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ABSTRACT

In 2003, Sederberg and Zheng proposed T-splines which belongs non-uniform rational
B-splines with T-knot. Compared to B-splines, T-splines have more advantages
especially in the surface merging, local refinement, and data compression. The T-
spline blending function plays an important role in the T-spline surface modeling. In
this paper we give an equivalent condition of the open question that whether T-spline
blending functions are linearly independent. According to the equivalent condition the
paper presents an algorithm to determine whether T-spline blending functions are
linearly independent or not. Finally, we give a sufficient condition of the linear
independence, and by using the sufficient condition it can be easily to determine the
linear independence of some T-spline blending functions. Several examples are given
to illustrate the feasibility and effectiveness of this approach.
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1 INTRODUCTION

With the development of the computer, the curve and surface modeling technology has been
attracting people’s research interest. In 1963 Ferguson first proposed the parametric representation of
curves and surfaces and since then people have been constantly investigating new methods of the
curve and surface representation. In the 1980s non-uniform rational B-splines (NURBS) have become an
important tool for describing curves and surfaces in CAD. In 2003, Sederberg and Zheng proposed T-
splines which are non-uniform rational B-splines with T-knots[1][2]. The T-knot has make the lines of
control points need not traverse the entire control grid, which has broken the limitation that the
control grid of the traditional B-spline surface must meet the topological requirement. Compared to B-
splines, T-splines have more advantages especially in the surface merging, local refinement, and data
compression.

The T-spline method is one of the latest surface modeling techniques. Many scholars have done
extensive research in the application and theory of T-splines since the introduction of T-splines in
2003[3][4][5][6]. However several fundamentally theoretical questions about T-splines are still open. In
2004 Sederberg and Zheng posed an open question that whether the T-spline surface blending
functions are linearly independent or not and how to classify the T-spline space with T-meshes[2]. In
2006 literature[7] gave a classification of T-splines with T-meshes. In 2007 literature[8] proposed a T-
spline local refinement method based on NURBS. In 2010 Buffa gave a proof of the linear independence
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of T-spline blending functions associated with some particular T-meshes[9]. The linear independence
of T-spline surface blending functions plays an important role in T-spline theory. So far, the open
question posed by Sederberg and Zheng has not been resolved and this greatly affects the development
of the T-spline modeling theory. Based on the above literatures, this paper gives a mathematical proof
of the open question.

The paper is organized as follows. In Section 1, T-spline blending functions and the T-space are
introduced. In Section 2, the linear independence of T-spline blending functions is analysed and an
equivalent condition of the open question is given. Then an algorithm to determine the linear
independence of T-spline blending functions is proposed. In Section 3, the result described in Section 2
to present several examples of linearly independent T-splines is illustrated. Finally, the concluding
remarks and a prospect about T-splines in Section 4 are given.

2 PREPARATION KNOWLEDGE

T-splines are a generalization of B-splines, it is easily compatible with the existing CAD/CAM system
and accepted by the technical staff. In addition, T-spline control grids permit T-junctions, so lines of
control points needn’t traverse the entire control grids. Therefore it has more applications than NURBS
with the rectangle mesh topology. Compared to B-splines, T-splines have more potential in
development. From literature[1] we know that the T-spline is a PB-spline for which some order has
been imposed on the control points by means of a control grid which is called a T-mesh. Simply if a T-
mesh is a rectangular grid with no T-junctions, the T-spline reduces to a B-spline. T-spline control grids
permit T-junctions, so lines of control points needn’t traverse the entire control grid. This results that
T-splines support many valuable operations within a consistent framework. Such as local refinement,
data compression and the merging of several B-spline surfaces[1]. While the notion of T-splines can

extend to any degree, we restrict our discussion to cubic T-splines deg 3ree  and default that the

knot repeatability is less than deg 2ree . Then we give the definition of the T-spline and several

properties of it.

T-spline surface:    



n

i
ii vuBPvuP

1

,, , where iP is the control points, correspondingly,  ,iB u v

is the blending function, )()(),( vNuNvuB iii
3
0

3
0 , )(uN i

3
0 and )(vN i

3
0 are B-spline basis functions

associated with the knot vector ],,,,[U 43210 iiiiii uuuuu and ],,,,[V 43210 iiiiii vvvvv respectively[1].

