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ABSTRACT

Humans have the ability to easily recognize 3D shape from a given sketch. On the
contrary, a computer program requires mathematical criteria to establish if a sketch is
realizable, i.e., if it is the projection of a 3D model. This paper presents an algorithmic
method that is based on Whiteley’s cross-section criterion, in order to evaluate the
realizability of a single wireframe sketch (i.e., includes both visible and hidden lines)
that depicts the orthographic projection of a trihedral polyhedron in general position.
The proposed approach is based on an algebraic representation of the cross-section
criterion and is able to evaluate the realizability of inexact wireframe sketches.
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1 INTRODUCTION

Although modern Computer Graphics applications have introduced 3D models in everyday activities,
sketches remain the primary tool to communicate an idea in conceptual design. A computer-aided
design program encounters sketches as a 2D configuration of lines, without any geometric depth
information, in opposition to humans’ ability that intuitively realize the 3D geometry from a given 2D
sketch. In an effort to emulate this ability, “interpretation of sketches as 3D models” forms a
significant research subject in Geometric Modeling, Artificial Intelligence, and Computer Vision.

In the last forty years numerous “realizability criteria” for sketches have been introduced (see
[2][11][12][14-17][20][21] and references therein) in order to provide geometric, algebraic, or
computational conditions that determine whether a sketch identifies with the projection of a valid
polyhedron [11]. The first attempt was introduced by Huffman [4] and Clowes [1] in 1971 and is based
on a “Line Labeling” scheme and a “Junction Catalog”, which includes all possible cases of junctions
existing in a sketch that depicts a trihedral solid. A detailed analysis of the Line Labeling method can
be found in [13][18]. Many authors refined and extended this method to include sketches of
tetrahedral solids [17], of curved objects [2], or sketches with shadows [19]. The main disadvantage of
this method is that a consistent labeling of a sketch is only a necessary condition for the existence of a
polyhedron corresponding to a sketch. Moreover, for a sketch that admits many different consistent
labeling, there is no efficient method to identify those that correspond to a valid polyhedron [8][18].
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Based on the Line Labeling method, Sugihara [15] constructs a linear system of equalities and
inequalities, whose solution corresponds to a polyhedron. This method is a necessary and sufficient
condition for the realizability of a wireframe sketch, but it is sensitive to slight perturbations of
junctions’ position in the sketch. In order to overcome this problem, Sugihara eliminates the involved
inequalities of the linear system. The same author introduces, in [16], the “resolvable sequence” of a
wireframe sketch; this is a specific order by which all elements of a sketch can be “lifted” in space so
that finally a polyhedron is produced. According to this method, a sketch is realizable if there exists at
least one “lift” for the given sketch.

The works [11][14] and [20] present geometric criteria based on necessary “line-concurrence
conditions” for the realizability of a sketch. On the basis of the conditions in [20] and the geometric
theory of Maxwell [10] for plane frameworks with planar graphs, Whiteley [21] proposes a geometric
criterion that checks the realizability of a sketch with the help of a “cross-section” that is constructed
from the sketch. This criterion is a necessary and sufficient condition for a sketch to be realizable.
According to this criterion, a cross-section is constructed from a given sketch so that each region/line
of the sketch is represented by a line/point on the cross-section. The sketch is realizable if and only if
the cross-section is compatible with the sketch (see an analytic description of this criterion in Section
3). Ros and Thomas [12] revisit Whiteley’s “cross-section criterion” and succeed in developing a
drastically-simplified theory and criterion without using the complex geometric theories and physical
analogies employed in [21].

The cross-section criterion can be applied in a “sketch-to-solid” reconstruction process [5][6][8] in
order to robustly determine and verify the geometry of a given sketch. Thus, for determining the
realizability of a given wireframe sketch, the authors in [7] define the “cross-section problem” (CSP) on
the basis of an algebraic model of the cross-section criterion, and a bilinear system of equations (i.e.,
the “cross-section system”). Moreover [7] presents a mathematical solution of the CSP that is based on
expressing the unknowns of the system in terms of three independent system parameters. The
limitations of this method are that: (a) it does not employ all equations of the bilinear system to solve
the CSP, (b) when the number of sketch regions increases, it becomes computationally ineffective, i.e.,
it requires complex formulas to achieve the aforementioned expressions, and (c) it is sensitive to
perturbation errors in the junctions’ coordinates of a given sketch, i.e., it is not able to handle inexact
sketches.

