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ABSTRACT

We present a new method for enhancing shape features of a mesh surface by moving
mesh vertices from low-curvature regions to high-curvature regions or feature regions.
The movement of the vertices, also called vertex flow, is driven by minimizing an
objective function defined to take into account several important considerations in
mesh improvement. First, a new edge-based energy term is used to measure the
uniformity of the approximation error of a target shape by a mesh surface. Clearly,
given a fixed number of triangle faces of a mesh surface approximating an underlying
target surfaces, the approximation is made more uniform by placing more faces are
used in higher-curvature regions and fewer faces in lower-curvature regions.
Therefore, the minimization of this edge-based energy term provides a strong force to
move mesh vertices towards high-curvature regions. Second, to maintain faithful
shape approximation during vertex flow, a distance-error term is included to penalize
the displacement of mesh vertices along normal directions of the underlying surface,
and a novel local quadratic model is employed to efficiently minimize this term. Third,
a fairing term is used to ensure the smoothness of the resulting mesh surface. Our
method enhances significantly shape features even at a low sampling rate and is
useful to several feature-aware geometry processing operations, such as simplification
and perceptual line drawing.
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1 INTRODUCTION

Triangular meshes are the most versatile surface representation in computer graphics. Triangular
meshes are generated from a variety of sources including 3D scanners, modeling software, and
computer vision algorithms. Different triangulations of the same surface are needed to suit for
specific requirements of different applications. When an underlying, or original, shape is available, the
error between this shape and its approximating mesh may be reduced by dense sampling. However,
over-sampling will increase the number of vertices and thus the associated complexity, transmission
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and processing costs. We propose a method that optimizes mesh approximating quality with feature
preservation without increasing the number vertices.

We wish to achieve a uniform distribution of approximation errors of a mesh to a given underlying
target surface with fixed mesh complexity. Clearly, to attain the same approximation error, more faces
are needed in a higher curvature region or around features and fewer faces in flat regions, such as a
flat part of a surface. In our approach, this desired distribution of mesh faces is achieved by moving
mesh vertices on the surface via the minimization of an edge-based energy, which is shown to measure
the uniformity of the approximation.

To ensure faithful and smooth shape approximation by the modified mesh surfaces, we prevent
large displacements of the mesh vertices away from the underlying surface by incorporating an error
term measuring the distance from mesh vertices from the underlying surface. Efficient minimization
of this distance term, which is necessarily nonlinear, is achieved by employing a local quadratic model
proposed in [16]. A distinct feature of this model is that it allows easy vertex flow with the tangent
space of a surface, while inhibiting vertex flow in the normal direction. Finally, a standard faring term
is included in the objective function to ensure the smoothness of the resulting mesh surface.

Fig.1 shows an example in which the features of a mesh surface are enhanced with our method.
Our method works directly on a mesh surface of an arbitrary topological type without the need for
mesh decomposition and mesh parametrization. In the present work we focus on feature enhancement
with only vertex relocation in an optimization framework, assuming that the edge connectivity of the
mesh surface remain unchanged. However, there is no essential difficulty in combining the idea
presented here with an appropriate edge-flip scheme to further improve mesh approximation quality.

Fig.1: A feature enhancement example: (a) A mesh surface with 200k vertices, (b) A down-sampled
mesh of the same surface with 6k vertices, which loses some features due to the low sampling rate, (c)
An improved mesh generated from (b) by our method, without using (a). Some of features (such as
eyes, nose, and feet) are restored or enhanced, as compared with (a).

The remainder of the paper is organized as follows. In Section 2, we briefly review related work.
The problem is formulated and our optimization framework is discussed in Section 3. Section 4
addresses key implementation issues. Some experimental results are presented in Section 5. We
conclude the paper in Section 6 with a summary and discussions on future work.

2 RELATED WORK

There are several topics related to our work, including mesh optimization [8,14], mesh smoothing [9],
surface resampling and remeshing [1,21]. We will review briefly related works on these topics in the
following.