Property 1: If a set of T-spline blending functions are defined in the same grid line, then they are
linearly independent.

As B-spline basis functions that defined in the same grid line are linearly independent, the T-spline
blending functions that constructed by the B-spline basis functions must be linearly independent.

Property 2: Let

1

( , ) ( , )
M

i i
i

B u v B u v


  , 0i  , then the T-spline blending functions ( , )iB u v and

( , )B u v cannot be in the same grid line.

Because 0i  , from the property of B-spline basis functions, if ( , )iB u v and ( , )B u v have been

defined in the same grid line, then the domain of ( , )B u v cannot contain the domain of ( , )iB u v . This

make a contradiction between them. From this we can get property 2.

Property 3:

1

( , ) ( , )
M

i i
i

B u v B u v


  , 0i  , ( , )B u v and ( , )iB u v are T-spline blending functions,

then ( , )B u v and  ( , ) 1iB u v i M  cannot be in the same grid line. If these functions are in the

same grid line, then it will contradict with property 1.
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T-spline space: The T-spline space is a set of T-splines that have the three common features: 1) the
same T-mesh topology; 2) the same knot intervals; 3) the same knot coordinate system.

If local refinement of a T-spline in 1S will produce a T-spline in 2S , then we say that 1S is a

subspace of 2S , denoted 21 SS  . If 1T is the T-spline, then 11 ST  means that the topology and

knot intervals of 1T are specified by 1S [2].

The least B-mesh of T-splines (LB-mesh): Throughout all the T-junctions in T-meshes, we can get a B-
mesh corresponding with the T-mesh and the B-mesh is the unique and the least rectangle mesh that
contains the T-mesh. The mesh is defined as the least B-mesh of T-splines. The T-spline blending
functions defined in the LB-mesh are linearly independent. Figure 1 shows a T-mesh(Figure 1.a) and it’s
LB-mesh(Figure 1.b)

From the above definition, each given T-mesh has a unique LB-mesh. Based on the T-spline local
refinement algorithm posed by Sederberg and Zheng[2], we can convert a T-spline into a B-spline
surface by refinement and keep the surface unchanged. Based on the above relation we will analyse the
linear independence of T-spline blending functions in section 2.

3 A PROOF OF THE LINEAR INDEPENDENCE OF T-SPLINE BLENDING FUNCTIONS

3.1 The necessary and sufficient condition

Set the original T-spline surface is 0T , and 0S is the corresponding T-spline space of 0T , 0 0T S .

We can get the B-spline surface bT by the local refinement algorithm of T-splines[2], and set bS with

the LB-mesh is the T-spline space of bT , b bT S . By the T-spline local refinement algorithm[2], we can

get a B-spline surface from the successive refinement. In order to facilitate the explanation, the paper
supposes that we have employed several times of the local refinement algorithm to get the B-spline

surface. From the first time applying the local refinement algorithm we get the T-spline surface 1T and

the T-spline space 1S correspondingly, 1 1T S . By successively employing the local refinement

algorithm, we get the T-spline surface iT after employing the algorithm i times, and get the T-spline

space iS , i iT S . At last, we get the B-spline surface mT after employing the algorithm m times and

the B-spline space mS with the LB-mesh correspondingly. Then we have a sequence of T-spline spaces:

0 1 ( )m bS S S S   , m bS S .

Define the original T-spline surface 0T

 
0

0 0
0

1

,
n

i i
i

T P B u v


 (1)

(a) A T-mesh (b) The LB-mesh of the T-mesh

Fig. 1: A T-mesh and its LB-mesh.
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Define the function space 0V which is expanded by T-spline blending functions  0 ,jB u v

      0 0 0
0 1 2 0, , ,nV span B u v B u v B u v  (2)

Similarly define iT and iV

 
1

,
ni

i i
i j j

j

T P B u v


 (3)

Where  ,i
jB u v is the T-spline blending function of iT .

      1 2, , ,i i i
i niV span B u v B u v B u v  (4)

 
1

,
nm

m m
m i i

i

T P B u v


 (5)

      1 2, , ,m m m
m nmV span B u v B u v B u v  (6)

Where mT defined by the LB-mesh is a B-spline surface which is a special condition of T-splines. From

the property of the B-spline we know      1 2, , ,m m m
nmB u v B u v B u v are linearly independent,

so dim mV nm .

