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ABSTRACT

Matching and retrieval of shapes, both in two and three dimensions, have been a
topic of interest to researchers in the field of computer graphics, vision and
geometric modeling for at least a decade. In this paper, a shape is assumed to be
represented as set of freeform curved boundaries. A prominent approach to
matching curved outline is the graph-based approach, where a skeleton is used as
a basis for obtaining the graph. In general, graph-matching is a hard problem and
the comparison costs increase proportionally with graph size and hence slows
down the process. In this paper, the skeleton, and in particular, medial axis of
curved boundaries has been used. As opposed to using graph-based matching,
statistical-based methods of signatures obtained from the properties of the
skeleton have been employed. This enables a faster construction of shape
signatures thereby increasing the speed of matching. Moreover, this facilitates the
comparison of shapes that may have the presence of holes (inner loops) in it. In
addition to the qualitative visualizations of retrieval results, retrieval
performance by calculating quantitative statistics parameters typically used in
shape matching is also discussed.
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1 INTRODUCTION

Fundamental problems in shapes such as matching, retrieval, correspondence, segmentation, etc. have
applications in computer graphics, computer vision, medical imaging, and biology among other fields.
Among these problems, shape matching (essentially, a problem that finds similar shape to the query
one) has gained particular importance as the technological advances in science (such as cryo-
microscopy) and in engineering (e.g. laser scanned data) in recent years has resulted in a great
explosion of data.

Approaches for shape matching include feature-based methods that use global properties such as
moment invariants [11], Fourier descriptors [38, 33] and geometric ratios [36]. Histograms [1, 26] and
shape distributions [34, 32] use properties such as distance, angle, area and volume between random
points on the model. Lightfield descriptor (LFD) [7], a method that has been shown to give very good
retrieval results, is a view-based method. LFD uses a collection of images from the model taken at the
sampling points on a view sphere. The L

1
distance metric is then used as the similarity measurement.

Approaches in [22, 37] for matching have used the concepts from manifold learning. The central
problem in machine learning is to “learn” a function based on a data set. The data set is assumed to be
a sample from an unknown manifold. Approximations to the eigenvalues and eigenfunctions of the
Laplace-Beltrami operator on this manifold were used to define eigenmaps [2] and an infinite collection
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of diffusion maps [9]. L´evy [28], draws an elegant analogy with Chladni plates and argues that the
eigenfunctions of the Laplace-Beltrami differential operator understand the geometry, i.e., they capture
the global properties of the surface. Rustamov [37] demonstrates their utility for deformation-invariant
search using a global point signature (GPS). It is challenging to compute the eigenvalues and
eigenvectors numerically, and approaches avoiding such explicit computation are desirable. The utility
of these methods depend upon the quality of the descriptors which enter into the construction of the
affinity matrices [22].

Local diameter, a statistical measure obtained using the neighborhood of a point, was used as a
shape function in [16], which is called as diameter shape-function. Bending-invariant representation
based on multidimensional scaling has been presented in [12]. This approach embeds (flattens) the
computed geodesic distance into smaller dimensional Euclidean space, bringing all the models into a
canonical pose. This method, though, has shown to be too sensitive to modifications and hard to
control on general 3D meshes [16]. Research on partial shape matching using features has been the
topic of [14, 15].

An object or a model or a shape in three dimensions can be represented either in a discrete form
such as mesh, or in continuous form using Bezier/B-spline surfaces, termed as freeform surfaces.
Correspondingly, in two dimensions, a discrete representation could be polylines and the continuous
one by freeform curves. Most of the approaches discussed above have been applied to discrete
representation. When the domain is represented as silhouettes obtained from images, prominent
methods include skeletal context [48], contour-based descriptor [21, 27], graph-based approaches [39],
Hausdorff distance [13], open curves [10], using uniformly chosen points [30], and shape geodesics
[31]. When a freeform representation of the curve is used, metamorphosis has been employed in [8].

Fig. 1: Similar shock graphs for different objects [39].

(a) (b)
Fig. 2: Examples of shapes as used in this paper (a) a shape having only outer loop. (b) multiply-
connected shape.