To overcome these limitations this paper proposes a new algorithmic method to solve the CSP that
is based on the incremental linearization of all bilinear equations included in the “cross-section
system”. The advantages of this method are that: (a) it provides an algebraic model that explicitly
describes the geometric cross-section criterion, (b) it utilizes all equations of the “cross-section
system”, and thus offering a more robust evaluation of a sketch’s realizability by considering all
geometric information that the sketch conveys, and thus it is more complete and accurate, (c) it can
efficiently process more complex sketches, because the incremental linearization approach results in
the employment of simplified formulas to produce a solution of the CSP, and (d) it can handle inexact
sketches, i.e., sketches with noisy vertices. The latter is achieved by introducing a tolerance parameter
that controls the accepted level of accuracy of a given sketch.

The structure of this paper is as follows. Section 2 presents the assumptions and the terminology
used throughout the paper. Section 3 discusses the cross-section criterion and reviews the existing
“ruler and compass” method for the construction of a cross-section from a sketch. Section 4 outlines
the algebraic model of the cross-section criterion, and Section 5 proposes a new method for
recognizing realizable sketches on the basis of the proposed “Incremental Linearization” algorithm.
Moreover, realizability of a sketch along with the performance of the proposed algorithm are analyzed
with respect to small perturbations of sketch’s junctions.

2 ASSUMPTIONS AND NOTATION

This research deals with a manifold solid (polyhedron) and its orthographic projection on a plane 
(i.e., the plane   0 ). In particular, it focuses on trihedral solids (i.e., each vertex of it belongs to
exactly three faces) having planar faces, where adjacent faces lie on distinct planes. The solid
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(polyhedron) is considered to be in “general position” with respect to the given projection plane  ,
i.e., no face or edge of the solid is perpendicular/parallel to  .

A sketch S is a set of straight lines, on a plane  , that intersect at junctions. Loops of lines and
junctions form the regions of the sketch (Fig.1(a)). In order for a sketch to represent the projection of
a polyhedron in “general position”, adjacent lines and junctions do not coincide. Thus, an “one-to-one
correspondence” is considered between the vertices (V), edges (E), and faces (F) of the solid and the
junctions (J), lines (L), and regions (R) of the sketch [6][9][17]. In particular, this research focuses on
wireframe sketches (Fig.1(b)); i.e., sketches that include both visible and hidden
lines/junctions/regions, in opposition to natural sketches that depict only the visible part of a solid
(Fig.1(c)).

We note that the common line of two adjacent regions
i

R and
j

R is denoted as
ij

e (Fig.1(d)). A line

ij
e with terminal junctions ( , )

p p p
v x y and ( , )

q q q
v x y is written as : 0

ij ij ij ij
e k x m y n   , with

ij p q
k y y  ,

ij q p
m x x  , and

ij p q q p
n x y x y  . The topological properties of wireframe sketches are a direct result

of properties of trihedral polyhedra. Thus, in every wireframe sketch: (1) each junction
k
j is adjacent

to three lines, (2) every line is adjacent to two regions, (3) the sketch is a connected graph (Fig.1(b)),
and (4) two adjacent regions of the sketch share exactly one line or two-or-more collinear lines [9].

3 THE CROSS-SECTION CRITERION

Given a trihedral polyhedron P (see example in Fig. 2(a)), consider an arbitrary plane  which is "in
general position" with respect to P, i.e.,  is not parallel to any face of P and also  does not intersect
P. Intersecting the planes of the polyhedron’s faces with  produces an arrangement of lines called

cross-section of the polyhedron. If each pair of cross-section lines f
i

L and f
j

L (corresponding to the

two faces
i

F and
j

F ) intersect at a point
ij

P on (the extension of) the common edge
ij

e of
i

F and
j

F ,

the cross-section is called compatible. The above concurrence conditions hold true even for the
wireframe sketch produced by the projection of the polyhedron onto the plane  , because projection
preserves collinearity of points and all incidence relations; see Fig. 2(b-c). Thus, given a wireframe
sketch S (Fig. 2(b)) with L lines, J junctions and R regions, a cross-section of S is an arrangement of lines

 ; 1,...f
k

L k R that represents the regions  ; 1,...,
k

R k R of S. In complete analogy to the above

discussion, if each pair of cross-section lines f
i

L and f
j

L intersect at a point
ij

P on (the extension of)

the common line
ij

e of
i

R and
j

R , the cross-section is called compatible with S (Fig. 2(c)) [12]. In this

paper, we address the problem of deriving a cross-section from a given wireframe sketch S and we
develop an algorithmic method for assessing the realizability of S. The plane  is considered to be the
projection plane Z=0 (i.e., sketch plane).