In this paper the sequence of
i
jB (1 )j ni  is sorted by the row order firstly or the column order

firstly. For example: 11 12 13 21 22 23, , , , ,
Ti i i i i i iB B B B B B B    or 11 21 12 22 13 23, , , , ,

Ti i i i i i iB B B B B B B    .

The sequence of adding knot: in the paper each local refinement meets the local refinement

algorithm[2] and the order of adding knot corresponds to the sequence of
m
jB (1 )j nm  .

For example:
0 0 0 0 0

11 21 22 23, , ,
T

B B B B B    ,
2 2 2 2 2 2

11 12 13 21 22 23, , , , ,
TmB B B B B B B    , then 12B is added firstly,

and 13B is added secondly.

Based on the local refinement algorithm[2], we obtain 1iT  from iT . Compared with the blending

function of iT , the blending function of 1iT  is either the same or is changed near the knot which has

been added. It is illustrated in equation(7).
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1

, ,
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, , ,

i i
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q
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c c dj dj

j
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B u v a B u v b B u v
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B u v a B u v b B u v
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 
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

 


    



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



, , 0dja b b  (7)

From equation(7), we get
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Where 1iA  is a non-negative sparse matrix. From the above equation (8) we can get

 
 

 
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 
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B u v B u v
A

B u v B u v



   
   
    
   
   
      


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(9)

Let

     1 2, , ,
Ti i i i

niB B u v B u v B u v    ( 0, , )i m  (10)

Then equation(8) and equation(9) can be simplified as equation(11) and equation(12).
1

1
i i

iB A B 
  ( 0, , 1)i m  (11)

0

1

m
m

i
i

B A B


   (12)

Let

1

m

i
i

A A


  (13)

As

      1 2dim , , , , , ,m m m
nmB u v B u v B u v nm (14)

then we can see       0 0 0
1 2dim , , , , , ,nB u v B u v B u v depends on

1

( )
m

i
i

R A

 .

The necessary and sufficient condition of the linear independence of T-spline blending functions: set

0

1

m
m

i
i

B A B


   , if

1

( )
m

i
i

R A n


 , n is the number of T-spline control points, in other word

1

m

i
i

A

 has full rank, then 0dim( )V n . T-spline blending functions are linearly independent.

3.2 Algorithm

From the necessary and sufficient condition, for any given T spline we can determine the linear
independence of T-spline blending functions automatically.
Algorithm: (to determine the linear independence of T-spline blending functions)
step1: Input the T-mesh that corresponds with the T-spline;
step2: Refine the T-spline to the B-spline by the local refinement algorithm and calculate the

transformation matrix iA (1 )i m  for each refinement process;
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step3: Determine whether
1

( )
m

i
i

R A

 equals n , where n is the number of T-spline control points. If

1
( )

m

i
i

R A n

  then the T-spline blending functions are linearly independent. If

1
( )

m

i
i

R A n

  then the

T-spline blending functions are linearly correlative;
End.

From the algorithm, we can determine whether T-spline blending functions are linearly independent

by calculating
1

m

i
i

A

 . Here we give a sufficient condition of the linear independence and through the

sufficient condition it can be more easily to determine whether the T-spline blending functions are
linearly independent or not.

The Sufficient condition: Given a T-spline, if each T-knot through line doesn’t intersect with other T-
knot extension lines, then the T-spline blending functions are linearly independent. We are now to
prove the sufficient condition. As Figure 2 shown, the dotted line of T-knot a is the T-knot through

line; the dotted line of T-knot b is the T-knot extension line.

Proof: From the previous conclusion, suppose the T-spline is refined to the B-spline through inserting
knots m times, As each T-knot through line doesn’t intersect with other T-knot extension lines, each

knot-insertion is a local refinement process and we can apply the local refinement algorithm directly.
The following steps are the knot insertion operations:

(1) Based on the previous definition, put the sequence
0
jB (1 0)j n  in the row order first, for

example
0 0 0 0 0 0 0

11 12 13 21 22 23, , , , ,
T

B B B B B B B    .