Mesh improvement. Mesh improvement produces an improved mesh approximating a given original
surface but with more reasonable distributed vertices. Mesh quality improvement methods include
several operations: vertex insertion or collapse, edge swapping, local vertex relocation, and
combinations of these.
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Vertex insertion/collapse, vertex relocation and edge swapping are local operators that are
frequently used in mesh improvement. Hoppe et al. [8] describe an energy minimization approach to
mesh optimization. Vertices are inserted or deleted from the mesh based on a priority queue according
to approximation errors. Turk [21] proposes a method for distributing a given number of points over a
mesh surface uniformly. These points are connected to form a re-tiling of a surface that is faithful to
both the geometry and the topology of the original mesh surface. Recently, mesh optimization using
global Laplacian operator is proposed [13,14]. Vertices are relocated so that they approximate
prescribed Laplacians and positions in a least-squares sense.

Remeshing of surfaces aims to create a new mesh with high quality. Generally, remeshing
techniques are classified into five main categories: structured remeshing, high quality remeshing,
compatible remeshing, feature remeshing, and error-driven remeshing [2]. Feature remeshing focused
on preserving or even restoring sharp features when producing the resulting meshes. Vorsatz et al. [21]
proposed another way for feature preserving remeshing where mesh vertices are extracted to feature
edges using a hierarchical curvature field. Some approaches perform connectivity optimization with
vertex relocation [23], assisted by global or local surface parameterization, so mesh vertices need to be
mapped to the original surface after relocation in the parameter domain.

Feature enhancement. Guskov et al. proposed an algorithm for feature enhancement of mesh surfaces
based on multiresolution signal processing [7]. This filtering technique is directly applied to mesh
vertices locally, so triangle flipping frequently occurs [24]. Yagou et al. developed a 3D Shape
enhancement method based on the high-boost filter in signal and image processing [24]. It consists of
affecting the high-boost filter to face normals on a triangle mesh and updating mesh vertex positions
to make them adapt to the boosted normals. However, this method will introduce the aliasing and the
mesh irregularization which are suppressed by the Laplacian smoothing therein. The edge-sharpener
algorithm [14] detects the chamfer edges and inserts new vertices which are forced to lie on
intersections of planes at sharp features [14]. Lai et al. [11] proposed a classification and editing
framework for triangular meshes. They used a feature sensitive metric to recognize features on
multiple scales via integral invariants of local neighborhoods. The dilation and erosion of prong
features are one of their applications. Recently, Eigensatz et al. [5] provided a shape editing tool based
on curvature domain processing. Surface curvature is direct accessed to facilitate shape processing,
including filtering, synthesis and feature enhancement algorithms. Feature enhancement is achieved by
amplifying the largest absolute principal curvature by an amount proportional to the difference of the
absolute principal curvature values. This change enhances convex ridges as well as concave valleys.
However, their optimization entails solving a time-consuming nonlinear least-squares problem.

Other related works are methods for exaggerating the shading features. Without modifying the
geometry of surfaces, these methods modify the normals (like in bump mapping, normal mapping) or
the light position. Cignoni et al. [4] presented a simple technique to improve the perception features of
3D shapes. Based on a simple modification of the surface normals, the geometric features of the object
are enhanced during the rendering. Rusinkiewicz et al. [18] proposed a non-photorealistic shading
model, where the effective light positions for different areas of the surface are dynamically adjusted. It
reveals detail regardless of surface orientation and computes the shading at multiple scales to bring
out detail while conveying overall shape. Ritschel et al. [17] presented an approach for 3D scene
enhancement by increasing the local contrast. Using unsharp masking, their method avoids temporal
artifacts, better depicts shape details, provides clearer separation between objects and improves the
overall dynamic range.

3 FEATURE ENHANCED VERTEX FLOWING

A triangular mesh M is a triple ( , , )V E T , where 3
1 2{ , , , },n iV v v v v R  is the set of vertex positions

defining the shape of the mesh in 3R ; { | 1,2, , }iE e i l   is the set of edges in which each edge can

be represented by a pair of vertex indices as 1 2 1 2( , ),1 ,ie i i i i n   ; and { | 1,2, , }iT t i m   is the set

of triangles in which each triangle it can be represented by a triple of vertex indices as

1 2 3 1 2 3( , , ),1 , ,it i i i i i i n   . Denote X as the cardinality of the set X .
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3.1 Objective Function

Our goal is to make the vertices flow over the mesh surface from flat regions with low curvatures to
featured regions with high curvatures, thus enhancing surface features and the perceptual appearance
of the shape. The basic idea is that the flow of the vertices can be induced by minimizing appropriate
energy function via quadratic minimization.