R
Ri

Rj

eij

jk

Fig.1: (a) A region of a sketch, (b) A wireframe sketch, and (c) its corresponding natural sketch, (d) Line

ij
e belongs to regions

i
R and

j
R .
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Whiteley [21] was the first to introduce a cross-section theorem establishing the realizability of a
wireframe sketch. The authors of [12] rewrote Whiteley’s theorem as follows:

Theorem 1: (Cross-Section Criterion) A wireframe sketch is realizable if and only if it has a

compatible cross-section, where the cross-section lines f
i

L and f
j

L of the adjacent regions
i

R and
j

R are

not identical. □ 

According to Theorem 1, the compatibility of a cross-section forms the basis for the evaluation of
a sketch in terms of realizability. Moreover, Theorem 1, establishes the existence of more than one
cross-sections for a given sketch (Fig. 3(a)) [8].

The cross-section criterion implies that: (a) the cross-section lines of two adjacent regions must be
different, and (b) each cross-section line must intersect with the lines of the corresponding region.
These two principal constraints form the basis upon which the construction of a cross-section, either
compatible or not, can be accomplished.

Based on this initial determination methodology, Ross & Thomas in [12] present a “ruler and
compass” method for the construction of a cross-section from a sketch. This geometric method is
based on an incremental construction of a cross-section from a wireframe sketch. A detailed
description of this procedure can be found in [7]. According to the incremental procedure, given a
wireframe sketch, all cross-section lines of the sketch can be uniquely determined, if the cross-section

lines f
s

L and f
t

L of two initially chosen adjacent regions
s

R and
t

R are fixed (Fig. 3(b)). This is

established due to the fact that (a) the cross-section criterion is applicable to both a polyhedron and
its corresponding sketch, and (b) a wireframe sketch is a connected graph with each region of it
adjacent to at least three lines/regions [12].

An algorithmic construction of a cross-section from a wireframe sketch that is based on the

Fig. 2: (a) The cross-section of a polyhedron onto a plane  , (b) the cross-section of a wireframe sketch
onto plane  , (c) compatibility check of a cross-section with the corresponding sketch.
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Fig. 3: (a) Two cross-sections of the same sketch, (b) Incremental construction of a cross-section: the
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L of two initially chosen regions are fixed and the rest of the cross-section
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i
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involved iterative process of the “ruler and compass” method [12] and employs an algebraic model of
the cross-section criterion is presented in Section 5.

4 ALGEBRAIC MODEL OF THE CROSS-SECTION CRITERION

This section describes the construction of a cross-section from a given wireframe sketch along with an
analysis of the corresponding constraints. This analysis is outlined in parallel with the proposed
algebraic model of the cross-section criterion and in complete analogy to the concept of incremental
construction. On the basis of Theorem 1, an algebraic representation of the cross-section criterion can
be defined as follows [7].

Definition 1: (Compatible Cross-section of a wireframe sketch) Let S be a wireframe sketch with R
regions, L lines and J junctions (see e.g., Fig. 3(a)). A compatible with S cross-section is a set of lines

 f
i

L such that:

(A) Each cross-section line f
i

L that corresponds to region
i

R , is written in the form: 1 0
i i

b x a y   ,

1,...,i R .

(B) The cross-section lines f
i

L and f
j

L of two adjacent regions
i

R and
j

R are not identical.

(C) For each
i

R , its adjacent lines
ij

e intersect the cross-section line f
i

L .

(D) Each line
ij

e of S that is adjacent to regions
i

R and
j

R , and the corresponding to these regions

cross-section lines f
i

L and f
j

L intersect at a point
ij

P . □

Concerning property (A), we consider cross-section lines that do not pass through the origin in
order to minimize the set of unknown parameters required for the definition of a cross-section (see
Section 4.1 for details). In Section 5.1.1 we prove that this consideration does not pose any limitation
to the proposed method. Properties (B) and (C) ensure that the generating cross-section lines will
follow the principal construction rules, while property (D) is related to the compatibility of the cross-
section with a sketch.

The following Theorems 2 and 3 are introduced in order for the lines  f
i

L of a cross-section to be

in accordance with properties (A), (B), and (C) of Definition 1. Theorem 2 along with its proof can be
found as “Theorem 3” in [7].

Theorem 2: A set of lines  f
i

L satisfies the properties (B), (C) of Definition 1 if and only if the

following hold true:

(C1)
i j j i

a b a b ,

(C2) 0
ij i ij i

k a m b  ,

for each pair of variables ( , )
i i

a b , with 1,...,i R , where:  1,...,j R corresponds to a region
j

R that

is adjacent to
i

R . □

The next theorem includes a new added (C3) constraint, which ensures that none of the cross-

section lines  f
i

L passes through the origin, according to property (A).