(2) According to the order of
0
jB (1 0)j n  , we determine whether

0
jB is a T-junction or not. If it

isn’t a T-junction, then we continue to judge
0

1jB  ; if it is a T-junction, then we insert knots along the

direction of the T-knot extension line until the line throughout the mesh.
(3) The original T-mesh is refined into LB-mesh after several knot insertion operations.

Suppose after inserting knots m times, the original T-spline is refined to the B-spline surfafce

 
1

,
nm

m m
m i i

i

T P B u v


 and the T-spline space mS . From equation(6), (10) and (14), we know

     1 2, , ,
Tm m m m

nmB B u v B u v B u v   

      1 2, , ,m m m
m nmV span B u v B u v B u v 

(a) T-mesh 1 (b) The T-knot extension line

Fig. 2: T-mesh 1 and its T-knot extension line.
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      1 2dim , , , , , ,m m m
m nmV R B u v B u v B u v nm 

From equation (12), we know
0

1

m
m

i
i

B A B


   .
0B consists of the original T-spline blending functions,

mB consists of the B-spline basis functions, The definition of
iB and iV are the same as before.

We now consider in the reversed order: 1 1m m    . Firstly we consider the knot insertion

in the last time, i.e. 1m m  :

     1 1 1 1
1 2 ( 1), , ,

Tm m m m
n mB B u v B u v B u v   


   

      1 1 1
1 1 2 ( 1), , ,m m m

m n mV span B u v B u v B u v  
  

We get mS from 1mS  by knot inserting. Then, we define that the function space 1
o

mV  consists of

unchanged T-spline blending functions in 1mS  by means of the knot insertion and 1
g

mV  consists of T-

spline blending functions that are changed in 1mS  by means of the knot insertion. Definitely we get

1 1 1
g o

m m mV V V    . The new T-spline blending functions by means of the knot insertion constitute
d

mV .

We get 1
d o

m m mV V V  .

Let

      1 1 1
1 1 2, , ,g m m m

m g g gqV span B u v B u v B u v  
   (15)

      1 2 ( 1), , ,d m m m
m d d d qV span B u v B u v B u v  (16)

     1 1 1 1
1 2, , ,

Tm m m m
g g g gqB B u v B u v B u v       (17)

     1 2 ( 1), , ,
Tm m m m

d d d d qB B u v B u v B u v
    (18)

From the knot insertion algorithm, we know
1m m m

g g dB T B   , and the transformation matrix
m

gT has

full rank, then 1
g d

m mV V  , 1dim dim 1g d
m mV V   .

We know

1
o d

m m mV V V  (19)

1 1 1
o g

m m mV V V    (20)

1m mV V  (21)

1dim dim dimo d
m m mV V V  (22)

From 1
g d

m mV V  , we get

1 1 1dim dim dimo g
m m mV V V    (23)

From 1dim dim 1g d
m mV V   , we get

1dim dim 1m mV V   (24)

It is to say that T-spline blending functions
1m

jB  (1 ( 1))j n m   are linearly independent.
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From the linear independence of
i
jB (1 ( ))j m j  , we can induce that

1i
jB  (1 ( 1))j m i   are

linearly independent too. Analogously, we can get 0dim( )V n , that is
1

( )
m

i
i

R A n

  ,

1

m

i
i

A

 has full

rank. Based on the necessary and sufficient condition, we know the T-spline blending functions are
linearly independent.

The sufficient condition is a special situation of the necessary and sufficient condition, and we can
directly determine the linear independence of some special T-spline blending functions using the
sufficient condition. When we cannot give the direct determination through the sufficient condition,
the necessary and sufficient condition can be used. This section gives a detection algorithm of the
linear independence about T-spline blending functions based on the necessary and sufficient
condition, and we can determine whether the T-spline blending functions are linear independent or

not. The computational complexity of the algorithm is related to matrix
1

m

i
i

A

 . If T-spline has n

control points, then the computational complexity of the algorithm is
3( )O n .

Inference: If T-mesh lines of a T-spline are all run through along one parameter direction, it is to say
the T-mesh only has T-knots in one parameter direction, then the T-spline blending functions are
linearly independent(here each T-knot through line doesn’t intersect with the others, this inference can
be obtained by the sufficient condition).

