is our algorithm will compute vertex curvature and
entropy during the initialization stage whichis more time consuming.

Mesh Model Primitives
Init(s) Simplify(s)

Ours QSlim Ours QSlim
cow 5804 13.089 5.335 0.281 0.327
car 10474 32.183 9.719 0.515 0.515

helicopter 6448 14.836 5.709 0.297 0.343

Tab. 2: Comparison of the running time of our algorithm with QSlim.

6 CONCLUSION

In this paper, we present a visual and geometry-based hybrid approach for simplifying polygonal mesh
models. We define the visual importance for a vertex to reflect the surface variation around the vertex.
From the example we have shown in this paper, one can see that our model of visual importance is
able to capture what usually classified as interesting regions on a mesh. Not all such regions
necessarily have high curvatures. By combining the visual importance and the quadric error metric, we
propose a new error metric to guide the mesh simplification process. Experimental results show that
our algorithm performs simplification with lower visual and geometric error than QSlim.
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