Theorem 3: Given two cross-section lines f
i

L , f
j

L that correspond to two adjacent regions
i

R ,
j

R

and satisfy properties (A)-(C) of Definition 1, distinct points
in

P and
jn

P define a line f
n

L that does not

pass through the origin if and only if

(C3) ( )( ) ( )( ) 0
i in in jn j jn j jn jn in i in

a n m k b n a n m k b n     
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where
in

P (resp.
jn

P ) is the intersection point of cross-section line f
i

L (resp. f
j

L ) with sketch line

in
e (resp.

jn
e ), and  1,...,n R corresponds to a region

n
R that is adjacent to both

i
R and

j
R .

Proof: Intersection point
in

P (Fig. 3(a)), is derived through the following system:



b
i
x a

i
y 1  0

k
in
x m

in
y n

in
 0








 P
in

 (
a

i
n

in
m

in

D
in

,
k
in
b

i
n

in

D
in

) , (4.1)

where 0
in in i in i

D m b k a   , according to constraint (C2) of Theorem 2. In complete analogy to
in

P ,

point
jn

P is also defined as:

( , )
j jn jn jn j jn

jn
jn jn

a n m k b n
P

D D

 
 (4.2)

with 0
jn

D  .

( ) The line equation of f
n

L can be written in terms of points
in

P and
jn

P :


(y

in
y

jn
)x  (x

jn
x

in
)y  x

in
y

jn
x

jn
y

in
 0 (4.3)

According to Eqns. (4.1), (4.2) & (4.3), line f
n

L does not pass through the origin if



x
in
y

jn
x

jn
y

in
 0 

(a
i
n

in
m

in
)(k

jn
b

j
n

jn
)(a

j
n

jn
m

jn
)(k

in
b

i
n

in
)

D
in
D

jn

 0 

 (a
i
n

in
m

in
)(k

jn
b

j
n

jn
)(a

j
n

jn
m

jn
)(k

in
b

i
n

in
)  0

(4.4)


() We first prove that (C3) results in two distinct points

in
P and

jn
P that define f

n
L . According

to Eqn. (4.4), if  0 or 0
in jn jn in

x y x y 

 P

in
 P

jn
. Otherwise


x

in
y

jn
 0 and x

jn
y

in
 0, and

according to Eqns. (4.1), (4.2) & (4.4)



(k
in
b

i
n

in
)

(a
i
n

in
m

in
)


(k
jn
b

j
n

jn
)

(a
j
n

jn
m

jn
)


(k
in
b

i
n

in
)

D
in

(a
i
n

in
m

in
)

D
in



(k
jn
b

j
n

jn
)

D
jn

(a
j
n

jn
m

jn
)

D
jn


y

in

x
in


y

jn

x
jn

 P
in

 P
jn

.

Thus, points
in

P and
jn

P are distinct and define the line f
n

L according to Eqn. (4.3). According to

Eqn. (4.4), the constant factor of line (4.3) is non-zero. □

In the following sections, the term “cross-section line” refers to a line f
i

L , with 1,...,i R , that

satisfies the constraints of Theorems 2 and 3. Theorems 2 and 3 are employed in the construction
process of a cross-section from a given wireframe sketch. It is noted that none of them include
property (D) as a constraint, because it is exactly the compatibility of a generated cross-section with a
sketch that evaluates the realizability of the latter. This property will be encompassed in the
formulation of the corresponding cross-section system, which is presented below.

4.1 The Cross-Section System

For any wireframe sketch S with R regions, L lines and J junctions (Fig. 3(a)), the cross-section lines f
i

L

and f
j

L corresponding to the adjacent regions
i

R and
j

R , intersect at the point
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( , )
j i i j

ij
i j j i i j j i

a a b b
P

a b a b a b a b

 


 
(4.5)

In order for the cross-section to be compatible, the point
ij

P must be on the (extension of) line
ij

e ,

where

: 0
ij ij ij ij

e k x m y n   (4.6)

Thus, Eqn. (4.5) is substituted in Eqn. (4.6) and produces:


(a

j
a

i
)k

ij
 (b

i
b

j
)m

ij
n

ij
(a

i
b

j
a

j
b
i
)  0 (4.7)

Relation (4.7) is the equation of the “Cross-Section system” that corresponds to the line
ij

e . For

each line of the wireframe sketch S, a similar equation is obtained by following the same process. The

coefficients ( , )
i i

a b , with 1,...,i R are the unknown variables of the system:



e
st

 eq
st

: (a
s
a

t
)k

st
 (b

t
b

s
)m

st
n

st
(a

t
b
s
a

s
b
t
)  0

..................................................................

e
ij
 eq

ij
: (a

j
a

i
)k

ij
(b

i
b

j
)m

ij
n

ij
(a

i
b

j
a

j
b
i
)  0

e
pq

 eq
pq

: (a
q
a

p
)k

pq
(b

p
b

q
)m

pq
n

pq
(a

p
b
q
a

q
b
p
)  0

e
pn

 eq
pn

: (a
p
a

n
)k

pn
 (b

n
b

p
)m

pn
n

pn
(a

n
b
p
a

p
b
n
)  0

e
qn

 eq
qn

: (a
q
a

n
)k

qn
 (b

n
b

q
)m

qn
n

qn
(a

n
b
q
a

q
b
n
)  0

..................................................................