4 EXAMPLES OF LINEARLY INDEPENDENT T-SPLINES

In this section, we show how section 2 can be used to prove the linear independence of T-spline
blending functions. Based on the sufficient condition given in section 2 we can easily determine
whether the T-spline blending functions are linearly independent or not. We can also use the algorithm
based on the necessary and sufficient condition in the previous section. Although sometimes the
calculation is complex, it is without loss of generality in determination and we can consider this
algorithm when the sufficient condition is invalid.

In this section the sequence of T-space is obtained by applying the local refinement algorithm and a
new T-mesh is always a refinement of the given T-mesh. For clarity, this paper draw the underlying T-

mesh in the parametric space and choose it to be tensor product for simplicity. ( , )k
ijB u v is the T-

spline blending function of T-space that has employed the local refinement algorithm k times. Figure

3.a is the original T-mesh; Figure 3.b is the T-mesh being simplified; after employing applying the local
refinement algorithm 1 time, we get Figure 3.c; after employing the local refinement algorithm 2 times,
we get B-mesh(LB-mesh: Figure 3.d). From the sufficient condition of section 2 we know the T-spline
blending functions are linearly independent. Without loss of generality, we can also use the algorithm
based on the necessary and sufficient condition in section 2 to prove and give the calculation process,

which is to determine whether the transformation matrix
1

m
i

i
A A


  has full rank.

Let

      0 0 0
0 11 12 45, , ,V span B u v B u v B u v  (25)

      1 1 1
1 11 12 45, , ,V span B u v B u v B u v  (26)

      2 2 2
2 11 12 45, , ,V span B u v B u v B u v  (27)

     0 0 0 0
11 12 45, , ,

T
B B u v B u v B u v    (28)

     1 1 1 1
11 12 45, , ,

T
B B u v B u v B u v    (29)
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     2 2 2 2
11 12 45, , ,

T
B B u v B u v B u v    (30)

Compared to
1B , only

0
14B ,

0
34B ,

0
44B have changed in

0B , Similarly
1 1 1
15 35 45, ,B B B have changed in

1B

compared to
2B .

2 1 4 2
1

0 143 1 4 0
14 1
0 242 0 5 2
34 1

4 0 5 10 34
44 1

2 1 44

5 1

0 0

0 0

0 0 1

u u u u

Bu u u u
B

Bu u u u
B

u u u u B
B

u u B

u u





  
                              

 

(31)

2 1 4 2
2

1 153 1 4 0
15 2
1 252 0 5 2
35 2

4 0 5 11 35
45 2

2 1 45

5 1

0 0

0 0

0 0 1

u u u u

Bu u u u
B

Bu u u u
B

u u u u B
B

u u B

u u





  
        
                      

 

(32)

From (31) and (32), we know
0 1 1B A B  (33)
1 2 2B A B  (34)

0 1 2 2B A A B    (35)
2

1

i

i
A A


  (36)

We can verify that the matrix A has full rank, ( ) 18R A n  0dim( ) 18V n   , n is the number

of T-spline control points. So      0 0 0
11 12 45, , ,B u v B u v B u v are linearly independent.

Figure 4.a is a more complex T-mesh, and figure 4.b is the corresponding B-mesh (LB-mesh). By the
sufficient condition of section 2, we know that the T-spline blending functions are linearly
independent. We can also use the algorithm in section 2 to determine whether the T-spline blending
functions are linearly independent.

(b) T-mesh being simplified(a) Original T-mesh
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5 CONCLUSION AND FUTURE WORK

Based on the theoretical analysis of the open question that raised by Sederberg and Zheng, the paper
gives the equivalent condition of the linear independence of T-spline blending functions and proposes
an algorithm to verify whether T-spline blending functions are linearly independent or not. At last the
paper gives an sufficient condition of linear independence. The linear independence of T-spline
blending functions plays an important role in the modeling and geometric computing based on T-
spline. Hence in the future, we would like to investigate a multiresolution method for T-spline based on
the conclusion of the paper.
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(a) A complex T-mesh

Fig. 4: A T-mesh and its corresponding B-mesh.

(b) LB-mesh of the complex T-mesh

(c) The T-mesh by local (d) LB-mesh

Fig. 3: Process of converting a T-mesh to its LB-mesh.
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