Fig. 3: Examples of MA.
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When a skeleton is computed for the outline, graph-based methods seem to be more prominent.
This approach extracts structure from a model, by decomposing them into parts/components using
skeletons. To compute them, models are either discretised using voxels [43, 44] or Voronoi and
Delaunay complexes [24] are used. Sundar et al. [44] uses a skeletal graph as a shape descriptor to
encode geometric and topological information. Shock graph along with edit distance was the approach
used in [39]. Reeb graph [3, 19] is another approach to characterize the topology of the model. Graph-
based methods are complex and susceptible to topology changes, in general. Moreover, graph-matching
slows down as the comparison costs increase proportionally with graph size and is considered to be a
hard problem. Also, at times, graphs need to be aligned [40]. It is also not sufficient to just use graph
as they can be similar for different objects (Fig. 1) [39]. A detailed review of various shape descriptors
for model retrieval can be found in [20, 45]. Various strategies that can be used when skeleton is
employed can be found in [17].

In this paper, a shape is assumed to be defined by a set (not just a single closed curve) of non-self
intersecting two-dimensional freeform C1-continuous curves connected together that form a closed
loop. Adjacent curves intersect only at the common vertex at their ends (it is a convex vertex if the
included angle is less than 180o or else it is termed as reflex vertex), and no two non-adjacent curves
intersect (i.e. there is no intersection). However, they can form more than one loop – one outer loop
and possibly several inner loops (shapes having inner loops are sometimes referred to as multiply-
connected shapes). The shape is also assumed to be free of noise. It is believed that the richest shape
variety can be reached by shapes or solids with free-form boundary curves/surfaces that are typically
defined by Non-Uniform Rational B-Spline (NURBS) curves or surface patches [47]. Fig. 2 shows the
example shapes used in this paper. The main contributions of this paper are
• As opposed to component-based or part-based approach typically used in skeleton-based shape

matching which calls for identification of correspondences between shapes – a complex task by
itself, in this paper, statistical-based skeleton property matching has been proposed and
demonstrated.

• Footpoints, the corresponding points for a point on MA, appear to have been a neglected entity so
far in matching, have been employed to define one of the shape functions.

2 SKELETON – MEDIAL AXIS TRANSFORM

The Medial Axis Transform was first introduced by Blum [4] to describe biological shape. It can be
viewed as the locus of the center of a maximal disc as it rolls inside an object. Since its introduction,
the MAT has found use in a wide variety of applications that primarily involve reasoning about
geometry or shape. The Medial Axis(MA), or skeleton of the set D, denoted M(D), is defined as the locus
of points inside D which lie at the centers of all closed discs (or balls in three dimensions) which are
maximal in D, together with the limit points of this locus. A closed disc (or ball) is said to be maximal
in a subset D of the two dimensional (or three dimensional) space if it is contained in D but is not a
proper subset of any other disc (or ball) contained in D. The radius function of the MA of D is a
continuous, real-valued function defined on M(D) whose value at each point on the MA is equal to the
radius of the associated maximal disc or ball. The Medial Axis Transform (MAT) of D is the MA
together with its associated radius function.

Properties of MA that aid immensely in shape matching are:
• Symmetry information: MA establishes an object centered representation from which individual

shape characteristics can be measured.
• One to one correspondence: There exists a one to one correspondence between the object

boundary and its MAT.
• Rigid-body transformation Invariance: As MA is a coordinate-system-independent abstraction, it is

rotation, translation and uniform-scale invariant.
• Homotopy equivalence: A MA is homotopically equivalent to its object. This helps in identifying

the homotopical characteristics of a shape such as the presence of holes in it.
• Shape function: Each point on the medial axis is associated with a radius function. This enables not

only in the reconstruction of the shape but also can be used as a shape function that captures the
local information. Moreover, other geometric properties such as curvature at a point on the medial
axis can be computed and used as shape function.
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MA, in general, has the ability to capture the shape of the object very accurately. On the other
hand, MA is susceptible to local changes in the shape – a small change in shape can cause significant
topological changes in the MA. Moreover, a continuous description of the MA is possible from a
continuous representation of the part only for the case of polygons where the boundary consists of
linear segments or circular arcs [25]. For a part with non-linear or curved segments a continuous
description of MA is only possible if the part representation is discretized/approximated using line
segments, bi-arcs or point-set. It should be noted that, for objects with freeform boundaries, efficient
and accurate computation of MA without discretising them is still a topic of interest for various
researchers. However, this research, in the recent past, has revealed interesting algorithms and the MA
can indeed be computed efficiently and accurately (see [6, 18]). Fig. 3 shows couple of examples of MA
for shapes with freeform boundaries.