Starting from their positions in the input mesh 0M , the mesh vertices will be updated to minimize

the following objective function totalF to form an updated mesh M :

*

arg min ,total em sd smo
V

F F F F    (1)

where emF is the sum of edge-based energy terms for all the edges of M , which measure the

uniformity of the approximation. Since in general the approximation errors are not uniformly
distributed for a mesh surface with uniformly distributed mesh vertices, the minimization of this term

emF will induce the flow of mesh vertices from low-curvature regions to high-curvature regions. The

second term sdF is the sum of the squared distance from the vertices of M to the original surface M .

We use the minimization of this term to prevent the mesh M from deviating much from the initial

surface 0M . The last term smoF is a term which makes the low-curvature regions smooth. The

coefficients  and  are their associated weights that are used to balance their influences. We will

elaborate on each of the above energy terms in the next section.

Hence, intuitively, by minimizing the above objective function, the mesh vertices are attracted to

the nearby feature region (due to the term emF term), and they are not are away from the initial surface

0M (due to the term sdF ). As a result of this vertex flow, the features of the mesh are enhanced or

sharpened.

3.2 Edge-metric Term - emF

We first introduce an edge metric on a surface S and then use this edge metric to define the edge-

based energy emF of a mesh M . For each edge e , we define its energy ( )emf e such that ( )emf e returns

a large value if e is a relatively long edge in a high-curvature region of the surface S ; thus the

minimization of ( )emf e will make the mesh vertices have a more reasonable distribution.

Let e be an undirected edge, corresponding to two directed edge vectors ije and jie , incident to

the vertices iv and jv . Consider the directed edge ij j ie v v  . Let 1iT and 2iT be unit vectors in the

principal curvature directions of iv . Let 1ik and 2ik be the principal curvatures at iv . Then we define

the edge metric at iv for ije as

2 2
1 1 2 2( ) ( ) ( ) .

iv ij i ij i i ij if e k e T k e T    (2)

Similarly, define the edge metric at jv for jie as

2 2
1 1 2 2( ) ( ) ( ) ,

jv ji j ji j j ji jf e k e T k e T    (3)

where 1jT , 2jT , 1jk and 2jk are evaluated at jv . Then the energy ( )emf e for the edge e is defined as

1
( ) ( ( ) ( )).

2 i jem v ij v jif e f e f e  (4)

Finally, the total edge-based energy for the mesh M is define as

1
( ),em em

e E

F f e
E 

  (5)
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where E is the set of all the edges of the mesh M.

It can be shown that the energy term ( )emf e for edge e measures the deviation, or the maximum

error,  of the edge e from the surface S , see Fig.2. The proof is given in the Appendix. Clearly, the

error  will be large if the curvature of S is large (for an edge e of fixed length) or if the edge e is

long (for a fixed curvature of S ).

Fig. 2: The maximum error  between the edge 1 2e v v and the surface S .

Note that, when used for optimization, only the endpoints iv and jv are allowed to vary in the

expression of Fem and all the other quantities are treated as constants. Therefore emF is a positive

semi-definite (PSD) form in terms of the mesh vertices. The minimization of emF amounts to

minimizing the 1L error between the mesh M and the surface S . Suppose that an input mesh 0M

approximating an underlying smooth surface S has its vertices uniformly distributed with respect to

the surface area. Then the approximation error ( 0M to S ) is larger in high curvature region than in

low curvature region. In this case, the minimization tends to drive the vertices of 0M from low-

curvature regions to high-curvature regions.

3.3 Squared-distance Error - sdF

To ensure that the updated mesh M remains an acceptable approximation to the underlying surface

S , we include a distance error term sdF to measure the distance between M and the initial mesh 0M

(since S is usually unavailable and 0M can be taken as an proxy of S ). The minimization of sdF will

penalize a large deviation of M from 0M . To encourage vertex flow in tangential directions, we

introduce the SD error term which is defined by a quadratic approximate of the squared distance from
a point to a surface. We will discuss the formulation of this quadratic model briefly in the following.