e
kp

 eq
kp

: (a
k
a

p
)k

kp
(b

p
b

k
)m

kp
n

kp
(a

p
b
k
a

k
b

p
)  0

(4.8)

The number of the unknowns is 2R and the total number of equations is L . Each equation in (4.8)

includes four unknowns and each pair of unknowns ( , )
i i

a b (with 1,...,i R ) appears in deg( ) 3
i

R 

equations, where deg( )
i

R equals to the number of lines adjacent to region
i

R . A detailed analysis of the

system can be found in [7].

5 SOLUTION OF THE CROSS-SECTION PROBLEM

System (4.8) combined with the constraints of Theorems 2 and 3 defines the “Cross-Section Problem”
(CSP), whose solution determines the realizability of a sketch. The basic assumptions concerning the
desirable properties of the two initial cross-section lines of Theorem 3 are taken into account in the
proposed method for solving the CSP (see “IDVA” below).

This section presents a new method that first constructs and then evaluates the compatibility of a

cross-section with a given sketch. In [7], CSP is solved by utilizing a partial set of 2 1
3

L  equations of

the cross-section system in order to express 2 3R  unknowns with respect to three independent

parameters



s
,b

s
,b

t
. By requesting that all unknowns comply with the algebraic-model constrains, valid

values for



s
,b

s
,b

t
can be determined. The unused equations are employed to evaluate the

compatibility of the produced cross-section with the sketch.

In this paper, the CSP is solved on the basis of an incremental linearization of system (4.8). The
proposed “Incremental Linearization Algorithm” (ILA) proceeds iteratively to calculate all unknown

pairs ( , )
i i

a b , 1,...,i R . When the unknowns of the system are incrementally determined, equations of
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system (4.8) become gradually linear, enabling a new pair ( , )
n n

a b to be calculated. Suppose that in the

r th iteration the values of both pairs ( , )
p p

a b and ( , )
q q

a b have been calculated. Then, according to

system (4.8), the equations
pn

eq and
qn

eq become linear with respect to ( , )
n n

a b producing a linear sub-

system, which is solved in terms of the latter.

ILA requires an “initial values” determination, in order to proceed, but exploits all equations of
system (4.8) in order to produce a feasible solution. In complete analogy to the geometric construction

of a cross-section, the initial values are selected to be three unknowns

(

s
,b

s
) and

t
b that correspond

to the cross-section lines f
s

L and f
t

L of two adjacent regions
s

R and
t

R (note that
st

eq directly

determines



t
).

5.1 The Incremental Linearization Algorithm

ILA employs iteratively the following “Initial Value Determination Algorithm” (IVDA) and “Cross-Section
Calculation Algorithm” (CSCA) in order to calculate all the unknowns of system (4.8). In order for the
computed solution to correspond to a cross-section, all system’s unknowns are calculated with respect
to Theorems 2 and 3. Henceforth, all unknown values that satisfy both Theorems 2 and 3 are called as
“valid values”, while the produced cross-section is called as “valid cross-section”.

Incremental Linearization Algorithm (ILA)

input system (4.8); output valid cross-section

Step 1: Select three initial system variables



s
,b

s
,b

t
that correspond to two adjacent regions ,

s t
R R

having a common sketch line
st

e other than 0y  or 0x  .

Step 2: Assign to



s
an arbitrary non-zero value, with




s
 * .

Step3:

do

while (IVDA not equal true)

while (CSCA not equal true). 

Initial Value Determination Algorithm (IVDA)

input system (4.8); input initial value of



s
; output valid values for , ,

s t t
b b a ; returns true if

successful.

Step 1: Assign to
s

b an arbitrary non-zero value

b
s
 0 , with


b
s
 * .

Step 2: If values

(

s
,b

s
) do not satisfy (C2) and


k

st
n

st
b
s
 0 return false.

Step 3: Assign an arbitrary non-zero value to
t

b , with

b
t
 * .

Step 4: Find equation
st

eq (see system (4.8)) and calculate
t

a .

Step 5: If values

(

t
,b

t
) and


(

s
,b

s
) satisfy (C1) and (C2): Mark

st
eq as “used” and return true, else:

return false. 

Cross-Section Calculation Algorithm (CSCA)

input system (4.8); input values



s
,b

s
,b

t
,a

t
; output system solution; returns true if successful.
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Step 1: Repeat until all unknown pairs ( , )
i i

a b , with

i  {1,...,R}{s,t} , are calculated

Step 1.1: Find all equations that include one calculated pair ( , )
i i

a b and mark them as “linear”.