3 SHAPE MATCHING USING MA

A major challenge in the shape matching problem is to find a shape signature that can be constructed
and compared quickly. Popular approaches such as graph-based ones are not efficient to handle [16].
The key idea is to use a local geometric derivative, MA, to obtain shape functions that can then be used
to obtain shape signatures. Consider the radius function of MA. When the MA is used as a graph,
across edges (simplified/MA segments [5]) of the graph, radius function can be defined. However, when
a shape consists of boundaries represented as a set of freeform curves, capturing the changes
accurately in properties such as radius function is not that easy. This is because, the radius function
can be represented in closed-form only when a shape is composed of points, lines and circular arcs as
MA is either linear or one of the conic sections [25]. This is not the case when arbitrary freeform curves
are used as boundaries.

To compare shapes, a shape signature can be obtained either by using a histogram of the shape
function or using a probability distribution function as in [34] rather than using closed-form
representation of shape functions, which may not be available for freeform boundaries. Moreover,
distribution-based approach avoids the need to compare graphs and graph-alignment and has shown
to be very effective even for pose-oblivious shape search [16]. MA has the inherent capability to be a
pose-invariant and can go even further to capture deformation-invariancy, at least up to isometry. The
dissimilarity between objects is then evaluated using a metric such as L

N
norm. The overall approach is

illustrated in Algorithm 1.

3.1 Shape functions and signature from MA

The properties of the computed MA are used to define shape function. As MA is inherently attached to
its corresponding footpoints, they are also been made use of (A point of contact with the domain
boundary, of the underlying disk of a point on the MA is called the footpoint of the point on the MA).
• Distance between footpoints (DF);
• Radius function at a point on the MA (RF);
• Curvature at a point on the MA (CF);

Algorithm 1 ShapeMatching(shape)

for Each query/database shape do
Compute MA using an algorithm (such as the one in [6]).
Using the computed MA, obtain the shape function and then normalize.
Compute the Histogram/Distribution.
end for

Compute dissimilarity using a metric.
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3.1.1 Obtaining shape signature

Initially, each function is computed for the points on the MA and the normalization is then done by
dividing by the maximum value of the respective function. This process will yield the approximated
probability value for each of the shape function, which can then be viewed as a histogram. The number
of bins for generating the histogram is chosen as 64. These histograms are then used as shape
signature of the respective shape function. Note that these functions are easy to compute once the MA
is available and are invariant to rigid transformations. Uniform-scaling is alleviated by dividing with
the maximum.

3.2 Distance between footpoints

MA provides an inherent correspondence between different points on the boundary curve as opposed
to devising a separate approach for correspondence. Instead of measuring distance between two
arbitrary points, in this approach, distance between the footpoints corresponding to a point on MA has
been used. This is based on the premise that it approximates the local thickness of the shape. Fig. 4(a)
shows the footpoints f1 and f2 corresponding to a point ‘m’ on the MA having the disc D. DF is the
distance between footpoints f1 and f2. Fig. 5 shows the MA and shape signature obtained using DF for
two similar shapes. However, do note that the structure of the MA for the two shapes have variations
(near the top end).

(a) DF (b) RF
Fig. 4: Illustration of DF and RF.

(a) (b) (c) (d)
Fig. 5: MAT and signature from DF for two similar shapes.

Fig. 6: Medial axis for a dog bone [5].
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3.3 Radius function

MA description is related to growing the shape boundaries in the direction orthogonal to the boundary
as opposed to along the boundary. As MA can be considered to be placed in the center of the shape
and also the union of maximal disks is the original shape itself, it is imperative to use the information
from the disks. In particular, the radius of the maximal disks is used as a shape function and termed
as RF. Radius function has the capability to distinguish shapes even when the medial axis can be same.
A classic example to illustrate this is the dog bone (Fig. 6) whose medial axis is the same as that for a
rectangle. However, the distinguishing feature there is the MAT, which includes the radius function and
they are not the same for dog bone and rectangle. Figs. 7(a) and 7(c) show the shapes signatures from
RF for similar shapes in Figs. 3(b) and 7(b) respectively.

Though this function appears to be similar to DF, it should be noted that radius can be different
even when the distance between the footpoints are similar and vice versa. The disk D1 in Figure 4(b) is
different in radius when compared to D in Fig. 4(a) even though the footpoints f1 and f2 have the same
distance in both of them. Hence the shape signatures derived from DF and RF is also different from
each other. For the shape in Fig. 5(a), Fig. 5(b) shows the signature from DF, where as its signature from
RF is shown in Fig. 8(a) and it is clear that they are distinct. Note that the radius at a convex vertex is
zero and this has been included when computing the signature using RF.