Consider a smooth surface S in 3D and a point p S . Let 1T and 2T be unit vectors in the

principal curvature directions of S at p . Then the normal vector of S at p is 1 2N T T  . Let 1 0 

and 2 0  be the principal curvature radii of S at p . Let 0v be a fixed point on the normal line of S

through the point p . Let d be the minimum of the principal curvature radius of all vertices. Consider

a variable point ( , , )Tv x y z in the neighborhood of the point 0v . It is shown in [16] that a quadratic

approximation of the squared distance function from the variable v to the surface S is

2 2 2
1 2

1 2

( ) [( ) ] [( ) ] [( ) ] ,
d d

h v v p T v p T v p N
d d 

        
 

(6)

which is a positive semi-definite quadratic form in terms of the point ( , , )Tv x y z . An iso-distance

surface ( )h v c for a constant c , is an ellipsoid centered at p . The orientation and shape of this
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ellipsoid are determined by d and curvature information of S at p , i.e. 1T , 2T , 1 , and 2 . If p is in a

low-curvature region an d is relatively small, the coefficients 1( )d d  and 2( )d d  are much

smaller than 1 . Then in this case the iso-distance surface ( )h v c is a flat ellipsoid (see Fig.3).

Fig. 3: (a) The SD error decrease when the point v moves to 1v ; (b) The SD error increase slightly

when the point v moves to 1v .

We use ( )h v given by Equation 6 as the error term to measure the error from a point v near the

vertex p on the mesh M. During the process of optimization, the point may have to move sideway

with respect to the vertex p . Such a movement may still result in a smaller error value when using the

SD error term (see Fig.3(a)). Another possibility is that, a point may move away from p along a

tangential direction of the surface S (see Fig.3(b)). In this case, the value of ( )h v will increase only

slightly as compared with the (squared) Euclidean error term
2

v p . Hence, we may say that the SD

error term has little resistance in a low-curvature region (or along a low-curvature direction if only one
of the principal curvatures is small) for the tangential movement of mesh vertices; in contrast, such a
movement or, for this matter, any movement of v away from p , is penalized heavily by the Euclidean

error term
2

v p . This favorable property of the SD error term ensures that, with little resistance,

the edge-based energy term emF can effectively transport mesh vertices to arrive at a good distribution.

The total SD error is then defined as

1
( ),sd

v V

F h v
V 

  (7)

Clearly, sdF is also a positive semi-definite quadratic form in terms of the mesh vertices.

3.4 Fairness Term - smoF

The squared-distance error punishes the movement in the normal direction, which may influence the
fairness of the triangles. To alleviate this effect, we introduce a term which defines the fairness and

smoothness similar to [13,14]. That is, for each vertex iv , we define its fairness as its Laplacian

operator:

1
( ) ,

ij

i i j
e Ei

L v v v
d 

   (8)

where id is the valence of the vertex iv . It is seen that the vertex iv lies in the center of gravity of its

1-ring neighbors if ( ) 0iL v  . The fairness energy of the mesh is defined as

2
( ) ,

i

sm o i i
v V

F L v


  (9)
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where i is the weight of iv .

To preserve sharp features of the surface, the vertices in the high curvature regions could have

small weights in the fairness energy. Therefore, the weights i is defined as

1 ,k
i e  (10)

where 1 2i ik k k  .

4 IMPLEMENTATION ISSUES

In this section we discuss some implementation issues which concern about the minimization of the
objective function.

4.1 Minimization of Edge-based Energy Term emF

An edge-based energy terms emF has been introduced so far. As a matter of fact, a global minimum of

this term is attained when the mesh contracts to a single point, which is clearly not a feasible solution
since in this case the mesh vertices do not lie on the mesh M . To circumvent this problem, we
reformulate the edge-based energy term as follows. Consider the term of edge e

1
( ) ( ( ) ( )).

2 i jem v ij v jif e f e f e  (11)

( )emf e becomes minimum if and only if its gradient vectors with respect to both iv and jv are zero, i.e.

( ) ( ) 0.
i jv em v emf e f e    (12)

However, since we are only interested in how ( )emf e can be reduced with the tangential movement

of the vertices iv and jv , so we choose not to consider the normal components of the gradient vectors;

that is, we change the conditions Equation 12 to

1 2( ) ( ) 0,
i iv em i v em if e T f e T      (13)

and

1 2( ) ( ) 0.
j jv em j v em jf e T f e T      (14)

That is, we only require the tangential components of the gradient vectors of ( )emf e to vanish. Thus

we consider only the minimization of the quadratic function

2 22 2

1 2 1 2( ) ( ) ( ) ( ) .
i i j jv em i v em i v em j v em jf e T f e T f e T f e T           (15)