Step 1.2: Find all equations that include two calculated pairs and mark them as “used”.

Step 1.3: For ( 1,...,n R ) do

Step 1.3.1: Find one non-calculated pair ( , )
n n

a b .

Step 1.3.2: For ( 1,...,k L ) find all “linear” equations  ni
eq , with


i  1,...,R that

include ( , )
n n

a b .

Step 1.3.3: If the number of equations in  ni
eq is greater than or equal to two:

construct a system of equations
n

S and break.

Step 1.4: If no
n

S exists return true.

Step 1.5: If
n

S is a m2 system, with 2m  , transform it to a 22 system (see below).

Step 1.6: Calculate the determinant det[ ]
n

S of
n

S .

Step 1.7: If

det[S

n
]  0 : solve

n
S in terms of ( , )

n n
a b , else return false.

Step 1.8: If the calculated values ( , )
n n

a b violate (C1) or (C2): return false.

Step 2: Return true. 

More specifically, CSCA employs, in each iteration, one linear sub-system
n

S for the determination

of each unknown pair ( , )
n n

a b . While each linear subsystem
n

S always includes two unknowns, the

number of equations in
n

S varies depending on how many equations

eq

ni
, i  1,...,R  include the

above unknown parameters and an already calculated pair ( , )
i i

a b .

If the system
n

S , with



S
n

:
a

n
(k

pn
b

p
n

pn
)b

n
(n

pn
a

p
m

pn
)b

p
m

pn
a

p
k

pn
 0

a
n
(k

qn
b

q
n

qn
)b

n
(n

qn
a

q
m

qn
)b

q
m

qn
a

q
k
qn

 0









, (5.1)

includes two equations, then it is solved using Cramer’s rule [3]. Thus, when CSCA in Step 1.7

evaluates the determinant of
n

S , it directly examines whether constraint (C3) of Theorem 3 is true.

In the opposite case that
n

S , with



S
n

:

a
n
(k

pn
b

p
n

pn
)b

n
(n

pn
a

p
m

pn
)b

p
m

pn
a

p
k

pn
 0

a
n
(k

qn
b

q
n

qn
)b

n
(n

qn
a

q
m

qn
)b

q
m

qn
a

q
k
qn

 0

...........................................................................

a
n
(k

kn
b

k
n

kn
)b

n
(n

kn
a

k
m

kn
)b

k
m

kn
a

k
k
kn

 0











, (5.2)

includes more than two equations, a least squares method [3] is employed to estimate its solution.

The m2 system
n

S is converted to a 22 system '
n

S : CX D , with TC A A and TD A B .

Matrices A and B are respectively the coefficient and constant matrices of system (5.2). It is well-

known that the determinant of '
n

S is given by
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2 2 2det( ) ...
pq pk kq

C D D D    , (5.3)

where , ,...,
pq pk kq

D D D correspond to the determinants of all the 22 sub-systems that exist within

Eqn. (5.2). Consequently, at least one determinant , ,...,
pq pk kq

D D D complies with constraint (C3) of

Theorem 3.

5.1.1 Validity and Convergence of Incremental Linearization Algorithm

IVDA produces a set of valid initial values for three unknowns of system (4.8), on the basis of which a
solution of the cross-section problem is derived. Consequently, convergence of IVDA guaranties the
convergence of ILA. The following theorem establishes the convergence of IVDA.

Theorem 4: Let

V  {a

s
,b

s
,b

t
 * :Theorem 2  Theorem 3  System (4.8)} be the set of initial valid

values determined by IVDA. For a given value

a

s
  * , there exists at least one value for

s
b and

t
b ,

with

a

s
,b

s
,b

t
V .

Proof: With respect to Theorems 2 and 3, and system (4.8), equality in the constraints of these

theorems designate all the non-valid values of
s

b and
t

b , when
s

a is fixed. These non-valid values form

a set  V , with  V   and  V V   . Thus, V   , which establishes the convergence of IVDA. 

Bellow we prove that the produced solution is also a “non-trivial one”, i.e., (a) the cross-section

lines are not collinear, and (b) not all unknowns ( , )
i i

a b equal to zero.

Theorem 5: Given the values of the three variables

a

s
,b

s
,b

t
V , Incremental Linearization

Algorithm always produces a non-trivial cross-section of a sketch.