(a) (b) (c)
Fig. 7: (a) Signature from RF for Fig. 3(b); (b) and (c) MAT and its respective Signature from RF for a
shape similar to Fig. 3(b).

(a) (b)
Fig. 8: Signatures from RF and CF respectively for MAT shown in Figure 5(a).

(a) (b) (c)
Fig. 9: Signatures obtained CF in (a) and (c) for shapes in Fig. 3(a) and Fig. 9(b) respectively.



Computer-Aided Design & Applications, 9(2), 2012, 133-146
© 2012 CAD Solutions, LLC, http://www.cadanda.com

139

3.4 Curvature at a point on MA

As the shape consists of freeform boundaries, the tangent and curvature at a point on the shape is well
defined except at finite number of points (corners). Boundaries with zero curvatures (straight lines) are
also considered. Curvature of the axis and the boundary has been effectively used to distinguish
portions of a shape in [5]. In this paper, adjacent MA points are used to compute an approximate value
for curvature. First, the tangent at a point on the MA is computed using the tangents at its footpoints.
The magnitude of the change in tangents is used as curvature. It is then normalized for computing the
shape signature which is then used for matching. Fig. 9 shows the signature obtained using the
curvature function.

Though all the shape functions have been derived from MA, do note that they are also distinct.
Figs. 5(b), 8(a), and 8(b) show the shape signature obtained using DF, RF and CF respectively for the
shape in Fig. 5(a).

3.5 Similarity measurement

Given two shape signatures, its similarity can be computed using distance measures such as χ2,
Minkowski’s L

N
, Mahalanobis etc. The shape signatures, in this paper are essentially one-dimensional

vectors. Though may not be the best distance measure, for its simplicity, L
2

has been employed.

4 RESULTS AND DISCUSSION

4.1 Computing MA

As already noted, computation of MA for freeform objects have been of interest to researchers in the
recent past. Recent developments indicate that quite a few algorithms for computing MA of freeform
objects, at least in 2D can use the input shape without discretizing it. In this paper, the algorithm

Fig. 10: Shapes in freeform database.

Fig. 11: MAT for similar shapes in the database. Fig. 12: Partially similar Shapes in freeform
database.
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described in [35] has been used to compute MA, where the algorithm has the ability to computed for
different step sizes on the 2D curved boundary (please refer to [35] for further details).

4.2 Database details

In this paper, a freeform database consisting of 80 shapes has been used to test the described
approach. They have been classified as airplane, bird, bracket, chasis, ell, gear, map, and rect, as has
been shown in the Fig. 10. Each one consists of 10 shapes that can be termed similar. To test the
effectiveness of the proposed method, the database consists of many different traits. Within a class,
shapes have holes as well as no-hole ones (see for example ‘bird’). L-shaped (ell) objects consist of non-
uniform scaled ones. Gear has varying shaped holes. The class `Bracket’ has a hole (inner loop) in all
the shapes. The class ‘rect’ has shapes that are quite dissimilar but have the same structural
arrangement of MA. They all distort either the MA structure or/and its properties. As an example, Fig.
11 illustrates one of the traits in the database – for similar shapes; number of MA segments is quite
different from each other. The database also contains shapes that can be considered only partially
similar (see Fig. 12). This database, essentially a manually constructed one, has been chosen not only to

Fig. 13: All retrievals for the query input in the
class ‘airplane’ of the shape function DF.

Fig 14: All retrievals for the query input in the
class ‘gear’ for the shape function RF.

Fig. 15: All retrievals for the query input in the
class ‘bracket’ for the shape function CF.

Fig. 16: First ten retrievals using DF signature for
a shape in each class.
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illustrate the strength of the approach presented in the paper, but also to indicate its possible
shortfalls. It should be noted that the retrieval results of a matching algorithm is entirely dependent on
the database set up that includes the definition of classes and shapes in each class.

4.3 Retrieval results - qualitative

Figs. 13 – 18 show the retrieval results qualitatively. In all the retrieval results, the first shape (in first
row and first column) is the query shape and also it is the retrieved one. Figs. 13 – 15 show all the
retrieved shapes for a shape in a class for the three shape functions respectively. Fig. 13 shows the
retrieval for a shape in the ‘airplane’ class using signature from DF, where all the similar shapes are
retrieved in the first row itself. Fig. 14 shows the retrieval for a ‘gear’ using signature from RF. Though
not all similar shapes appear in the first row, some of them are retrieved in the second row. Figure 15
shows the retrieval for a multiply-connected bracket, where all the shapes in the same category are
retrieved in the first row itself, in spite of the fact that some of them have different number of MA
segments (Fig. 11) and hence considerably different MA structure. Figs. 16 – 18 show the first ten
retrievals for a shape in each class. In all the classes and in all the shape functions (and their
signatures), at least few of the shapes in the respective class were retrieved in the first row, indicating
the effectiveness of the approach. Even for shapes with holes, the signatures retrieve their closer
matches, as is evident from looking at the retrieved results.