Computationally, the above reformulation can easily be implemented as follow. Suppose that the

total sum of all edge-based energy terms is expressed as the quadratic form T
emf V AV , where

1 2 | |( , , , )T T T
VV v v v  is a 3 V dimensional vector, and 1 2 | |( , , , )VA A A A  with each iA being a 3 | | 3V 

matrix. Then, with respect to an arbitrary mesh vertex iv , we have

( ) 2 .
i

T
v em if e A V  (16)

Therefore，

1 1( ) 2 ,
i

T
v em i i if e T T A V   (17)

and

2 2( ) 2 .
i

T
v em i i if e T T A V   (18)
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Hence, we just need to consider the minimization of the following sum
2 2

1 2[( ) ( ) ].
i

T T
i i i i

v V

T A V T A V


 (19)

The coefficient matrix of this least-squares problem can easily derived from the original matrix A
by matrix manipulation.

4.2 Minimization of Vertex-based Energy Terms sdF and smoF

The energy terms sdF and smoF are both vertex-based energy terms. Fortunately, these terms are all

quadratic form. It leads to a linear system to minimize the quadratic function. We denote the matrices

of sdF and smoF by B and C respectively. It is easy to know that B is a 3 3V V matrix and C is

3 3V V .

4.3 Minimization of the Objective Function totalF

Minimizing the objective function totalF results in solving a linear system of equations

,LX b (20)

where L is a 8 3n n matrix for a mesh M which contains n V vertices. Here 0 1 1( , , , )T
nX v v v   is a

3n dimensional vector, where ( , , )i i i iv x y z . For the over-determined system Equation 20, we solve it

in a least-squares sense. Finally, we compute the Cholesky factorization for a 3 3n n sparse matrix,

and a direct solver of [20] is used in our implementation.

4.4 Remarks

We need to use the curvature at the mesh vertices in our energy terms. There are various approaches
for estimating curvature on discrete meshes. From our experience, the approach proposed by
Rusinkiewicz [19] gives a nice performance on curvature evaluation. We adopt this approach to
compute the curvatures on the vertices in all our experiments.

Any extra linear constraints on vertex coordinates can be easily integrated into our system. That is,
we can add any other linear constraints on the vertices in Equation 20 and these linear constraints can
be satisfied in a least-squares sense, as in [13]. For example, users could want to fix the positions of
some important feature points. This can be done by introducing some position constraints in the
optimization.

Note that the connectivity of the mesh is unchanged during the optimization. Due to the fairness
term in the objective function, the triangulation quality after the optimization generally is good in
most of our experiments. We also give users the option to perform the mesh improvement techniques
like edge-flips and edge splits to improve the connectivity of the triangulation [2].

5 EXPERIMENTAL RESULTS

We have implemented our vertex flowing method on a Pentium IV 3GHz computer with 1G memory.
We show some examples in this section to illustrate the applicability and flexibility of our approach.

There are three feature-aware energy terms in the objective function we use. We will first show
how each error term affects the results. Fig.4 shows some examples using different weights  , for the

SD error term sdF . The features become more prominent as the weight  decreases. This means that

more deviation from the initial mesh is allowed for enhancing the features.
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Fig. 4: Comparisons with different weights for sdF . (a) a resampling mesh of Max-Plank model; (b),(c),(d)

are the results by the vertex flowing algorithm with 50,10,0.2  respectively.

The fairness error term smoF improves the quality of the triangles in the vertex flowing. Fig. 5

shows some examples using different weights  for smoF and compares the qualities of the result

meshes. Here we measure the triangle quality by the radius ratio 2r R , mapped to [0,1], where R and

r are the radii of the circumscribed and inscribed circles respectively [15]. The quality of the triangles
in (c) with larger  is better than that in (a) and (b). It shows that the fairness term could improve the

quality of the result mesh.

Fig. 5: Comparisons with different weights for smoF . (from left to right) (a,b,c) are the results by vertex

flowing algorithm with 0,0.5,1  respectively. The upper row shows the result meshes and the lower

row shows the histogram of the triangle quality.

It can be seen that the weight parameters  and  measure the importance of the corresponding

energy terms respectively. From our experimental experience, the weights 1  and 0.5  could work

well for most cases. We use these values in all the following examples.
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Fig.6 shows an example of performing the vertex flowing minimization on a torus mesh surface.
Note that the vertex density changes after the minimization as many vertices have been transported to
high-curvature regions from low-curvature regions. Another example about the horse mesh is shown in
Fig.7.