Proof: System (4.8) includes R unknowns and L equations. Given the values of three variables

, ,
s s t
b b , corresponding to the cross-section lines of two adjacent regions, one can obtain the value of

t
a from equation

st
eq . Subsequently, the number of unknowns in system (4.8) reduces to 2 4R  , and

the number of equations to 1L  . In [7], we proved that L1  2R 4  L  3 . This, combined with

the fact that each unknown pair ( , )
i i

a b appears in

deg(R

i
)  3 equations of system (4.8), establishes

that for the calculation of each pair ( , )
i i

a b there exists at least one linear system. It remains to prove

that the produced cross-section is not trivial. Constraint (C1) of Theorem 2 asserts that the cross-

section lines are not identical. Then, consider a generating sub-system
n

S (see Eqn. (5.2)). This sub-

system has a non-trivial solution (i.e., not all unknowns equal to zero) when it is non-homogeneous
and its determinant is non-zero. Indeed, constraint (C2) of Theorem 2 and (C3) of Theorem 3,

respectively, establish that constants of system (5.2) and the determinant of
n

S (see Eqn. (5.3)) do not

equal to zero. 

5.2 Compatibility Evaluation of the Cross-Section

In this section, the cross-section produced by the Incremental Linearization Algorithm is evaluated in
terms of compatibility. A direct evaluation method is achieved by substituting the produced solution
back into the equations of system (4.8). If the solution satisfies system (4.8) at some acceptable level
of accuracy, the cross-section is compatible with the given sketch. On the basis of this, a sensitivity
analysis of ILA is performed with respect to the accuracy level of the input sketch, i.e., the numerical
precision of the coordinates of its junctions.

Regarding the cross-section problem as a geometric problem, the cross-section is compatible with

a sketch if and only if the cross-section point
ij

P (Eqn. (4.5)) is on (the extension of) the sketch line
ij

e ,

or equivalently if the distance
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2 2

( ) ( )

( ) ( )

j i i j

ij ij ij
i j j i i j j i

ij

ij ij

a a b b
k m n

a b a b a b a b
d

k m

 
 

 



(5.4)

of point
ij

P from
ij

e equals to zero. Considering system (4.8), one can prove that each equation

ij
eq is equivalent to 0

ij
d  . Thus, compatibility of a cross-section with a given sketch can be evaluated

with respect to the accuracy level for all
ij

d .

The sensitivity analysis is performed in terms of a given error E associated with the coordinates
of the sketch’s junctions; i.e., each junction’s “perturbed” coordinates are in the form ( , )x E y E  .

Two case studies are performed using ILA. In the first case study, for a given set of initial variables,

the maximum distance value
max

max( )
ij

d d is calculated for a variety of error values according to

*10 rE n  , with 1,...,9n  and 1,...,6r  . The results indicate a linear correlation between E and

max
d as it is shown in (Fig. 4) for 1,5n  and 1,...,6r  .

In the second case study, for a typical sketch with error *10 rE n  , 1,...,9n  , different cross-

sections are considered and the corresponding
max

d values are obtained. The obtained results

designate that for a given sketch with *10 rE n  , 1  n  5 , the 85% of the calculated distance errors

are ( 1)
max

10 rd   . A standard deviation analysis for
max

d showed that the order of the standard

deviation error  is 10 r . The above analysis allows an evaluation of sketch realizability with respect

to a preferred level of accuracy *10 rE n  , 1  n  5 . Indeed, following the standard deviation

analysis method, if  stands for the mean value of
max

d then setting a threshold

d

max
 2 will

allow for the successful evaluation of at least 95% of the cross-sections produced by the proposed ILA.
After a thorough study of the experimental results we concluded that by setting an upper limit for

  10(r1) , the produced threshold

d

max
 2*10(r1) provides cross-sections which comply with the

anticipated rate.

The above sensitivity analysis allows us to employee ILA within a “sketch-to-solid” algorithm in
order to determine the hidden geometry of an input natural “imperfect” sketch and to construct a 3D
solid whose projection is identical with this sketch. If a generated by ILA cross-section is found not
compatible with the input sketch, according to the above tolerance criterion, then two cases are

Fig. 4: The maximum distance error
max

d with respect to (a) 1*10 , 1,...,6rE r  , and (b)

5 *10 , 1,...6rE r  .
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examined: (a) if max

( 1)
10

10 r

d
 

 then we re-run ILA in order to produce another valid cross-section (5% of

criterion failure). If this case is repeated for the same sketch for more than 100 times then the sketch

is not realizable. (b) if max

( 1)
10

10 r

d
 

 the given sketch is not realizable.

An example illustrating a non-compatible cross-section generated by an inexact sketch with a

junction error of order 110 is given in Fig. 5: all lines within highlighted circles should intersect at a

“unique” point under the accuracy level

d

max
 2*104 . In this case, the final maximum error is found

23
d =0.646493307 which renders the given sketch non-realizable according to the above accuracy

criterion.