4.4 Quantitative performance measurements

In addition to the qualitative visualizations of retrieval results, retrieval performance by calculating
quantitative statistics parameters described in [42] are also evaluated. Specifically, mean first and
second tier have been used. Rather than evaluating performance relative to a single query, the average
performances over a set of 80 query shapes have been estimated.

4.4.1 First and second tier evaluation

First-tier and second-tier values are defined as percentage of models in the query’s class that appear in
top K matches, where K is dependent on the size of the query’s class. The higher values of these
statistics indicate better retrieval results.

Tables 1, 2 and 3 show the first and second tier percentage retrievals of each class for the shape
functions DF, RF and CF respectively. Along with the qualitative results, the tables provide an insight
into how the shape functions are performing. In all, the classes ‘airplane’, and ‘bracket’ have performed
really well, both in first as well as in second tier, where the retrieval rate is 100% in the second tier. L-
shaped (ell) class has shown rather not that good performance in DF and RF, where as it shows good
improvements when CF is employed. This is because, the class ‘ell’ contains shapes that are of non-
uniformly scaled ones, which affect the distance and radius functions, but not the curvature function

Fig. 17: First ten retrievals using RF signature for
a shape in each class.

Fig. 18: First ten retrievals using CF signature for
a shape in each class.
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that much. The class ‘rect’ has performed well both in DF and RF but suffered in CF, the reason being it
contains zero curvature as well as curved boundaries. The class ‘bird’ also suffers because it contains a
shape with hole and also a shape that is only partially similar. However, the good point here is that,
when the shape with hole is given as query, similar non-holed shape is also retrieved (see second row
in Figs. 17 and 18) ‘Map’ has done well both in DF and RF compared to CF, as there are quite a few
variations in the boundary curvatures of the shapes in the class. ‘Gear’ is also of similar case as that of
‘map’. The holes in the gear vary in both size and shape creating larger variations in curvatures as
opposed to the distance and radius functions. ‘Chasis’ has performed better in DF compared to RF and
CF. This could be because the shapes in this class approximates the local thickness better, though a
clear reason is not evident.

The strength of this method is, though at times the MA structure can vary significantly, similarities
are captured. Moreover, it can handle shapes with holes (inner loops). However, the method is a more
of global one and hence it cannot capture shapes that are only partially similar. Of course, the major
assumption here is that the MAT can be computed accurately and efficiently for shapes with freeform
boundaries without discretization. This could be considered as a major bottleneck, which is the case
for many of the skeleton-based approaches.

4.5 Robustness

One factor that plays a very important role in the distribution-based approach is the sampling strategy.
In this work, the sampling was done based on the length of each boundary and the approach is tested
with increments of 0.01 (100 samples on a curve) initially. Though the sample size is maintained
constant for all shapes, this induces variations in the number of points on the MA being used. The
matching process does not appear to be disturbed too much by this variation as the retrieval results
indicate. This, however, has to be tested in a larger database.

Retrieval effectiveness was also tested for 0.02 (200 sample points on a curve). The results appear
to be fairly similar to the samples of 0.01. As an example, the first and second tier results for samples
of 0.02 (for signature from RF) are given in Table 4, which is fairly similar to Table 2. Hence, the
retrieval seems to be not dependant on the sample size. As long as the construction of MA is correctly
performed, the results may not differ with respect to sample sizes, indicating the approach using MA
along with distribution-based analysis is robust.

Class First tier (%) Second tier (%) Class First tier (%) Second tier (%)

airplane 97 100 airplane 99 100

bird 47 59 bird 49 62

bracket 86 92 bracket 92 95

chassis 57 62 chassis 49 62

ell 34 57 ell 41 56

gear 44 66 gear 73 58
map 87 92 map 91 91

rect 85 100 rect 85 100

Tab. 1: First and second tier results for DF. Tab. 2: First and second tier results for RF.