Fig. 6: Results by our approach. Left: the original torus mesh; Right: the result mesh using vertex
flowing optimization.

Fig. 7: Results by our approach. Left: a horse mesh; Right: the result mesh using vertex flowing
optimization.

Comparisons. In Fig.8, we compare our approach with Guskov et al.'s approach [7] which can also be
used to enhance mesh features. Its main idea is to extrapolate the difference between the original mesh
and a single resolution relaxed mesh. As seen in the comparisons, features of the original surfaces
could be well improved using our vertex flowing approach. When features on the mesh are not obvious
or the sampling rate is low, the previous method may fail to enhance the features. As shown in the
examples of this paper, our method can restore or enhance the features of low sampling rate models.
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Fig. 8: Comparison with Guskov et al.'s approach [7]. Left: a resampling mesh of Armadillo model;
Middle: result generated by Guskov's approach; Right: result by vertex flowing.

In Fig.9, we compare our approach with exaggerated shading generated in [18]. Instead of changing
the geometry, the exaggerated shading method is based on a non-photorealistic shading model. It
exaggerates the shading effect by adjusting the effective light position for different areas of the
surface. This example shows that our method is capable of exaggerates different details.

Fig. 9: Comparison with exaggerated shading [22]. (a) a football like model; (b) result by vertex flowing;
(c) result generated by exaggerated shading.

Perceptual observation enhancement. Our vertex flowing method can enhance the perceptual
observation for shapes, as shown in Fig.11. We used two state-of-the-art line drawing approaches to
test the meshes. We use the same parameters for each pair models. The feature enhanced meshes
always have better line drawing results than the original meshes. Therefore, our approach can help
enhance the perceptual observation for mesh surfaces. Fig.10 shows the mean curvature maps of Max-
Planck head models. Our method amplifies the high curvatures after vertex flowing.

Fig. 10: Mean curvature maps. Color coded mean curvature: red (large, positive mean curvature) and
blue (small, negative mean curvature). Left: a resampling mesh of Max-Plank model; Right: the result by
vertex flowing.
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Fig. 11: Line drawing results of the meshes. (a),(b) line drawing results using the approach of [12]; (c),(d)
results of apparent lines using the approach of [10]. For each pair in (a)-(d), the left mesh is the original
mesh surface, the right one is the feature enhanced mesh by vertex flowing. It is obvious that the
enhanced meshes by our approach can extract more perceptual information of the shapes.

Feature preserving LoD. Our framework of vertex flowing can be used to improve the quality of a
simplified mesh as shown in Fig. 12. The original mesh shown in Fig. 12(a) is simplified using quadric
error metrics method [6] shown in Fig. 12(b),(c). We generate a new mesh in Fig. 12(d) using the vertex
flowing approach from Fig. 12(a). The feature enhanced mesh is simplified using the QEM method as
well, obtaining Fig. 12(e),(f). We can see that the LoD sequence in the lower row preserve better features
of the shape.

Fig. 12: Feature preserving LoD. (a) a resampling mesh of Max-Plank model; (d) the feature enhanced
mesh using our approach; (a),(b),(c) are the LoD sequence using QEM approach [6]; (d),(e),(f) are the LoD
sequence using QEM approach based on model pre-processing with vertex flowing method.

Table 1 lists the running time of the vertex flowing examples shown in this paper. As we can see,
our approach achieves a good combination of speed, mesh quality, and feature improvement.

Model Vertex Number Running Time (s)

Torus(Fig. 6) 4000 1.065

Santa(Fig. 5) 5000 1.305

Venus head(Fig. 11(a)) 5000 1.328

Max-Planck Head(Fig. 4) 5000 1.347
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Dog(Fig. 1) 6000 1.623

Bunny(Fig. 11(c)) 6500 1.782

Horse(Fig. 7) 10000 2.812

Armadillo(Fig. 8) 10028 2.805

Tab. 1: Running time for vertex flowing optimization shown in the paper. Except Fig. 4 and Fig. 5, we
set the weights 1, 0.5   for other examples.

Our optimization framework does not guarantee to preserve the orientation of the triangles. We
rectify the topological errors in the post-processing if triangle flips occur. Fortunately, we rarely

encounter this situation in our experiments due to the use of the Laplacian fairness term smoF .