Tolerance parameter:
4

max
2 *10d 

Acceptable error: 510

Sketch error: 110

max
d = 0.646493307 (

23
d )

24
d = 0.295916161

45
d = 0.061231349

35
d = 0.188047439

03
d = 0.000449064

34
d = 0.531433071

14
d = 0.386387151

Fig. 5: The threshold value for the tolerance parameter
ij

d assesses the compatibility of the generated

cross-section with the sketch. In this example, 4
max

2 *10d  and the sketch is evaluated as non-

realizable.

R1 R2

R3

R6

R5

R4

e13

e34
e35

e45

e25

e26

e12

e23

e46

e16

e56

e14

Lf 1

Lf 2

Lf 1

Lf 2

Lf 3

Lf 1

Lf 2

Lf 3

Lf 4

Lf 1

Lf 2

Lf 3

Lf 4

Lf 5

Lf 1

Lf 2

Lf 3

Lf 4

Lf 5

Lf 6

Fig. 6: From left to right, (a) a wireframe sketch, (b) the result of the “Initial Value Determination”
algorithm, (c)-(f) the four iterations of the “Cross-Section Calculation” algorithm produce a cross-
section for the wireframe sketch in (a).

03
d

max
d

24
d

45
d

35
d

34
d

14
d
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6 EXAMPLES

In order to analyze the proposed algorithm, we first demonstrate the application of ILA along with a
graphical representation of the solution for a “trivial” case of a wireframe sketch corresponding to an

orthogonal parallelepiped (Fig. 6(a)). IVDA, for
1 1 2
, ,b b , produces cross-section lines

1
fL and

2
fL (Fig.

6(b)). In the first iteration (Fig. 6(c)) of CSCA, the equations  13 14 16 23 25 26
, , , , ,eq eq eq eq eq eq become linear,

and during Step 1.7 the unknown pair
3 3

( , )a b is calculated using the linear sub-system  3 13 23
,S eq eq .

Accordingly, in the second iteration (Fig. 6(d)) the set of “not used” linear equations is

 14 16 25 26 34 35
, , , , ,eq eq eq eq eq eq , and the unknowns

4 4
( , )a b are calculated using the system  4 14 34

,S eq eq .

The third iteration (Fig. 6(e)) involves the equation set  16 25 26 35 45 46
, , , , ,eq eq eq eq eq eq , and employs

 5 25 35 45
, ,S eq eq eq to calculate

5 5
( , )a b . Finally, in the fourth iteration (Fig. 6(f)), all linear and “not

used” equations  16 26 46 56
, , ,eq eq eq eq form a linear system for calculating

6 6
( , )a b .

More complicated sketches which include noisy junctions (i.e., error order 510 ) have been tested
with success. Examples are given in Fig. 7, which illustrates the cross-sections that are produced by
ILA for the given wireframe sketches. All produced cross-sections are found compatible according to

the tolerance parameter

d

max
 2*104 . The resulting

max
d value of each sketch is demonstrated in Tab.

1.

Test results showed that for a typical sketch that includes 20 junctions, 30 lines, and 12 regions,
ILA involves, on the average, 70 iterations of IVDA, 6 iterations of CSCA, and produces a cross-section
in less than 0.1 seconds using a modern PC equipped with a Core i7 CPU.

Fig. 7: Compatible cross-sections of the given wireframe sketches produced by the Incremental
Linearization Algorithm.

Sketch A B C D E F G H

max
d

6142.4 10 619.9 10 633 10 695.4 10 653 10 6178.6 10 636.7 10 656.4 10

Tab. 1: The
max

d value of the sketches shown in Fig. 7 (from left to right and top to bottom).
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7 CONCLUSIONS

The cross-section criterion forms a robust geometric tool to check realizability of a given sketch. The
main advantage of this criterion is that it provides a necessary and sufficient condition to assert the
existence of a polyhedron from a given sketch, without using any heuristic rules, such as the “Line
Labeling” scheme. This paper surpasses the classical geometric “ruler-and-compass” framework for
the generation of a cross-section from a sketch by employing an algebraic description of the cross-
section problem and providing an algorithmic solution to the underlying bilinear system. The
presented approach is based on the “Incremental Linearization Algorithm” (ILA) to effectively evaluate
the realizability of a given (imperfect) sketch. Test results show that the proposed algorithm is able to
evaluate an imperfect wireframe sketch with a 95% success ratio. In addition, the evaluation criterion
can be adjusted according to the accuracy level of the input sketch. Thus, ILA can be effectively
employed within a “sketch-to-solid” algorithm in order to (a) facilitate the process of the “hidden
geometry determination” that is required for natural sketches, (b) correct the geometry of a given
wireframe sketch, and (c) generate a compatible cross-section for constructing the trihedral
polyhedron from a given sketch. Our future research will focus on all three aforementioned issues.
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