Class First tier (%) Second tier (%)

airplane 98 100

bird 70 81
bracket 97 99

chassis 29 43
ell 57 82

gear 56 74
map 77 82

rect 60 71
Tab. 3: First and second tier results for CF.
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One of the very desirable properties of a shape signature is that it has one-one correspondence
between a shape and its signature. It should be noted that MA as such may be same for two shapes, but
MAT (MA with radius function here) will be unique and thereby signatures such as RF can be used to
capture similarity. However, it may be difficult to proof that shape signature obtained using
distribution is one-one, but the test results seems to be pointing to that (a case in point is [34], where it
has been shown to be very effective). A test in a larger database will reveal further details.

4.1 Computation time

Running time for computation of MA and Retrieval has been shown in Tab. 5. The running time for
computing MA took only 10 min. and for each shape function (such as DF), running time for indexing
and retrieval was less than 2 minutes. The total computation (including all shape functions), the
running time was less than 16 minutes, which is quite fast. This can be attributed to the simplicity of
the distribution method for computing the signatures from the shape functions.

4.2 Comparison

Popular databases for shape search include the Princeton Shape Benchmark [42] for three dimensional
computer graphics models, Engineering Shape Benchmark [23] for CAD models, Silhouette-database
[41] for images etc. A look at the shape retrieval contest (SHREC) [46] homepage will reveal available
databases in various categories. However, it appears that there is no database that caters to the needs
of freeform curves. The closest ones seems to be [39, 41] and the MPEG-7 data set [31], which are
actually an image database and hence converting them into freeform curves might require processing
of the images, which could result in errors during the conversion. Moreover, the images do not seem to
contain holes and even if they have, extracting them could be difficult.

As the closest ones seems to be [39, 41], which consists of 99 silhouettes represented as images,
and 11 in each category and the MPEG-7 data set [31], we compare our approach against the inner-
distance measure used in [29] and shape geodesics in [31] at a broad level. To compare, we only choose
categories where the shapes are very similar within the respective categories, as shapes in each
category of [39] don’t appear to vary significantly (i.e. they are mostly articulated variations). For
example, ‘airplane’ and ‘bracket’ have shapes that are very similar within the respective categories,
whereas ‘ell’ has varied scaled shapes. The first and second tier results of the function DF, RF and CF
are almost similar to the retrievals in [29] (see Table 4 in [29]), showing very high percentage. On the
other hand, [29] requires shapes to be aligned for sampling and uses different parameters (such as
sampling density etc.) for different databases. In our database, it should be noted that the shapes are
not just articulated variants and still the retrieval performance is quite high. This paper shows that the
MAT need not be restricted to articulated models and also avoid the exhaustive graph-based matching.

Ref [31] measures its retrieval performance using bull’s eye test: for every image in the database,
the top 40 most similar shapes are retrieved. At most 20 of the 40 retrieved shapes are correct hits.
This appears to be the measure ‘second-tier’ used in our paper, where at times close to 100% retrieval
has been achieved for categories where shapes are very similar within it. There are categories where
the performance is poor, which can be attributed mainly due to large variations in the shape within
that category.

Class First tier (%) Second tier (%)

airplane 100 100

bird 49 64
bracket 91 95

chassis 44 54
ell 71 88

gear 56 74

map 91 91

rect 85 100
Tab. 4: Results for RF with sample size 0.02 for

MAT.

Computation of Time (minutes)

MAT (sample size =
0.01)

10

Indexing and Retrieval 2

MAT (sample size =
0.02)

6

Indexing and Retrieval 2

Tab. 5: Running time.
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4.3 Limitations

One of the major limitations of the proposed approach is that the shape signatures are global in nature
and will not capture local changes. Hence, the signatures cannot be applied for partial matching of
shapes.

4.4 Future work

Currently, the spatial distribution of the shape function has not been employed. Properties of MA such
as homotopic equivalence were also not considered for this paper. As the strength of each shape
functions vary, it is also imperative to find a suitable weighting scheme that can combine the
advantage of each of them. Approaches such as visual saliency, described in [17] could be considered.
The approach described in this paper has shown to work for multiply-connected objects, and hence it
can be extended to CAD model search that often have the presence of holes, cavities, etc. This
approach has also to be tested in a larger database.

5 CONCLUSION

In this paper, a statistical-based skeleton property matching has been proposed and demonstrated
with respect to chosen shape functions for shapes bound by freeform curves. The shape functions
have been derived from the MA of curved boundaries. It can also handle shapes with holes. This has
the potential to replace component-based or part-based approach typically used in skeleton-based
shape matching method.
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