6 CONCLUSION

Mesh surfaces obtained by 3D scanners always lose their features to some degree because of low
sampling rate. Our goal is to resume or enhance the features by the means of vertex flowing. We have
presented an effective vertex flowing method that uses tangential flow of mesh vertices to achieve an
optimal distribution of mesh vertices in a feature aware manner. The method is based on efficient
quadratic optimization and works directly on a mesh of arbitrary topology type, i.e., without invoking
complicated methods for mesh parameterization and mesh segmentation. The tangent flow of mesh

vertices is achieved by integrating edge-based curvature-dependent energy term emF , squared distance

error term sdF , and Laplacian fairing energy term smoF in the objective function. The term sdF

constrains the improved mesh to the initial mesh and at the same time has little resistance to the
tangential movement of mesh vertices and the term Fem induces a strong force to move mesh vertices
from low-curvature regions to high-curvature regions.

We assume in the algorithm that the model surface is a mesh surface for which one estimate
tangential and curvature information at each mesh vertex. However, the method works for a model
surface given in any form, as long as the curvature information can be evaluated at each point of the
surface; these include piecewise parametric surfaces or implicitly defined algebraic surfaces. For
surfaces with boundaries, one needs to fix mesh vertices on the boundaries and only subject other
internal vertices on optimization. Our further research is to combine the vertex flowing scheme
presented here and other techniques of surface editing to yield a feature aware surface manipulation
method.
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7 APPENDIX. PROOF OF A PROPERTY OF THE EDGE METRIC IN SECTION 3.2

Let 1 2e v v be an edge of the mesh M , with the end points 1v and 2v assumed to be on the model

surface S . We are going to show that ( ) 8emf e  , where  is the maximum error between the model

surface S and the edge e . Let the vector 12 2 1v v v  has its tail at 1v S . Denote 12v , then

12 12v v  , 12v is a unit vector. On the other hand, we project 12v into the tangent plane of S at 1v along

the normal direction of S at 1v to obtain a tangent vector 12v . Denote 12 12/T v v   , which is a unit

tangent vector of S at 1v . It is easy to show that 12T v , as a first order approximation. Let 1T and 2T

be unit vectors in the principal curvature directions of the surface S at 1v . Let 1k and 2k be the

principal curvatures at 1v (in the directions of 1T and 2T ). Let k be the normal curvature of S at 1v in
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the direction of the tangent vector T . Let 1arccos( )T T   , i.e. the angle between the edge vector 12v

and the principal curvature direction 1T . Suppose 1 2 0k k  . Without loss of generality, assume that

1 0k  and 2 0k  . Then

1

2 2
1 12 1 2 12 2

2 2 2
1 12 1 2 12 2

2 2 2
1 1 2 2

2 2 2
1 2

2

( ) ( )

[ ( ) ( ) ]

[ ( ) ( ) ]

[ cos sin ]

vf k v T k v T

k v T k v T

k T T k T T

k k

k

 

   

   

   

 











where the last equality follows from Euler's formula.

Fig. 13: The osculating circle of the sectional curve of the surface.

For the moment, assume 0k  . Let 1 k  be the normal curvature radius in the direction of 12v .

Consider the osculating circle C of S in the normal section in the direction of T (see Fig. 13). Let 2v

be the second intersection of the edge 1 2e v v (or its extended line) with the circle C . Let  be the

error between the minor arc of the circle C and the line segment 1 2v v . As a second order

approximation, we have   , the maximum error between the edge 1 2e v v and the surface S .

Obviously,

2 2 2( 2) (2 ) 2 2 k           

Dropping the second-order term, we obtain

2 8 8k   

It follows that

1

2
12( ) 8 .vf v k  

Obviously, this approximation holds trivially when 0k  . Similarly, we can show

2 21( ) 8 .vf v 

Hence,

1 212 21

1
( ) ( ( ) ( )) 8 .

2
em v vf e f v f v   
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as a first-order approximation.

When 1 2 0k k  , it can be shown by the same argument above that

2 2
1 12 1 2 12 2( ) ( ) 8 .k v T k v T    

However, in this case, because of the need to maintain
1 12( )vf v as a positive semi-definite quadratic

form, we do not have an equality but only

1

2 2
12 1 12 1 2 12 2( ) ( ) ( ) 8 .vf v k v T k v T     

That is, ( )emf e is an over-estimate of the error  if 1 2 0k k  .


